
A Dynamic-Programming Algorithm for Reducing the Energy Consumption of
Pipelined System-Level Streaming Applications

N. Liveris
Northwestern University
Evanston, IL 60208 USA

H. Zhou
Northwestern University
Evanston IL 60208 USA

P. Banerjee
HP Labs

Palo Alto, CA 94301 USA

In this paper we present a System-Level technique for reducing en-
ergy consumption. The technique is applicable to pipelined applica-
tions represented as chain-structured graphs and targets the energy
overhead of switching between active and sleep mode. The over-
head is reduced by increasing the number of consecutive executions
of the pipeline stages. The technique has no impact on the average
throughput. We derive upper bounds on the number of consecutive
executions and present a dynamic-programming algorithm that finds
the optimal solution using these bounds. For specific cases we derive
a quality metric that can be used to trade quality of the result for
running-time.

Synchronous Dataflow Graphs (SDFs) are considered a useful way
to model Digital Signal Processing applications [1]. This is because
in most cases the portions of DSP applications, where most of the
execution-time is spent, can be described by processes or actors with
constant rates of data consumption and production.
Energy consumption is one quality metric for digital integrated

circuits. The main sources of energy consumption are dynamic and
static power dissipation. Static or leakage power is expected to be-
come the dominant power dissipation component for future tech-
nologies [8]. Therefore, techniques to reduce the leakage power are
needed.
Work on leakage reduction at the higher levels of design has been

focused on replacing cells or submodules of the design with ones
with the same functionality but higher threshold voltage (e.g. [5]).
Although these techniques can lead to significant reductions, they are
not applicable to parts of the design that come as hard cores or when
the available time slack changes, even with a low frequency, e.g. by
the user of the system. In these cases, techniques are needed that
are adaptive to environment changes and do not require resynthesis
of IP cores. Such techniques include Dynamic Voltage Scaling [9],
Adaptive Body Biasing [10], and Power Gating [8]. In this paper we
focus on the latter technique.
With power gating, a hardware module is shut down when it is

idle. This way the stand-by leakage of the module is reduced. The
switching from active to sleep mode and back to active has an energy
penalty caused mainly by the loading of the nodes to normal Vdd
levels [8]. In this work we try to decrease energy consumption by
reducing the number of times the mode switch occurs.
In this paper we try to find the number of consecutive iterations

for each pipeline stage of a chain-structured SDF graph. This prob-
lem is similar to vectorization [7], but in our case instead of trying to
maximize the consecutive number of executions, we try to maximize
the energy savings taking into account the energy penalty paid by
adding more buffers to each channel. Dynamic programming tech-
niques have been used to determine a schedule for a chain-structured
SDF, so that the memory requirements are minimized [3]. In our ap-
proach, the buffer requirements are increased, whenever this increase
leads to a reduction of the total energy consumption.
The throughput of the application does not change after applying

our method. Moreover, our method guarantees that any latency in-
crease does not cause data loss. In general for streaming multimedia

SiSi-1 Si+1 S|S|S0 S1 S|S|+1

x

+

x

x

x

+

+

R

R

R

R

R

R

R

buffer

buffer

buffer

buffer

Si-1 Si+1

Figure 1: System structure. At the first level of hierarchy the system
is a pipelined chain-structured graph. The processes (nodes) of the
second level can be independently power gated. Cross edges between
pipeline stages are implemented using buffers.

applications throughput constraints are important and less emphasis
is put on latency [4]. Our technique is applicable only to streaming
applications, for which a latency increase is acceptable.
In Section 2 we explain the model we use to describe pipelined

system-level applications. Section 3 defines the problem we try to
tackle. In Section 4 the theoretical issues of the problem are ad-
dressed, while Section 5 describes an algorithm that can be used to
solve it. Finally, in Sections 6 and 7 we present experimental results
and draw conclusions.
Most proofs have been omitted due to space limitations. How-

ever, they are published in a report, which is available in our web-
site [12].

In this section we describe the model we use for system-level pipelined
applications. Table 1 summarizes the definitions of the symbols used
in this paper. In Figure 1 the structure of the model can be seen.

In an SDF G V E each node represents a process and each edge
a channel, in which the tail produces data and the head consumes
data. We assume a global clock for the whole system. Functions
p : E , c : E , and w : E 0 represent the production,
consumption rates, and the number of initial tokens (delays) of each
channel.
In order for an SDF to be executable with bounded memory, the

system Γq̃ 0 should have non-trivial solutions, where Γ is the topol-
ogy matrix of G [1]. The vector with the minimum positive integers
in the solution space, q̃, is called the repetitions vector and each en-
try represents the number of times the corresponding node should
be executed during each complete cycle of the graph. An SDF is
called consistent if it has a repetitions vector and the system does not
deadlock [2].

1B-2

42978-1-4244-1922-7/08/$25.00 ©2008 IEEE

Symbol Definition

qs number of executions (instances) of stage s in one complete
cycle

p i i 1 number of tokens produced on cross edge (i,i+1) as a result of
one execution of stage si

c i i 1 number of tokens of cross edge (i,i+1) consumed as a result
of one execution of stage si 1

w i i 1 number of initial tokens (delays) on cross edge (i,i+1)
b i i 1 number of buffers on cross edge (i,i+1)
l Gs execution time in cycles for each instance of a pipeline stage s
l v the number of cycles process v Vs must remain active during

the execution of one instance of s
Esm v energy overhead for switching modes from active to sleep and

back to active for process v
ΔP v power difference between active and sleep mode when pro-

cess v is idle
Lcc period of execution for a complete cycle of the pipeline

(chain-structured SDF graph)

Ls period of invocation for pipeline stage s, initially equal to Lccqs
xs number of consecutive instance executions of pipeline stage

s, initially equal to 1
ρ quality metric of the solution, applicable only to unirate SDF

graphs
Es v energy savings from a process v

Ep i i 1 energy penalty on cross edge (i,i+1)
Et x̃ the total energy savings after subtracting the total energy

penalty on the channels for a solution x̃
the set of natural numbers

0 the set of non-negative integers (0)

Table 1: Definition of Commonly Used Parameters

A proper subset of E in the graph may not have either a tail or
a head. These are the input and output edges with which the SDF
communicates with its environment.
In case all production and consumption rates are equal with 1, the

graph is called a unirate SDF. Otherwise, it is called a multirate SDF.
A unirate SDF has a repetition vector with all entries 1.
The subset of SDFs we are interested in can be represented in the

first level of hierarchy as a chain-structured directed multi-graphG
S E [3] with nodes that are all executed in parallel. We define G as
a graph with S nodes, for which there are labels s1 s2 s S , such
that each edge e E can be directed only from si to si 1 for any i.
Therefore, there can be multiple edges between two nodes, but edges
can only connect nodes, whose labels differ by one, in the direction
from the smallest label to the greatest. We call these nodes pipeline
stages or stages and we call the edges between pipeline stages cross
edges.
Properties of hierarchical clustering of SDFs are described in [2].

In our case we assume the clustering has been done to satisfy an
average throughput constraint for the graph and to minimize the cost
of pipelining on cross edges. Here we assume that the data a stage
consumes have to be available until the end of the stage’s execution.
Moreover, the memory to store the data produced by a stage should
be available before the starting time of that stage.
All input edges of the application SDF become cross edges, whose

head is s1 and whose tail is stage s0, which is external and we have
no control over it. An external stage s S 1 is defined for the out-
put edges, as well. Each stage s is already synthesized and has an
execution time of l s cycles.

Each pipeline stage s can be represented by a directed graph Gs
Vs Es , where Vs is the set of processes and Es is the set of edges
(channels) between the processes.
Function l : V returns the number of clock cycles process

v Vs must remain active during the execution of s.
We assume that when a process v is idle, it can be in an active and

power-hungry or a sleep and power-efficient mode. The power differ-
ence is ΔP v Pacm Pslm, where Pacm and Pslm are the power in ac-
tive and sleep mode. Pac2slm v and Psl2acm v are the average power
consumptions during switching modes and tac2slm v , tsl2acm v the
time periods needed for the switching. Then if v does not switch
mode the total energy dissipated in the slack time is:

Eac Δt Pacm

while if it is switched to sleep mode the total energy dissipated is:

Esl Δt tac2slm tsl2acm Pslm tac2slm Pac2slm tsl2acm Psl2acm

The energy savings for switching a node v from active to sleep mode
during some time interval Δt, in which the process is idle, are

Es v Eac v Esl v

Δt Pacm v Pslm v

Pac2slm v tac2slm v Psl2acm v tsl2acm v

Pslm v tac2slm v Pslm v tsl2acm v

Δt ΔP v Esm v (1)

where Esm, the energy penalty paid each time node v switches mode,
is

Esm v Pac2slm v tac2slm v Psl2acm v tsl2acm v

Pslm v tsl2acm v Pslm v tac2slm v

We assume that Pacm,Pslm,Pac2slm,Psl2acm,tac2slm,tsl2acm are given for
all nodes and we can compute Esm from these values.
Note that Pac2slm and Psl2acm account for both the dynamic and

static power. Moreover, we consider Esm constant, whenever Δt is
large enough so that Δt ΔP Esm. If any state registers are present
in a process, they are not put in sleep mode, so that the state of the
process can be preserved.
While each stage is defined by its ability to be executed in parallel

with other stages, each process is defined by its ability to change
mode independently of other processes1 .

Communication channels are represented by directed edges, which
connect processes or pipeline stages. Each edge can be implemented
as a FIFO buffer. The amount of storage required for the buffer is
given by the maximum number of tokens b e at any time on the
edge, which is determined by the schedule of the SDF. Since we
do not modify the schedule inside a pipeline stage, we focus on the
energy consumption of cross edges only.
The energy consumed on a cross edge is an increasing non-linear

function of b e and can be different for each edge, since the size of
the tokens, the interconnect, and access patterns may be different.
We use the symbol Ep e b e for the static and dynamic energy

consumed on the memory implementing the channel e if e requires
memory space for b e tokens.

A complete cycle or iteration of the graph consists of the execution of
each stage s qs times, where qs is the corresponding entry for s in the
repetitions vector. We say that there are qs invocations or instances
of s in one complete cycle of G. We denote si the ith instance of
a stage s. Since G runs for an infinite number of times, i Z . For
completeness we include instance s0, which is not executed. Instance
s0 is considered to be completed before any other stage starts its first
instance.

1Note that at this level each process represents a hardware unit. Since the graph Gs
can have cycles and because of the definition of l v , our model does not prevent resource
sharing.

1B-2

43

Static scheduling imposes an ordering on the execution of events.
A parallel schedule is a partial order on the set of the events. The
partial order can be defined by a reflexive, anti-symmetric, and tran-
sitive relation R of precedence on the events. We denote as α β or
α β R the fact that event α happens before β happens. If α and

β are not ordered by the relation, α β R and β α R, the two
events can occur in any order, even at the same time. An event can
be the starting time or the ending time of the execution of a node.
We can extend this relation to the execution of instances of stages.
More specifically, we denote as αi β j the fact that the ending time
of instance i of stage α happens before the starting time of instance j
of stage β. The relation is also transitive.
The edges of the graph define precedence constraints that restrict

the number of available schedules that can be generated. Since all
nodes (processes and stages) may carry state from one iteration to

the next k 1 qv : vk 1 vk.
The buffer size of a channel should be large enough to store the

maximum number of tokens present at that channel at any time. Sup-
pose that defines a consistent and admissible schedule, then:

u v E i let jmax
Δ
max j j 0 v j ui , then

b u v max
i
i p u v jmax c u v w u v (2)

The above formula holds because during the ith instance of the pro-
ducer i 1 p u v tokens have already been produced and p u v
are being produced during that iteration. Meanwhile, jmax instances
of the consumer have already completed execution and, therefore,
jmax c u v tokens have been consumed. To the total number of
tokens present we need to add the w u v initial tokens.
We assume that the token production at the inputs is periodic.

That means that if a complete cycle is executed within Lcc, then for
each input edge i the period is Li

Lcc
qi
, where qi is the number of

instances in a complete cycle. Note that, since the input graph is as-
sumed to be consistent, we do not need to worry about the existence
of the qi values. Each stage should have an average invocation period
of Ls

Lcc
qs
. Therefore, l Gs Ls.

L

l(Gsi)

executing

idle

buffer

buffer
buffer

buffer
Si-1 Si+1Si

Figure 2: Execution of stage si with xi 1

3 L

3 l(Gs)

executing

idle

buffer

buffer
Si-1 Si+1

buffer
buffer

buffer
buffer

buffer
buffer
buffer

buffer
buffer
buffer

Si-1

Figure 3: Execution of stage si with xi 3

As we saw in Equation 1, energy can be saved by switching the op-
eration mode of some processes when enough idle time is available.

One way to increase the energy savings could be to consecutively
execute the stage for an integer number of times x 1 and then al-
low its processes to be in sleep mode for a longer interval. This may
increase the buffer requirements for the input and output channels.
However, the switching mode penalty can now be shared across dif-
ferent instances for some of the processes of the stage.
The transformation can be described as replacing stage s by s ,

whose firing rules can be derived by multiplying by x the number of
required inputs tokens for s. Moreover, s and s have the same pro-
cess graph, which for s is repeated x times for each invocation, and,
therefore, l Gs x l Gs . For the edges connected to s t s
E : c t s x c t s and s t E : p s t x p s t .
It is easy to prove that the topology matrix of the graph G after

the transformation has the same rank and since the graph is acyclic,
the graph is still consistent [1].
An example is shown in Figures 2 and 3. In the first figure for

stage si the x value equals 1. Every L cycles si is idle for L l Gsi
cycles. If this interval is long enough, some of the processes of si can
be switched to sleep mode. The penalty for switching from active to
sleep and back to active is Esm every L cycles for those processes.
In Figure 3 the addition of 2 extra buffers allows si to execute for
three consecutive times. The idle time increases and potentially more
processes can be shut down. Besides that, the penalty for the mode
switch Esm is paid once every 3 L cycles for each process. If there
is a change in the input rate and the slack becomes zero, the two
additional buffers can be shut down and the stage can operate as in
the first case. We assume that such changes happen with a very low
frequency, e.g. the changes are caused by the user of the system, and
there is a small set of predefined values for the input rate. For each
of these values we solve the following problem.
Given a multirate, consistent, hierarchical graph G V E with

the first level of hierarchy being a chain-structured multigraph, and a
quality metric ρ, find the number of consecutive executions xs for
each stage s, so that the energy savings are not less than 1 ρ Emax,
where Emax are the maximum energy savings that can theoretically
be achieved by any solution to this problem.

In this section we reduce the search space of the solution. The solu-

tion space of the problem is S . Using properties of the problem,
the quality metric, and the energy penalty on the additional buffers
we find an upper bound on the x values, making the solution space
finite. This upper bound affects the complexity of the proposed algo-
rithm and its running-time as shown in Sections 5 and 6.

3 L

3 l(Gs) v executing

Gs and v idle

Gs executing

l(v)

3L-3 l(Gs)

3L-3 l(Gs) + l(Gs) - l(v)=
3L - (2l(Gs)+l(v))

Figure 4: Idle time for type-1 processes

Using Equation (1) we can explore the energy savings that can be
obtained by any process. Suppose that Gs is the graph representing
pipeline stage s and xs is the number of consecutive executions of Gs.
We can distinguish two types of processes.

Processes v Gs for which

l Gs l v ΔP v Esm v (3)

1B-2

44

3 L

3 l(Gs) v executing

Gs and v idle

Gs executing

l(v)

3L-3 l(Gs)

3L-3 l(Gs) + l(Gs) - l(v)=
3L - (2l(Gs)+l(v))

l(Gs)-l(v)l(Gs)-l(v)

3L - 3l(v)

Figure 5: Idle time for type-2 processes

are Type-1 processes.
Process v is invoked xs times with a period of l Gs cycles (Fig-

ure 4). Let st v and et v , st Gs and et Gs be the start and end
time of intervals l v , l Gs , respectively. In the first iteration v can
be invoked after st v st Gs cycles and in the xsth iteration it can
be put to sleep mode for et Gs et v . Therefore, in the first and
last iterations v is in active mode for l Gs l v . In the rest xs 2 it-
erations v is not switched to sleep mode, since Inequality (3) suggests
that this would cause an energy loss. Therefore, the total time spent
in active mode after xs Ls cycles is xs 2 l Gs l Gs l v or
xs 1 l Gs l v and the energy savings in this case are:

Es v xs Ls xs 1 l Gs l v ΔP v Esm v

Therefore, on average the energy savings in Ls cycles are:

Es v Ls
xs 1 l Gs l v

xs
ΔP v

Esm v
xs

(4)

Lemma 1 The energy savings after Ls cycles of Type-1 process v
Gs are upper bounded by Ls l Gs ΔP v .

Proof: : Follows from Equation 4 for x ∞.
From Equation (4) we can express the energy savings difference

obtained by increasing xs from x1 to x2 as

ΔEs v x2 x1
x2 x1
x2 x1

Esm v ΔP v l Gs l v (5)

which is always greater than zero, since x2 x1 and because of
Inequality (3). Since ΔEs v x2 x1 is positive, Es v is an increasing
function of xs for all Type-1 processes.

Processes v Gs for which

l Gs l v ΔP v Esm v (6)

are classified as Type-2 processes.
In this case during each of the x 1 executions of the pipeline

stage Gs, the process can be put to idle mode for l Gs l v cycles.

Lemma 2 The energy savings of a Type-2 process v Gs are inde-
pendent of xs.

Proof: Let xs be the number of consecutive executions of Gs. Then
the energy savings for process v in xs Ls cycles are:

Es v xs Ls xs 1 l Gs l v ΔP v Esm v

savings due to idle time after the xsth ex. of Gs

xs 1 l Gs l v ΔP v Esm v

savings after each of the first xs 1 ex. of Gs
xs Ls xs l v ΔP v xs Esm v

which means that in Ls cycles the energy savings are

Es v Ls l v ΔP v Esm v

Therefore, the energy savings are independent of xs.
For both Type-1 and Type-2 processes we need to multiply the

above findings for Ls by qs to obtain the energy savings in Lcc cycles.

In Section 2.3 we saw that the energy penalty on an edge is a non-
linear, increasing function E e b e with respect to the buffer size
b e . Therefore, it is important to study how the buffer size of a cross
edge is affected by the transformation, in order to estimate the energy
penalty.
Determining the minimum buffer sizes for a sequential deadlock

free schedule has been done in the past [6]. However, in our case we
want to find the buffer sizes for a given parallel schedule, for which
we are allowed to make as few assumptions as possible. For that
reason we use formula (2).
A simplistic approach would be to consider the buffer size of a

cross edge to be an increasing function of the x values of the stages.
Even though this approach is simplistic it helps us draw some useful
conclusions for the more general cases.

If the input graph is a unirate graph, a more real-
istic approach would be to consider the buffer size as the lcm func-
tion of the x values of the adjacent stages. In the graph before the
transformation is applied q̃ 11 1 and each stage is invoked once
every L cycles. After the transformation the average rate of invoca-
tion for each instance remains the same. In lcm xi xi 1 L cycles

we know that si is executed
lcm xi xi 1

xi
times, which correspond to

lcm xi xi 1 instances before the transformation. Moreover, si 1 is

invoked
lcm xi xi 1
xi 1

times during the lcm xi xi 1 L cycles. There-

fore, if ski 1 sli , then d1 N such that l

k
l

lcm xi xi 1
xi

d1
lcm xi xi 1
xi 1

Because of (2), b e max l l p e k c e w e . For l d2
lcm xi xi 1

xi
, where d2 , b e is maximized:

b e d2
lcm xi xi 1

xi
p e d2 d1

lcm xi xi 1
xi 1

c e w e

Since after the transformation p e xi and c e xi 1,

b e d2
lcm xi xi 1

xi
xi d2 d1

lcm xi xi 1
xi 1

xi 1 w e

b e d1 lcm xi xi 1 w e

In this case the buffer size and, because of that, the energy penalty
are increasing functions with respect to the lcm xi xi 1 .

The multirate case is similar to the unirate case
except that the entries in the repetition vector need to be taken into
account as well. Without the transformation, stage si completes qi
executions and stage si 1 completes qi 1 executions during one com-
plete cycle. After the transformation that is not necessarily true.
However, for the transformed graph we know that lcm xi xi 1 qi qi 1
defines a period during which si completes

lcm xi xi 1 qi qi 1
xi

and si 1
lcm xi xi 1 qi qi 1

xi 1
executions. Solving as for the unirate case, we can

find that the buffer sizes, b e d1 lcm xi xi 1 qi qi 1 w e are
an increasing function of lcm xi xi 1 qi qi 1 .

1B-2

45

Since in all the above cases the information that we have about
each edge is that they are increasing functions of b e , we can col-
lapse all edges between two stages to one. The new function is given

by: E i i 1p ∑ econnecting i to i+1Ep e b e . Function E
i i 1
p is also an

increasing function with respect to the buffer sizes on all channels
between stages i and i 1.

xmax
From the previous sections we can derive the formula for the total

energy savings Et ∑ s∑ v Gs Es v ∑ Si 0Ep
i i 1 . This is the

function we want to maximize. In this section we derive a bound on
the x values of the stages to prune the search space of the problem.
We start again from the simplistic case assuming that the buffer sizes
are an increasing function of the xis and move to more realistic cases.
We denote as b i the buffer sizes of edges that connect stages i

and i 1.
Let v Gs be a Type-1 process and

C v
Δ L ΔP v l Gs ΔP v
Esm v ΔP v l Gs l v

a constant for that node that depends only on the input graph. Let

C G
Δ
min
v Type-1

C v

Then the following Lemma can be proved.

Lemma 3 If G is a unirate graph and b i f xi xi 1 are increas-
ing functions with respect to both xi and xi 1, and x̃ x1x2 x S
is the optimal solution resulting in maximum total energy savings
Emaxt , then for any 0 ρ 1 and xmax 1

ρ C G , there exists x̃

x1x2 x S with i 1 S : 1 xi xmax, for which the total energy

savings Et are greater or equal to 1 ρ Emaxt .

For example, if the designer chooses ρ 0 05, we can find xmax
from the input graph and ρ. Then Lemma 3 states that there exists x̃ ,
whose entries are all less or equal to xmax and the energy savings for
x̃ are Et 0 95 Emaxt .

A similar approach can be followed for b i
fi lcm xi xi 1 , where for all i 1 S , fi : is an increasing
function.

Lemma 4 If G is a unirate graph, fi : is an increasing func-
tion, b i fi lcm xi xi 1 for each cross edge i i 1 , and x̃
x1x2 x S is the optimal solution resulting in maximum total energy

savings Emaxt , then for any 0 ρ 1 and xmax 1
ρ C G

2, there

exists x̃ x1x2 x S with i 1 S : 1 xi xmax, for which the

total energy savings are greater or equal to 1 ρ Emaxt .

For multirate graphs the buffer sizes depend
on the q values. Using a similar approach as for unirate graphs could
result in describing xmax as a function of q. The q values though can
grow exponentially with the input graph [2] and, therefore, a more
general method is needed to derive xmax.
From Lemma 1 we can derive a bound on the energy savings that

can be achieved. Let Es ∞ be the sum of the savings for Type-1 pro-
cesses when x goes to infinity, and Es 1 when x 1. Also let Ep 1
be the value of the energy penalty when x 1. Let ymaxi be the mini-

mum value, for which the energy penalty becomes E i i 1p e ymaxi
Es ∞ Es 1 Ep 1 . We know that increasing yi to a value greater
than ymaxi can cause only energy loss, since the savings cannot be-

come greater than Es ∞ and E i i 1p e yi is increasing with respect

to yi. Therefore, any yi ymaxi causes an energy penalty that exceeds
any energy savings obtained by the Type-1 processes.
Since the energy penalty for all edges is already given (most

probably in form of an array of values), binary search can be ap-

plied to each of the S 1 functions E i i 1p to find ymaxi . The
binary search procedure can start with a very large value Y as the
maximum value for y that is determined by computational precision
limits or area constraints. We know that yi lcm xi xi 1 qi qi 1 .
Since we also have xmaxi lcm xmaxi xi 1 qi qi 1 yi and xmaxi

lcm xi 1 xmaxi qi 1 qi yi 1, it holds xmaxi min yi 1 yi . If for
each stage i xmaxi min yi 1 yi , then xmax max i xmax

i can be
chosen as the maximum value for the whole design. Any increase of
x above that value for any of the stages causes energy loss compared
to the case, in which all x values are 1.

Lemma 5 For the optimal solution x̃ of the multirate problem the
following property holds: i 1 S : 1 xi xmax.

This method can be applied to a unirate graph as well, and, there-
fore, we use it in conjunction with the approaches for unirate graphs
described above. We use the minimum of the two xmax values pro-
duced. The running time of the binary search method described
above is O S logY .

In this section we describe a dynamic programming algorithm which
can determine the x values for maximum energy savings given a qual-
ity metric. The algorithm is needed because the size of the solution
space is still large after bounding the x values with xmax. Exhaustive
search requires O xmax S steps to find the x values for maximum
energy savings.
In Figure 6 the algorithm can be seen. The inputs are the graph

which is partitioned in pipeline stages and a quality metric in case
the graph is unirate. After initialization, the algorithm determines
xmax using the procedures described in Section 4. The purpose of the
rest of the algorithm is to solve independently the problem for each
subchain and combine the solutions to find the optimal solution for
the chain-structured graph.
The intuition behind the DP solution is that the values xi 1 and

x j 1 are the only external values that can affect the optimal solution
for a subchain from stage i to stage j. More specifically, if i j is a
subchain with 1 i j S , the best configuration for this subchain,
i.e. the vector of x values xi x j that provides maximum energy
savings, depends only on the x values of the stage exactly before
the subchain, i.e., xi 1, and the stage after the subchain, i.e., x j 1,
(Figure 7). Therefore, an xmax2 matrix can be constructed storing the
maximum energy savings that can be obtained for that subchain for
each value of the pair xi 1 x j 1 . Such a matrix can gradually be
built for all possible subchains of the problem. This array is denoted
as es S S xmax xmax in the algorithm of Figure 6. As an example,
element es i j xi 1 x j 1 holds the best configuration for subchain
starting at stage i and ending at stage j, when the x value for stage
i 1 is xi 1 and for stage j 1 it is x j 1.
After finding xmax the algorithm starts by creating the es array

for subchains of length 0. The entries filled during this phase are
the ones on the main diagonal of the simplified array es of Figure 7.
For each es i i the xmax2 matrix is built from the energy savings for
stage i and the energy penalty of both cross edges i 1 i i i 1
for that stage. In the second phase the algorithm fills the entries
for subchains with two elements. Finally, in the third phase the en-
ergy savings for all remaining subchains are found. The reason for
the separate treatment of subchains with two and more than two el-
ements is to make sure that the energy penalty for the same cross
edge is not taken twice into account. The maximum energy savings
for the whole graph are stored at position es 1 S 1 1 . This entry

1B-2

46

Algorithm DP-for x values
Input:A chain structured SDF graph G S E representing
the pipeline stages, a quality metric ρ which will be used

if G is unirate, and functions E i i 1p xi xi 1 returning the
energy overhead for cross edges between stages i and i+1.
Output:Two arrays xbest S S xmax xmax and es S S xmax xmax

from which the optimal solution can be extracted.
InitEs(G);
xmax DetermineXmax(G,ρ);
for i 1 to S do // main diagonal d 0
for xi 1 1 to xmax do
for xi 1 1 to xmax do
for xi 1 to xmax do

enews E is xi E i 1 ip xi 1 xi E i i 1p xi xi 1
if es i i xi 1 xi 1 enews then
es i i xi 1 xi 1 enews
xbest i i xi 1 xi 1 xi

for i 1 to S 1 do // init step for d 1
for xi 1 1 to xmax do
for xi 2 1 to xmax do
for xnode 1 to xmax do
// xnode represents xi and xi 1 in this loop
enew1s es i i xi 1 xnode E i 1s xnode

E i 1 i 2p xnode xi 2
enew2s es i 1 i 1 xnode xi 2 E is xnode

E i 1 ip xi 1 xnode
enews max enew1s enew2s
node enew1s enew2s
if es i i 1 xi 1 xi 2 enews then
es i i 1 xi 1 xi 2 enews
xbest i i 1 xi 1 xi 2 node xnode

for d 2 to S 1 do //diagonal count
for i 1 to S d do
j i d
for k 1 to j i 1 do
for xi 1 1 to xmax do

for x j 1 1 to xmax do
for xi k 1 to xmax do
enews es i i k 1 xi 1 xi k E i ks xi k

es i k 1 j xi k x j 1
if es i j xi 1 x j 1 enews then
es i j xi 1 x j 1 enews
xbest i j xi 1 x j 1 i k xi k

Return xbest es;

Figure 6: Pseudocode for the dynamic programming algorithm

represents the whole chain with x0 x S 1 1. As mentioned be-
fore, we assume that stages s0 and s S 1 are external and we have
no control over them. Therefore, their x values remain 1. Array
xbest S S xmax xmax stores the decision taken at each step and in-
formation necessary to retrieve the optimal solution.
The algorithm searches all possible values from 1 to xmax for x,

at each subproblem and, therefore, it solves each subproblem opti-
mally. Moreover, since the subproblems are independent, the algo-
rithm finds the solution with the maximum total energy savings for
all 1 xi xmax.
At each step the algorithm computes the energy savings and en-

ergy penalty using functions Es and Ep. The function for the energy
savings can be implemented as described in Section 4. More specifi-
cally, during initialization, i.e. InitEs(G) step, we can find the energy
savings for the Type-2 processes, which are independent of x and,
therefore, we do not need to recompute them during the iterations of

Final

(i,j)

j

i

1 |S|

1

|S|

i j |S|1 i+1i-1 j+1...

xi-1

xj+1

1
1

xmax

xmax

Figure 7: Dynamic Programming Algorithm. The solution for sub-
chain i j depends only on values xi 1 and x j 1. In a xmax2 array
the best configuration of i j is stored for each value combination
of xi 1 and x j 1.

the algorithm. For Type-1 processes of each stage s we can use the
following formula to find the energy savings for a specific x

Es x ∑
v Gs

Ls ΔP v
x 1
x ∑

v Gs

l Gs ΔP v

1

x ∑
v Gs

l v ΔP v Esm v

It is clear from the equation above that all summations can be com-
puted during the initialization step (InitEs). Then Es can be computed
in constant time for each new value of x. It is assumed that the func-
tions Ep are given by the user in the form of an array and, therefore,
the energy penalty for a pair of x values can be returned at constant
time. Consequently, the algorithm’s complexity is O S 3 xmax3

S logY and its memory space requirements are O S 2 xmax2 .

Theorem 1 The solution found by the dynamic programming algo-
rithm produces total energy savings Ealgt xmax , which are at least
1 ρ Emaxt , if the energy penalty at the cross edges i i 1 is
an increasing function of both xi xi 1 and xmax is given by xmax
1

ρ C G .

Theorem 2 The solution found by the dynamic programming algo-
rithm produces total energy savings Ealgt xmax , which are at least
1 ρ Emaxt , if the energy penalty at the cross edges i i 1 is an
increasing function of lcm xi xi 1 and xmax is given by xmax xg2,
xg 1

ρ C G .

Theorem 3 The solution found by the dynamic programming algo-
rithm produces total energy savings Ealgt xmax Emaxt , if the en-
ergy penalty at the cross edges i i 1 is an increasing function of
lcm xi xi 1 qi qi 1 and xmax is given by the binary search proce-
dure described above for multirate graphs.

The algorithm was implemented as a C++ program taking consistent
graphs as an input and determining the x values for each pipeline
stage. For the experiments we normalized the power of all compo-
nents using the static power of the 32-bit latch. The static power of
32-bit output multipliers was set to 25 and the 32-bit cla adders 4
times that of the latch. The static power of the decoding logic for the
channels was considered at the same level as the static power of the
latches. On the channels the dynamic power increase with x, caused
by the extra wiring and control, was considered 50% of the static

1B-2

47

Application CD-to-DAT (multirate,#stages=3) K-means (unirate, #stages=10) K-means (unirate, #stages=3)
Input Rate 50% 25% 12.5% 11.1 % 8.33% 6.67% 33.33 % 25% 12.5%

Alg. Exec. Time(sec) 2.97 2.97 2.98 144.39 29.26 3.37 5.79 0.7 0.06
xmax 71 71 71 169 100 49 100 49 16

Increase in En. Savings 15.17% 5.25% 2.27% N/A 107.31% 6.71% 900.38% 24.25% 0%

Table 2: Experimental Results for several input rates. The input rates are expressed as a percentage of the worst case input rate. The increase in energy
savings is ”N/A” when the energy savings of power gating with x=1 for all stages are 0.

Application 10-stage K-means 3-stage K-means
Input Rate 6.67% 25%

ρ 0.90 0.95 0.90 0.95
Alg. Exec. Time(sec) 3.37 351 0.7 44.1

xmax 49 225 49 196
Increase in En. Savings 6.71% 6.71% 24.25% 24.25%

Table 3: Effect of the ρ value on running-time

power increase. The switching mode overhead was considered equal
with the energy savings obtained by 10 cycle time slack.
We applied the algorithm on three pipelined architectures. The

first is the CD to DAT sample-rate conversion graph adopted from [3].
Each of the 3 SDF actors of the multirate graph was considered a
pipeline stage. The FIR filters were assumed to be 4-tap filters im-
plemented with multipliers. Upsampling, filtering, and downsam-
pling units were considered independent processes forming together
one stage. So, in total there were 3 stages in the first level of hi-
erarchy executing in parallel. The second application was the uni-
rate 10-stage pipelined K-means clustering with euclidean distances
adopted from [11]. The third was a 3-stage pipelined architecture
for K-means clustering. In the latter case the first two, intermediate
four, and last four pipeline stages of the 10-stage pipelined K-means
were merged to form a 3-stage pipeline. Figure 8 shows the energy
savings obtained by our algorithm compared to the energy savings
taken by applying power gating only (all x values equal to 1). In
all graphs a mode switch occurred for a process only if the energy
savings obtained by the switch exceeded the energy overhead Esm.
For each application we tried several input rates. As stated in the

introduction we assume that the set of input rates is predefined and
changes in the input rates happen with a low frequency (e.g. user-
controlled). For higher input rates the idle time in each complete
cycle is shorter. Therefore, the energy savings obtained by power
gating (all x values equal to 1) are low or zero. For these cases ap-
plying the proposed technique has a significant impact as seen from
the last row of Table 2. As the input rate is reduced, mode transi-
tions occur less often. The energy consumption because of the mode
switch overhead becomes less significant and, consequently, the ad-
ditional savings obtained by the proposed technique decrease.
For the 3-stage pipelined K-means gains are produced in higher

input rates than for the 10-stage pipelined architecture. The reasons
for this are that more Type-1 processes are sharing the penalty paid
on the cross edges of one stage, and that the slack for each process
is increased because the latency of each stage (l G) is longer. In
Table 2 the results are shown. Finally, in Table 3 the effect of the ρ
value on running-time can be seen. In this case the energy savings are
the same for different ρ values. However, a higher ρ value offers a
guarantee for the proximity to the optimal solution, whereas a lower
ρ value results in a shorter running-time.

In this paper we presented an approach to reduce energy consump-
tion using power gating. An analysis framework was presented and
a theoretical bound on the number of consecutive iterations was de-
rived for chain-structured pipelines. An algorithm was developed
that can give an optimal solution for the total energy savings. In the

0

200

400

600

800

1000

1200

1400

1600

1800

K-means
clustering
(33.3%)

K-means
clustering

(25%)

K-means
clustering
(12.5%)

E
n

er
g

y/
cy

cl
e

(N
o

rm
al

iz
ed

)

Power Gating Algorithm

0

100

200

300

400

500

600

700

800

K-means
clustering
(11.1%)

K-means
clustering
(8.33%)

K-means
clustering
(6.67%)

E
n

er
g

y/
cy

cl
e

(N
o

rm
al

iz
ed

)

Power Gating Algorithm

0

50

100

150

200

250

300

350

CD-to-DAT
(50%)

CD-to-DAT
(25%)

CD-to-DAT
(12.5%)

E
n

er
g

y/
cy

cl
e

(n
o

rm
al

iz
ed

)

Power Gating Algorithm

Figure 8: Energy savings obtained by our technique and power gating (red
and blue) compared to the savings obtained by applying only power gating

(blue) for several input rates of 3 applications: CD-to-DAT (left), 10-stage

pipeline K-means (middle), 3-stage pipeline K-means (right). The input rates

are expressed as a percentage of the worst case input rate below the name of

the application.

future we plan to work on evaluating scheduling techniques that can
reduce the energy overhead of DVS and ABB.

[1] E. A. Lee, D. G. Messerschmitt; “Static Scheduling of Synchronous
Data Flow Graphs”; IEEE Transactions on Computers, Jan 1987

[2] J. L. Pino, S. S. Bhattacharayya, E. A. Lee; “A Hierarchical
Multiprocessor Scheduling Framework for Synchronous Dataflow
Graphs”;UCB/ERL M95/36, May 30, 1995

[3] P. K. Murthy, et. al.; “Minimizing Memory Requirements for Chain-
Structured Synchronous Dataflow Programs”; ICASSP 94

[4] C. Im, H. Kim, S. Ha; “Dynamic Voltage Scheduling Technique for
Low-Power Multimedia Applications Using Buffers”; ISLPED 2001

[5] K.S. Khouri, N. K. Jha; “Leakage Power Analysis and Reduction Dur-
ing Behavioral Synthesis”; IEEE TVLSI Vol. 10, No 6, December 2002

[6] M. Ade, et. al.; “Data Memory Minimization for Synchronous Data
Flow Graphs Emulated on DSP FPGA Targets”; DAC 1997

[7] S. Ritz, et. al.;“Optimum Vectorization of Scalable Synchronous Data
Flow Graphs”; Application-Specific Array Processors 1993

[8] Z. Hu, A. Buyuktosunoglu; “Microarchitectural Techniques for Power
Gating of Execution Units”; ISLPED 2004

[9] T. D. Burd, R. W. Brodersen; “Design Issues for Dynamic Voltage Scal-
ing”; ISLPED 2000

[10] C. H. Kim, K. Roy; “Dynamic VTH Scaling Scheme for Active Leakage
Power Reduction”; DATE 2002

[11] M. Estlick, M. Leeser, et. al.; “Algorithmic Transformations in the
Implementation of K-means Clustering on Reconfigurable Hardware”;
FPGA 2001

[12] N. Liveris, H. Zhou, P. Banerjee; “A Dynamic-Programming
Algorithm for Reducing the Energy Consumption of Pipelined
System-Level Streaming Applications”; TR-NWU-EECS-07-09, 2007
(http://www.eecs.northwestern.edu/research/tech reports/)

1B-2

48

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

