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Abstract— Traditionally, clock network layout is

performed after cell placement. Such methodology

is facing a serious problem in nanometer IC designs

where people tend to use huge clock buffers for robust-

ness against variations. That is, clock buffers are often

placed far from ideal locations to avoid overlap with

logic cells. As a result, both power dissipation and

timing are degraded. In order to solve this problem,

we propose a low power clock buffer planning method-

ology which is integrated with cell placement. A Bin-

Divided Grouping algorithm is developed to construct

virtual buffer tree, which can explicitly model the

clock buffers in placement. The virtual buffer tree

is dynamically updated during the placement to re-

flect the changes of latch locations. To reduce power

dissipation, latch clumping is incorporated with the

clock buffer planning. The experimental results show

that our method can reduce clock power significantly

by 21% on average.

I. Introduction

In large scale ultra-deep submicron VLSI designs, clock
network construction has become increasingly challenging
due to many problems such as timing, power consump-
tion, power supply noise and tolerance to process varia-
tions. Buffers are essential in a clock network as they not
only improve signal slew rate, but also greatly affect clock
skew, delay and clock network power.

Various clock buffering approaches have been developed
in the past twenty years. The algorithm in [1] inserts the
same number of buffers in each source-to-sink path and
equalizes the capacitance driven by each buffer in an ef-
fort to reduce the skew sensitivity to process variations.
The work of [2] attempts to reduce skew sensitivity by
optimizing the number of buffer levels, buffer sizes and
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wire widths in a dynamic programming based approach.
In [3], a three stage optimization algorithm is proposed
to minimize the clock skew and delay and achieves great
delay improvement. By making use of tolerable skew con-
straints, [4] employs a balanced buffer insertion scheme to
obtain the minimal wire widths, which can result in min-
imal wiring capacitance and dynamic power dissipation.
The work of [5] uses Lagrangian Relaxation to simultane-
ously minimize delay, power, and area with very low skew
and sensitivity. Considering the large size of clock buffers,
[6] generalizes the concept of merging segment in DME al-
gorithm to merging block, which is a region reserved for
clock buffers. Then, a graph theory based method is em-
ployed to place buffers in their merging blocks so that
the overlaps between buffers can be removed. In [13] and
[14], new algorithms are proposed to perform buffering
and clock routing simultaneously.

However, all these previous works perform clock buffer-
ing after cell placement, and suffer from a common draw-
back. In modern IC designs, people tend to use huge
clock buffers, which are relatively insensitive to variations.
Therefore, it is often difficult to find large open space for
such huge buffers. To avoid the overlap with logic cells,
clock buffers are often placed far from ideal location. As
a result, both power dissipation and timing are degraded.
Traditionally, ECO methods are always used to deal with
such problem, but it takes too many iterations to reach
convergence. Especially in large scale designs, searching
space for the buffers would slow down convergence con-
siderably. To solve this problem efficiently, a clock buffer
planning should be performed to reserve adequate space
for the buffers at desired locations. If the reserved space
is far from the ideal locations, the clock net connecting
the latches and buffers will become much longer, and this
leads to an increasing power dissipation on the clock net
as well as other timing and variation problems. In Fig.1, a
small example is depicted to illustrate the effect of buffer
planning. In Fig.1(a), without buffer planning, the buffers
are inserted to the location where overlaps are relative
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Fig. 1. Small blue rectangles represent signal cells, red rectangles
for latches and large rectangles for clock buffers. Placement (a) is
from tradition method which may place clock buffers far from
ideal locations. Placement (b) from buffer planning method which
can places the clock buffers in the ideal locations.

small, but this will increase the clock net a lot. Whereas
in Fig.1(b), by using buffer planning and latch clustering
scheme, enough large spaces for clock buffers are reserved
at proper location in accordance with the latch distribu-
tion. Then the clock buffers will be inserted at such spaces
which could reduce the clock wire length.

Power dissipation is now becoming the most challenging
issue in modern large scale IC designs and has become a
bottle-neck constraint for circuit performance growth. To
alleviate power consumption, a latch clumping technique
considering buffer and latch placement is proposed in [7].
It is based on the observation that most of power is dissi-
pated in the lower level subtrees which are driven by low
level clock buffers that directly drive the latches. The low
level clock buffer is called local clock buffer (LCB) in [7]1.
The power consumed on the LCB level could be signifi-
cantly decreased by placing the latches closer to their cor-
responding LCBs. Meanwhile, constraining all the latches
around LCBs could have positive effect on timing due to
clock skew reduction. Previous work [8] and [9] have dealt
with the latch distribution problem for power reduction
under skew constraint. In [10], a placement methodol-
ogy is introduced to improve skew tolerance to variations.
However, none of these latch placement works considered
clock buffers. In reality, a clock buffering solution is highly
related to latch placement.

In this paper, we propose a clock buffer planning
methodology for low power and large scale clock network
design. To the best of our knowledge, there is no pre-
vious work on clock buffer planning yet. The proposed
planning is integrated with cell placement and combined
with latch clumping in order to achieve a low power de-
sign. Simultaneous buffer planning and latch clumping
is difficult as both techniques may lead to negative side-
effect to logic signal wire length. Unlike [7], which rigidly
places all latches around LCBs, our method allows certain
latch placement flexibility such that the side-effect to sig-

1Throughout this paper, we continue to use the term LCB for
this kind of buffer.

nal wire length is reduced. Therefore, our method can
reach a nice tradeoff between latch clumping and signal
wire length overhead. By employing an Dynamic Clock
Tree technique, we can seamlessly integrate buffer plan-
ning, power optimization and placement. Hence, a low
power clock network can be obtained with acceptable sig-
nal wire length overhead. Moreover, the computation con-
vergence rate is better than traditional ECO method. Ex-
perimental results show that our method can reserve suf-
ficient spaces for clock buffers at desired locations with a
better convergence than traditional method. Due to our
approach, the total power of the chip can be reduced by
21.6% on average. In addition, benefit on the timing of
the subtrees driven by LCBs is also observed.

II. Preliminary

A. Force-Directed Placement

Force-directed method [11] as a global placement tech-
nique uses Spread Force to reduce the cell overlaps and it-
erative quadratic optimizations to achieve the spread met-
ric. FDP [12] is a stable force-directed placer which could
produce high quality placements. Compared to the pre-
vious force-directed algorithms, it has introduced a new
Boxplace Force to aid directly in the minimization of wire
length. In this paper, our optimization for latches and
buffers will be integrated into the FDP framework, thus
by imposing the clock force and weighing the new clock
force and the original force properly, we could achieve our
optimization objective with good placement results and
obtain an optimal tradeoff between clocking and the tra-
ditional objectives.

B. Buffered Clock Tree Design

Clock network delivers clock signal from the clock
source to the clock sinks to control all these synchronous
elements to work simultaneously. The most familiar clock
network structure is a binary routing tree where the root
node represents the clock source and the leaf nodes stand
for the clock sinks. Typically, the clock tree is conceived
in a bottom-up fashion by a merging and embedding pro-
cess.

Clock buffer deployment has constituted an essential
part in clock design. Usually, clock buffers are inserted
at the merging nodes of the clock tree to generate lo-
cal clock signals for the output subtrees. To keep the
clock tree balanced, the clock buffers are often inserted
level by level. Nowadays, people tend to use huge clock
buffers, which are relatively insensitive to variations, but
this makes the buffering work very difficult in large scale
designs since original placement have to be significantly
perturbed to make sufficient space for such large amount
of clock buffers.
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III. Proposed Approach

We propose a Low Power Buffer Planning (LPBP)
method which is embedded in a cell placement algorithm.
In addition to traditional placement objectives such as
minimizing total wire length, the LPBP method should
lead to a cell placement such that certain spaces are re-
served for clock buffers and latches are clumped in clus-
ters.

In order to achieve the objective of LPBP, we need
to anticipate how much buffer area will be required and
where they will be inserted in clock network layout. Such
anticipation can guide the cell placer to reserve the proper
amount of space at desired locations. To model the
clock buffers in placement, we propose a fast grouping
method called Bin-Divided Grouping which groups a set
of clock sinks (the clock sinks can be either latches or
clock buffers) into several clusters. For each cluster, a
virtual clock buffer is modeled to drive all the clock sinks
in this cluster. Starting from the latches, the grouping is
performed recursively to construct a virtual buffer tree.
This buffer tree is an abstract tree as a part of the netlist
for the cell placer to anticipate where and how much clock
buffer area is needed. To reflect the changes of latch loca-
tions during the placement, we use a Dynamic Clock Tree
Rebuilding (DCTR) technique such that the buffer tree is
updated in the placement iterations. Such dynamic up-
date ensures that the buffer model is in accordance with
placement changes. To further reduce power dissipation,
we impose a Contract Force on the latches to achieve latch
clumping. The whole process is carried out in a FDP
framework.

A. Virtual Buffer Tree (VBT)

Almost all of the existing works on clock buffering [1,
3] are carried during clock network layout. Thus, they
are based on well-defined latch locations and clock tree
routings. Since our clock buffer planning is embedded
within cell placement, the latch locations have not been
finally decided yet and there is no clock routing at all.
Hence, the clock buffer planning is much difficult than
the traditional clock buffering. The buffer planning has
to be based on some definite information, which is limited.
First, we assume that if the total capacitance of a group
of clock sinks is greater than certain threshold Cthreshold,
we need to insert a clock buffer to drive them. Ideally,
it would be better to take wire capacitance into account.
However, the locations of clock sinks keep changing during
the placement. Such changes make clock routing wire
length intractable. Second, we use a balanced clock tree
design in the planning and attempt to estimate the buffers
of multiple levels in the tree. Third, the clock sinks here
can be either latches or clock buffers based on the level-
by-level buffering.

For a set of clock sinks, if their total capacitance
is equal to Ctotal, the number of buffers required to

drive these sinks can be roughly estimated as K =
�Ctotal/Cthreshold�. We cluster the clock sinks into K
groups with about the same capacitance. Then, one clock
buffer is allocated to drive each group of clock sinks. The
clock sinks in the same group should be physically close
to each other. We formulate the Clock Sink Grouping
problem as follows.

Given a set of clock sinks V = {v1, v2, ...vn} and load
capacitance ci for each sink vi ∈ V , group them into
K subsets {V1, V2, ...VK}. Let nk denote the number of
clock sinks in Vk, Ck denote the total capacitance in Vk,
set C = {C1, C2, ...CK}, gk denote the COG (center of
gravity) point of Vk. Define the cost of wk as

wk =
∑

vj∈Vk

dist(gk, vj) (1)

in which dist(gk, vj) stands for the Euclidean distance be-
tween point gk and sink vj. The objective function, which
is the total cost, is defined as:

W = α
K∑

k=1

wk + βσ(C) (2)

where α and β are constant weights and σ(C) represents
the standard deviation of set C. The objective of the group
is to minimize the overall cost W .

Obviously, this problem is more difficult than graph
partitioning, which is an NP-complete problem. There-
fore, we will find a heuristic approach to solve this prob-
lem. In realistic clock network designs, people often use
balanced tree structure for the sake of skew management
and variation tolerance. Based on such balanced struc-
ture, a simple and fast grouping method named Bin-
Divided Grouping (BDG) algorithm is presented in ta-
ble I. BDG cuts the entire layout area into several bins
with about the same total capacitance. By pre-sorting
the clock sinks physically, BDG can achieve the compu-
tational complexity of O(n log n) where n is the number
of clock sinks. Most of the computation time is consumed
on the sorting and only linear time is spent at the dividing
process. We can see that the bins generated by our algo-
rithm do not intersect each other and they are arrayed in
a brick structure as is shown in Fig.2.

By using BDG, we can model the buffers level by level
until we reach the level where the total capacitance of
the clock sinks is smaller than Cthreshold. These vir-
tual buffers are related with each other through a tree
tree structure, called “virtual buffer tree”. In a virtual
buffer tree, the leaf nodes represent the latches, the inter-
nal nodes represent clock buffers and the edge connecting
two nodes represents a parent-child relationship. Unlike
the physical routing tree in the clock routing stage, the
virtual buffer tree is an abstract tree and only exists in
placement stage as a part of netlist. It is also constructed
by recursive merging starting from the leaf (latch) level.
First, the latches are grouped into subsets using BDG. For
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TABLE I
Bin-Divided Grouping algorithm

Input: a set of clock sinks {v1, v2, ...vn}
with capacitance {c1, c2, ...cn}
with coordinates {(x1, y1), (x2, y2), ...(xn, yn)}
with the pre-processed number K with K = p × q

output: K clock sink subsets {C1, C2, ...CK}
1. begin

2.
3.

set threshold = (
∑n

i=1
ci)/p, B = {v1, v2, ...vn}

for i = 1 to p

4.
5.

initial Bi as a empty set
while total capacitance in Bi ¡ threshold

6.
7.

find vk with the smallest x coodinate
Bi = Bi

⋃
vk and B = B − vk

8. divide Bi to q sub-bins according to y-coordinate
with the same manner

9.
10.

11.
12.

compute the total cost of these sub-bins as costx
redo the whole divide process but first with y-
coordinate second with x-coordinate and compute
total cost as costy
choose the cost-smaller results as the final sub-bins
group the clock sinks in B1...BK as C1...CK

13. end

each subset, a merging node is inserted at its COG (center
of gravity) and serves as the parent node of the sinks in
the subset. Next, the newly generated merging nodes are
treated as virtual clock sinks and the merging procedure is
applied again on them. Such merging is continued recur-
sively till we reach the level which buffer insertion is not
needed. Finally, we generate a single node as the parent of
the clock sinks on the top level. Apparently, most of the
construction time is consumed at the grouping work, thus
the computational complexity of constructing the virtual
buffer tree is also O(n log n).

The main purpose of using virtual buffer tree is to let
cell placement have certain prediction on the need of clock
network. Constructing virtual buffer trees in placement
stage has three advantages. First, we can choose any level
of the tree and clump the subtrees rooted in that level
to reduce the local clock wire length. Second, by pre-
assigning the locations of merging nodes, the descendant
latches of the merging nodes can be pulled towards some
planned locations. Third, by continually adjusting the
positions of the merging nodes according to the placement
changes of latches, buffer space can be reserved at desired
locations.

B. Interaction Between VBT and Placement

To integrate the VBT (Virtual Buffer Tree) into FDP
(Force-Directed Placement), we need to construct the
VBT at certain step of placement. Then, the placement
continues with an altered netlist. The effect of the VBT
depends on the stage where it is built. If the VBT is con-
structed at an early placement stage, the influence to the
convergence of placement algorithm is small but its im-

(a) x-first cut (b) y-first cut

Fig. 2. The brick structure of the bins, (a) is generated by x-first
cut, (b) is generated by y-first cut

pact on placement solution is large. Besides, the latches
clustered in the same group by the VBT may be shifted
far from each other due to the instability of latch place-
ment in early stages. Consequently, the clock wire length
may be unnecessarily large. Of course, we can force the
latches in the same group to remain close to each other
throughout the placement. But, the wire length of logic
signals may increase badly. On the other hand, if the
VBT is constructed in late stages, the placement is rela-
tively stable and therefore the effect of the VBT is close
to the method of ECO methodology. As such, the im-
pact to signal wire length is small but the convergence of
the placement is largely slow down. Therefore, the stage
for the VBT construction needs to be judiciously selected
such that a desired tradeoff between the two extremes can
be reached.

The topology of VBT is a prediction to the subsequent
clock network design. However, when the locations of
latches changes in the placement, such prediction should
be tuned accordingly. Otherwise, the placement may pro-
ceed with a poor prediction and thereby lead to a solution
hindering rather than helping the clock network design.
If the VBT built at an earlier stage deviates does not
fit the latch locations in a later stage, the VBT should
be rebuilt for a better fidelity. We call this technique
as Dynamic Clock Tree Rebuilding (DCTR). DCTR has
two major advantages. First, the tree topology with good
conformity to the placement trend will be inherited in
the later version of rebuilt topology. Second, early gen-
erated topology, which becomes discrepant later, still can
be refined. Such dynamic refinement can make sure that
the VBT is always consistent with the latest latch place-
ment. By using DCTR, the adaptive capability VBT is
remarkably improved. Thus, the aforementioned tradeoff
becomes easier to be achieved.

Although DCTR can help to improve both solution
quality and convergence rate, too frequent update on
VBT does not help much but causes unnecessary com-
putation increase. Usually, the VBT is rebuilt after sev-
eral iterations when certain spreading criterion is reached.
The computation complexity after using DCTR becomes
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O(c · n log n) where c represents the times of rebuilding.

In order to make impact of VBT more smooth, we sug-
gest gradually changing sizes for the virtual buffers. If we
use the actual size for the buffers when the VBT is first
built, the huge size often gives rise to a sudden intrusion to
the cell placement. Moreover, when the VBT is rebuilt in
early placement stages, huge clock buffers may cause large
perturbation to the placement and slow down the conver-
gence. Therefore, we artificially use a very small size for
the virtual buffers at the beginning and then gradually
increase the size throughout the iterations. The gradual
increase of buffer size makes sure that newly generated
virtual buffers from rebuilding VBT have sufficient space,
which are released from the old VBT. Eventually, the size
increases to the actual physical size of clock buffers in late
stages. The virtual buffers with actual size can effectively
reserve space for subsequent clock network design. By us-
ing this scheme, the interaction between the VBT/DCTR
and cell placement becomes much more smooth.

C. Latch Clumping

In addition to the clock buffer planning, clumping
latches close to each other also facilitates low power net-
work. Since latch clumping [8] is carried out in cell place-
ment, we integrate it with the clock buffer planning for
further power reduction. The latches are imposed with
contract forces which point to their parent nodes on the
buffer tree, i.e., LCBs. We combine such contract force
with the original forces (Spread Force and Boxplace Force)
in FDP. This is illustrated in Fig.3(b). However, the latch
clumping may reduce the space reserved for clock buffers.
Therefore, we impose a Center Force on the buffers which
pulls them towards the COG of the group they drive.
This center force is also combined with the original forces
in FDP. Since the virtual buffers are not connected to any
signal cells, the placement of virtual buffers does not have
direct effect on the signal wire length. Hence, we delete
the Boxplace Force on the buffers and only use Spread
Force together with Center Force as shown in Fig.3(a).

A key difference between our approach and previous
work on latch clumping [8, 9] is the handling on clock
buffers. The previous works [8, 9] do not consider the
impact on clock buffers in the latch clumping. In con-
trast, our approach seamlessly integrates the latch clump-
ing with the clock buffer planning. More specifically, our
latch clumping is always consistent with the clock sink
clustering in DCTR. Therefore, we do not need to pull
latches through long distances for the clumping. The
gradual increase of the virtual buffer size also makes the
clumping and clustering smooth. All of these improve the
convergence and minimize negative impact to signal wire
length.

Fig. 3. clock forces imposed on buffers and latches, (a) represents
forces on buffers and (b) represents forces on latches

TABLE II
conformity of reserved space to BST router

Design Cell Latch Scheme LCB LCB High High High High
Num Num Num Diff Num [0,1] [1,2] [2,max]

ben01 12752 1872 ECO 64 9 (14%) 20 18 1 1 (5%)
LPBP 9 (14%) 20 0 0 (0%)

ben02 19601 2898 ECO 90 10 (11%) 28 25 3 0 (0%)
LPBP 9 (10%) 23 5 0 (0%)

ben03 23136 3420 ECO 110 10 (9%) 38 35 3 0 (0%)
LPBP 11 (10%) 35 3 0 (0%)

ben04 27507 4077 ECO 132 11 (8%) 38 30 6 2 (5%)
LPBP 13 (10%) 34 3 1 (3%)

ben05 29347 4221 ECO 144 13 (9%) 47 35 11 1 (2%)
LPBP 16 (11%) 41 5 1 (2%)

ben06 32498 4842 ECO 156 12 (8%) 56 44 10 2 (4%)
LPBP 12 (8%) 45 8 2 (4%)

ben07 45926 6840 ECO 225 15 (7%) 70 49 19 2 (3%)
LPBP 18 (8%) 59 8 3 (4%)

ben08 51309 7650 ECO 256 17 (7%) 84 66 16 2 (2%)
LPBP 16 (6%) 75 9 0 (0%)

IV. Experimental Results

The test cases employed in our experiments is based
on ISPD02 placement benchmark. Since our clock buffer
planning method is design for large circuits, ISCAS89 se-
quential circuits are not suitable due to their small size.
We choose 8 circuits from ISPD02 benchmark suite and
random specify some of their cells as latches. These cir-
cuits are named as ben01-ben08. The number of cells and
the number of latches are listed in the second and the
third column of Table II, respectively. We implemented
and compared the following two methods:

1. ECO: a virtual buffer tree is constructed only in the
late stage of placement process. This is very simi-
lar to traditional ECO methodology where additional
placement changes are made to find space for clock
buffers.

2. LPBP (Low Power Buffer Planning): this is our pro-
posed clock buffer planning methodology with inte-
grated latch clumping.

First we measure whether the reserved buffer space fits
for the actual clock router. We use BST [15] as the clock
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TABLE III
comparison between ECO and LPBP on signal wire length,

clock wire length, cpu time, power and timing

Design Scheme Signal Cpu Clock Power LCB LCB
WL Time WL(e03) (w) Delay(ps) Skew(ps)

ben1 ECO 1.93 22 4.55 1.35 462.24 149.63
LPBP 2.03 14 2.92 1.06 352.49 78.96
Impr. -5.3% 36.4% 35.9% 21.8% 23.7% 47.2%

ben2 ECO 4.21 54 6.75 1.96 425.47 88.72
LPBP 4.36 52 4.10 1.54 359.69 78.98
Impr. -3.5% 3.8% 39.2% 21.4% 15.5% 11.0%

ben3 ECO 5.98 42 8.16 2.42 476.38 152.25
LPBP 6.15 38 5.19 1.90 372.07 96.14
Impr. -2.8% 9.5% 36.3% 21.3% 21.9% 36.9%

ben4 ECO 6.87 67 9.94 2.93 480.10 164.14
LPBP 7.08 52 6.46 2.31 375.23 96.52
Impr. -3.1% 22.4% 35.0% 21.1% 21.8% 41.2%

ben5 ECO 11.29 73 10.24 3.07 405.45 103.44
LPBP 11.57 56 6.35 2.39 348.07 74.19
Impr. -2.5% 23.3% 38.0% 22.1% 14.2% 28.3%

ben6 ECO 6.29 90 10.07 3.31 430.36 133.94
LPBP 6.46 60 6.80 2.63 349.76 76.61
Impr. -2.7% 33.3% 32.5% 20.5% 18.7% 42.8%

ben7 ECO 10.72 91 15.68 4.78 418.90 116.35
LPBP 10.98 65 9.48 3.72 345.30 70.73
Impr. -2.6% 28.6% 39.5% 22.1% 17.6% 39.2%

ben8 ECO 11.81 74 17.23 5.38 426.96 124.75
LPBP 11.59 57 10.23 4.16 346.66 86.43
Impr. 1.9% 23.0% 40.7% 22.7% 18.8% 30.7%

Avg.Impro. -3.1% 20.0% 37.1% 21.6% 19.0% 34.7%

router to construct a zero skew clock routing tree. If the
LCB estimated from BST is within or very close to the
space reserved by virtual buffers in the planning, we deem
that the buffer space conforms to the BST totally. For
high level clock buffers, we separately count the number
of reserved spaces which are positioned within one-buffer
size, within two-buffer size but beyond one-buffer size, and
beyond two-buffer size to the ideal buffer locations esti-
mated from BST. From the results presented in Table II,
one can see that the ratio of LCBs which do not cover the
ideal buffer locations is very small for each benchmark.
Meanwhile, the high level buffer spaces which are posi-
tioned beyond two-buffer size distance to the ideal buffer
locations are very few. Also, by comparing the results ob-
tained by ECO and LPBP, we can see the latch clumping
of LPBP does not degrade the quality of reserved space
locations.

Table III shows the comparison between ECO and
LPBP on wire length, power and timing. Compared to
ECO, LPBP can reduce CPU time by 20% on average
through improving convergence rate. The increase on sig-
nal wire length from LPBP is very limited and is only
3.1% on average. The clock wire length is obtained from
BST results, which indicate averagely 37.1% reduction
from our LPBP. We use the model proposed in [16] to
estimate the power consumed on clock net. One can see
that LPBP can achieve 21.6% power reduction on aver-
age. Also, we measured the clock delay and clock skew
at the LCB level by the Elmore Delay model. Averagely
19% reduction of LCB level delay and 34.7% reduction of
skew are observed from our LPBP method.

V. Summary and Conclusions

In this paper, we propose a clock buffer planning
methodology which can let cell placement reserve sufficent
space for clock buffers at desired locations. The planning
can facilitate low power clock network design. The plan-
ning is further integrated with latch clumping for further
power reduction. Experimental results show significant
power decrease due to our approach.
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