
Predictive Power Aware Management for Embedded Mobile Devices   

Abstract 

Intelligent power management of mobile devices is getting 
more important as ubiquitous computing is coming true in 
daily life. Power aware system management relies on 
techniques of collecting and analyzing information on the 
status of I/O devices or processors while the system is 
running applications. However, the overhead of collecting 
information using software while the system is running is so 
huge that performance of the system may be severely 
deteriorated. Therefore, it is very crucial to design a PMU 
(power management unit) which collects information in 
hardware so that the performance of the system is not 
degraded. In this paper, we propose a novel PMU design 
which collects access patterns to I/O devices while an 
application is being executed. And a predictive power aware 
management is carried out based on the collected 
information. Experiments with various applications have 
been conducted to show the effectiveness of our approach. 

I Introduction 

One of new trends in mobile industry is the convergence 
of electronics, computing and communication, and it is 
commonly1 called as ubiquitous computing environment. 
Mobile devices are often required to have multiple 
functionalities. With rapid improvement of HW and SW 
technologies, building a very complicated mobile device is 
feasible. However, one of the main challenges lies in how to 
manage power consumption, because mobile devices should 
operate with limited battery charge. In perspective of system 
designers, minimizing power consumption in mobile devices 
has become the most important issue, and sometimes they 
sacrifice delay or area to reduce power consumption. With 
increasing requirement for low power techniques, research 
topics on how to reduce power consumption broadly cover 
from circuit and logic level to architecture, software, and 
system level techniques. Among them, system-level power 
management techniques have been studied hard because, to 
reduce power consumption, management technique is 

                                                       
"This research was supported by the MIC(Ministry of Information and 
Communication), Korea, under the ITRC (Information Technology 
Research Center) support program supervised by the IITA(Institute of 
Information Technology Advancement)" (IITA-2007-(C1090-0701-0045))

sometimes more important than low power design technique 
itself. Specifically, applying DPM (Dynamic Power 
Management) and DVFS (Dynamic Voltage & Frequency 
Scaling) during runtime of a system has been actively 
studied.  

To reduce power consumption of embedded processors, 
hardware-based DVFS (dynamic voltage frequency scaling) 
techniques are widely accepted. To reduce power 
consumption of I/O devices, a PMU with DPM (dynamic 
power management) capability is often embedded into 
embedded processors. However, management of both DVFS 
and DPM heavily rely on system software like operating 
system. Software-based power aware management has the 
merit of flexible control, but it has a potential problem of 
suffering from significant runtime overhead to learn how to 
manage effectively. Therefore, comprehensive power 
management techniques should take into account the overall 
HW and SW management overhead to achieve true power 
reduction. In this paper, we propose an advanced PMU 
design which minimizes the overall runtime overhead of 
power aware system management by implementing logic for 
collecting and analyzing access patterns in hardware.  

DPM is a well-known technique which tries to shut down 
an unused device to save power. One of the major problems 
of the DPM is that waking up a sleeping device may take 
long time. For instance, it may take several seconds to wake 
up a hard disk in a sleep mode. If a system cannot tolerate 
such a long wake-up delay, the system may not be able to 
shut the device down. Maintaining a device at an idle state 
may result in significantly more power consumption than 
shutting the device down. A key contribution of our PMU 
design is that we propose a novel hardware-based method of 
collecting and analyzing information on the access patterns 
of I/O devices when the system is running. In our proposed 
method, we monitor a trace of function calls until the 
processor initiates an access to a certain I/O device. By 
analyzing the pattern of PC (program counter) values, we 
can get good clues to make predictions on when the next I/O 
device accesses will happen. When we recognize a certain 
access pattern to an I/O device, we wake up the device in 
advance before a real I/O access request takes place. By this 
predictive management, we can reduce the performance 
penalty due to long wake-up time. Since we rely on HW 
modules for pattern monitoring and detection, our method 
does not cause any significant runtime overhead unlike other 
software-based management schemes. 

Young-Si Hwang, Sung-Kwan Ku, Chan-Min Jung, Ki-Seok Chung 

Dept. of Electronics and Computer & Communications Engineering, Hanyang University 
Email : {ysturtle, hopebird99, vanish51, kchung}@hanyang.ac.kr 

1B-1

36978-1-4244-1922-7/08/$25.00 ©2008 IEEE



Figure 1 An example of I/O device access pattern 

TABLE I 
Power consumption of a harddisk for each state[1] 

State Power

Busy power 2.6W 

Idle power 1.3W 

Standby power 0.25W 

Sleep power 0.10W 

The rest of the paper is organized as follows. In Section 2, 
we will address background discussion on I/O device 
controls, and we will introduce existing I/O device power 
management techniques. In Section 3, we will explain how 
to apply a predictive DPM using our PMU on an embedded 
mobile system. In Section 4, we will explain how we 
implement our PMU. In Section 5, we will present 
experimental results. We conclude this paper and present our 
future work in the last section. 

II. Background and Motivation 

Power aware design methodology has emerged as one of 
the most crucial design problems. Active studies are being 
done to reduce power consumption of I/O devices by power 
aware system management. The goal of such studies is to 
shut down an unused device as soon as possible if the device 
is not going to be used any time soon. The difficulty in 
doing this lies in the fact that nobody can predict the future 
perfectly. On average it takes several seconds to switch a 
hard disk in a sleep mode to an active state. Due to its 
unacceptable long delay, in general, devices may have to 
stay in an idle state quite long before it goes into a sleep 
mode. However, as you can see from Table 1, a hard disk 
consumes fairly large amount of power when it stays in an 
idle state. To reduce power consumption, most modern hard 
disks have at least four different operation modes (busy, idle, 
standby and sleep) shown in Table 1. However, to reduce 
power consumption more aggressively, what is desirable is 
to make the hard disk stay only in either the busy or the 
sleep state. The intermediate two idle and standby states are 
added as a result of design trade-offs between power saving 
and wake-up delay. In this paper, we claim that by having a 

Figure 2 Structure of PCAP[1] 

predictive power management capability, we can shut down 
the device as soon as the device becomes idle. And by 
predicting the next re-activation time in advance, we do not 
have to suffer from long wake up delay. Furthermore, 
instead of switching from an idle state to a standby-state or 
switching from a standby state to a sleep state by a simple 
timer based algorithm, a more intelligent mechanism for 
switching states is achieved by our effective predictive 
algorithm. 

To manage I/O accesses intelligently, accurate prediction 
capability is really crucial. There have been several different 
approaches on predictive power management. A prediction 
method based on timeout [2] is straightforward. LT (learning 
tree) [3] tries to classify the I/O accesses into roughly two 
categories: long active states followed by short idle states, 
and short active states followed by long idle states. These 
mechanisms are not dynamic in the sense that off-line 
profiling will be used to obtain data for predictions. PCAP [1] 
is a PC (program counter) based dynamic prediction scheme. 
PCAP relies on a branch prediction mechanism which is 
commonly employed in processor designs. PCAP is based 
on the observation that the OS kernel executes a branch 
instruction to a device driver for a specific device when the 
OS starts accessing the device. Such a branch is stored in a 
history buffer, and the stored branching history will be used 
to predict the upcoming I/O access for the device. 

Figure 2 shows an example of how a prediction table 
included in the OS kernel is used to store branching history 
and how the stored information is used to predict the future 
branches in PCAP. Our approach is similar to PCAP in the 
sense that our approach is also a PC-based prediction 
scheme. However, our goal is to minimize runtime overhead 
as much as possible. The main focus of existing studies like 
timer-based prediction or learning tree is how to execute a 
set of special-purpose codes to minimize power 
consumption in the OS kernel. However, this will result in a 
significant runtime overhead. In our approach, I/O access 
pattern monitoring and recognition are implemented in HW 
so that runtime overhead is minimized. Also unlike PCAP 
where we have to maintain a large history table for branch 
prediction, we detect only the start of a certain I/O device 
access based on a combination of I/O access control signal 
and the PC values. Therefore, we do not need any large 
history buffer. 

1B-1

37



Figure 3 An application’s execution trace with an I/O access 

Figure 4 A function call trace graph 

III. Predictive DPM Algorithm 

The main functionality of our proposed PMU is to 
monitor and predict the I/O activity with the collaboration of 
HW and SW. The specific roles of HW and SW in the PMU 
with a key DPM algorithm are presented in the following. 

A.  A key observation in building PMU Design 

One of the key steps to achieve low overhead PMU design 
is to detect the start of an I/O device access in advance. To 
detect when an I/O device access is about to start effectively, 
a set of conditions to be satisfied is defined. This paper is 
based on the observation that when the OS branches to a 
device driver routine, a system call mechanism is invoked. 
Therefore, by monitoring invocation of such system call, we 
can tell whether an I/O device access is about to start. As 
you see in Figure 4, an execution trace of function calls is 
collected until we detect the start of an I/O access and then it 
is analyzed in search of any common patterns among any 
previously saved execution traces. To minimize the amount  

Figure 5 An example of collecting the start pattern of an I/O 

of execution traces to be saved, only the PC values that  
correspond to function calls are saved in the trace buffer. It 
can be intuitively understood that execution traces based on 
function calls will be quite accurate since software programs 
are typically written in terms of functions and function calls. 

B. Detection of start and end patterns 

Before collecting the I/O patterns, the OS informs the 
PMU of the execution address of application program which 
contains an I/O access and the address of the system call so 
that the PMU receives only the appropriate information. In 
other words, to take advantage of layered software structures, 
only the execution address of related applications will be 
collected while disregarding other information. By doing 
this, we can reduce the amount of data which should be 
saved in our trace buffer. The saved data is stored in the 
trace buffer as shown in Figure 5. The trace buffer is a FIFO 
(First-In First-Out) mainly used to detect the start and the 
end patterns of an I/O access. Also it stores the time tag with 
the PC values. The time tag will tell when a specific function 
call happens. The PC values of function calls collected in 
Figure 5 correspond to the execution trace of Task1 in 
Figure 3. That is, if the main processor repeatedly executes 
Task1, the same execution trace may be found in the trace 
buffer. More specifically, Figure 5 shows the execution 
pattern when the processor executes “Memory section A_1”, 
and this corresponds to the time when an I/O access starts. 
 To search for the start pattern in accessing a certain I/O 
device, the proposed PMU stores a trace of function calls in 
the FIFO buffer until a specific I/O device control system 
call is found. When the specific call is found as in Figure 5, 
the history information stored in the FIFO is defined to be 
the start pattern of the corresponding device. We save the 
found start pattern into a table called “DPM Tab”, and this 
will be used to compare with future I/O access patterns. The  

1B-1

38



Figure 6 Structure of processor core and PMU 

detection of the end pattern is found by checking the last PC 
value in the FIFO. If the PC value corresponds to a system 
call, the PC history values from the start of the I/O access till 
the end of the I/O access are stored. If no new access is 
made during a predetermined amount of time, the saved 
pattern is defined to be the end pattern of the I/O access. 
This end pattern may be used to predict the end of I/O 
accesses in advance for aggressive power management.  

C.  Detection of Longest Common Patterns 

From the stored PC values in the trace buffer, we need to 
extract a pattern which is related to I/O device accesses. 
Therefore, we implement a LCS (longest common 
subsequence) algorithm [4] inside the PMU module. Since 
LCS is a polynomial time algorithm which finds the longest 
common subsequence from the two given patterns, it enables 
us to maximize the prediction time range. Figure 6 shows 
the PMU structure where the PC values delivered by the 
processor and stored in the CTB (current trace buffer) are 
used by the LCS module to extract the longest common 
pattern for I/O device accesses.   

Here is a brief explanation of each module that we 
implemented in the PMU.  

1. Current Trace Buffer (CTB) 
A FIFO buffer of which individual field is {Address, 
Time Tag} which is a pair of the address of a function 
call and the time when the call is invoked. 

2. Save Trace Buffer (STB) 
The same structure as CTB, but STB contains the 
pattern to be matched in the CTB. The result from the 
LCS module will be updated in the STB for future 
pattern matching. 

3. Filter
Filter module forces only the PC values which 
correspond to a function call to be stored in CTB and 
STB. This filter also checks the address range so that 
only the addresses which fall into the application’s 
memory area will be delivered to CTB and STB. 

4. LCS Module 
A hardware implementation of the LCS algorithm. This 

searches for the longest common subsequence between 
the patterns in STB and ones in CTB. The newly 
acquired common pattern will be stored in STB for 
future comparison. 

5. DPM Tab. 
This table stores the information which is necessary for 
predictive I/O access control. Each field of the table 
consists of a quintuple, {matched address0, matched 
address1, matched address 2, matched address 3, 
prediction}. The four matched addresses are extracted 
address patterns from the LCS module, and will be used 
for prediction. (The number of matched addresses can 
be any number but we chose four addresses in the 
current implementation.)   

TABLE 2 
Predictive power management algorithm 

state  1st 
repeat_cnt  0 

pattern_gathering : 
While TRUE 
    Do repeat 
        Until I/O_Dev_Ctrl 
    If state = 1st 
        Then STB  Filter(inst, addr) 

Else CTB  Filter(inst, addr) 

Switch state 
    Case 1st 
        state  2nd 
       Goto pattern_gathering 
    Case 2nd 
        STB  LCS(CTB, STB) 
        If repeat_cnt < 10 
            Then repeat_cnt  repeat_cnt + 1 

               Goto pattern_gathering 

DPM Tab{Match_Addr0}  STB[Highest+0] 
DPM Tab{Match_Addr1}  STB[Highest+1] 
DPM Tab{Match_Addr2}  STB[Highest+2] 

The algorithm to predict the start pattern for an I/O device 
access is given in Table 2. When the PMU executes the 
algorithm above, the results will be stored in the DPM Tab.  
The PMU constantly compares the information in the DPM 
Tab with the current PC patterns, and if there is a match, the 
PMU sends a wake-up command to the device in advance. 

IV. Implementation of PMU 

To show the effectiveness of our approach, we implemented 
our PMU on an SoC platform and tested with several 
application programs. Figure 7 shows the system block 
diagram integrated with our proposed PMU. To implement  

1B-1

39



Figure 7 PMU System Block Diagram 

our PMU on an embedded platform, the following steps 
have been carried out. 

We have used an SoC platform which is equipped with a 
Leon2 [7] processor core from Gaisler Research and an 
FPGA device. Most of the modules to implement the PMU 
are implemented on the FPGA device. The PMU in the 
FPGA is capable of monitoring the internal information of 
the LEON2 core including the values of the PC. The LEON2 
core operates at 50MHz. To test the capability of PC value 
monitoring by the PMU, an external hard disk is connected 
through an IDE interface. The activity is monitored while an 
application is requesting data on the hard disk. Linux kernel 
2.6.11 is ported as the embedded operating system. 

The PMU system has been designed by following the next 
procedure. First, the proposed PMU designed in Verilog 
HDL is verified with reasonable I/O access patterns using 
Mentor Graphics’ ModelSim simulator. Second, we program 
the PMU into the FPGA device. Next, we have run four 
different applications while the PMU records the history of 
I/O patterns. Based on the saved information, the PMU 
makes predictive decisions on the future I/O accesses to 
enable an early wake-up while minimizing power 
consumption aggressively. 

V. Experimental Result 

To evaluate the performance of the PMU, four different 
applications, mplayer (multimedia player), vi editor (text 
editor), links (text web browser), and cmdftp (file transfer 
protocol) are selected and executed. These applications are 
selected since they are common benchmark programs for the 
LEON2 processor. The results from our evaluations are 
summarized in Figure 8.  

Figure 8 shows the results on the prediction time 
determined by the PMU. When we evaluate the results 
solely based on the prediction time, the maximum prediction 
time for four different application programs turns out to be  

Figure 8 Prediction Time for I/O device control  

Figure 9 Prediction Accuracy 

286ms. The prediction time of N seconds means that the 
PMU notifies the system to wake up the device N seconds 
earlier than the real I/O access begins. In case of mplayer 
and links, the prediction times are reasonably long and the 
actual times are 286ms and 97ms, respectively. In case of vi 
editor and cmdftp, the prediction times are 341 s and 89.2 s,
respectively. The main reason that mplayer and links result 
in longer prediction times is because the relative size of 
library routines is larger than application code in these 
applications. When an application is dependent on library 
routines heavily, the PMU filter can filter out the addresses 
which fall into the library. Therefore, much less information 
is stored in CTB and STB. Also, the actual program size 
may be also another decisive factor in determining the 
prediction time.  

1B-1

40



Figure 9 shows the results on the accuracy of the 
prediction, which is another important performance metric. 
In case of mplayer and vi, the ratio of correct predictions 
(correct prediction/attempted prediction) is 95%. However, 
in case of cmdftp, the correct prediction ratio is 75%. In case 
of links, prediction is not attempted in most cases (78.3%), 
and in 21.7% of prediction attempts, the correct prediction 
rate is merely 14.4%, and the miss prediction rate is 7.3%. In 
case of links, the prediction has not been attempted much 
since there are various ways to enter the device driver. So 
the pattern matching has not happened much, and the 
accuracy of the prediction is not great either. 

VI. Conclusions 

 In this paper, we propose a novel PMU architecture which 
can be used to aggressively control the power states of I/O 
devices. The distinctive feature of the proposed PMU is that 
it has the capability of predicting the upcoming I/O accesses 
by comparing the previously stored access pattern and the 
currently occurring execution patterns. The PMU is 
implemented in hardware as a part of the Leon2 processor 
core. To evaluate the performance of the PMU, four different 
applications have been executed with the PMU. 
Experimental results show that depending on the type of 
applications, different results on the prediction ranges and 
the prediction accuracies have been obtained. For some 
applications like mplayer and vi, excellent results are 
obtained. For I/O accesses which have various ways to enter 
the device driver, the current PMU has shown poor results in 
prediction capability. We are in the middle of improving this 
limitation by implementing more intelligent pattern 
matching mechanisms. 

References 

[1] Chirs Gniady, Ali R. Butt, Y. Charlie Hu, and 
Yung-Hsiang Lu, “Program Counter-Based Prediction 
Techniques for Dynamic Power Management”, IEEE 
Transactions on Computers, Vol. 55, No. 6, June 2006 
[2] Yung-Hsiang Lu, Eui-Young Chung, Tajana Simunic, 
Luca Benini, Giovanni De Micheli, “Quantitative 
Comparison of Power Management Algorithms”, Design 
Automation and Test in Europe, 20-26, March 2000 
[3] Eui-Young Chang, Luca Benini, Giovanni De Micheli, 
“Dynamic Power Management Using Adaptive Learning 
Tree”, International Conference on Computer Aided Design, 
274-279, Nov 1999 
[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. 
Rivest, Clifford Stein, “Introduction to Algorithms”, 
McGraw-Hill Company, pp. 350-356, Second Edition 
[5] Luca Benini, Alessandro Bogliolo, Giovanni De 
Micheli “A Survey of Design Techniques for System-Level 
Dynamic Power Management” IEEE Transactions on VLSI 
Systems, Vol. 8, No. 3, June 2000 
[6] Fred Douglis, P. Krishnan, and Brian Bershad. “Adaptive 

disk spin-down policies for mobile computers.” In USENIX 
Association, editor, Proceedings of the second USENIX 
Symposium on Mobile and Location-Independent 
Computing, pages 121-137 
[7] URL : http://www.gaisler.com 
[8] Eui-Young Chung, Luca Benini, Alessandro Bogliolo, 
Yung-Hsiang Lu, and Giovanni De Micheli, Fellow 
“Dynamic Power Management for Nonstationary Service 
Requests” 
[9] IBM and MontaVista Software “Dynamic Power 
Management for Embedded Systems” 
[10] Jason Flinn and M. Satyanarayanan. “Energy-aware 
adaptation for mobile application.” In Proceedings of the 
17th ACM Symposium on Operating Systems Principles 
(SOSP’99), Pages 48-63, December 

1B-1

41



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


