
Load scheduling: Reducing Pressure on Distributed Register files for free

Mei Wen, Nan Wu, Maolin Guan, Chunyuan Zhang

National Laboratory for Parallel & Distributed Processing

Chang Sha, Hu Nan, P. R. of China, 410073

meiwen@nudt.edu.cn

Abstract
In this paper we describe load scheduling, a novel method

that balances load among register files by residual resources.

Load scheduling can reduce register pressure for clustered

VLIW processors with distributed register files while not

increasing VLIW scheduling length. We have implemented

load scheduling in compiler for Imagine and FT64 stream

processors. The result shows that the proposed technique

effectively reduces the number of variables spilled to

memory, and can even eliminate it. The algorithm presented

in this paper is extremely efficient in embedded processor

with limited register resource because it can improve

registers utilization instead of increasing the requirement for

the number of registers.

1 Introduction
Distributed register files are better than traditional central

register file in area, delay and power dissipation [1], and are

widely used in clustered VLIW processors including: high

performance DSP, such as TMS320C6x [4] and Storm [2]

stream processors such as Imagine [5], Merrimac [6], FT64

[7] and some specialized processor like Equator’s MAP1000

[8].

These processors are mostly applied in compute-intensive

applications. The much shorter access time of physical

registers compared to that of memory, has always made

them a critical processor resource [9]. In some processors,

such as Imagine, multi-hierarchy memory managed by

software is used to optimize access memory [10]. Once

register allocation fails, programmer is needed to alter

programs. On the other hand, optimizations that increase the

size of the working set such as software pipelining increase

register pressure during the scheduling process [9]. The

pressure reduction on distributed register files in VLIW

processor becomes a new problem [10].

Obviously, the difference between distributed register

files and central register file is that data will spill out of the

central register file if it exceeds the capacity of the register

file. On the other hand, since the capacity of the distributed

register files are normally tens and even hundreds times

bigger than the central ones [3], plus the imbalance in load

distribution, it is very rare that all register files are filled up

at the same time. It is more likely that one or some of the

register files overflow on some cycles. (See data analysis in

section 2 and section 4)

Based on the above analysis, this paper suggests a

pressure reduction method on distributed register files, in

terms of clustered VLIW processor, which called load
scheduling. The method works as follows: consider the

overall load of distributed register files after VLIW

scheduling, fully utilize the imbalance among registers files,

spilling some data from full register files to ones with free

register, and moved back to source register file when it

allows. The cost is inserting some copy operations into the

unoccupied instruction slot, without altering the compiling

result of other operations. Therefore, it is free. This way not

only prevents data spills which may cause lower

performance, but also increase the usage of resources. The

experiment result shows that this method decreases the

average peak value of register pressure by 45%, shortens

average program execution time by 16%. It largely reduces

the pressure on register files and memory accesses caused by

spills.

The rest of the paper is organized as follows: Section 2

introduces related backgrounds that motivated our research

and study; Section 3 describes related researches; Section 4

describes load scheduling; a performance evaluation is given

in Section 5; and the last Section we conclude with a

summary and a discussion of issues with possible

enhancements to load scheduling.

2 BACKGROUND AND MOTIVATION
In this section we discuss the two aspects that motivated load

scheduling: distributed register file architecture and VLIW

scheduling, with description of the architecture of our

experiment platform.

2.1 Distributed Register file architecture
In a distributed register file architecture each functional unit

input is connected to the single read port of a dedicated

register file and all functional unit outputs are connected by

shared buses to the single shared write port into each register

file (See Figure 1). The load scheduling presented in this

paper is for this kind of distributed register file structure.

This structure is different from traditional structures, such

as the one is that every functional unit input or output is

connected by a dedicated bus to a dedicated register file port

of a central register file, and the other type is when a

clustered register file architecture, which divides the

functional units into clusters and provides each cluster with

its own register file.

Compared to these traditional structures, distributed

register file architecture offers better performance, smaller

size and power consumption, and reduces register file access

delay [1].

ALU

LRF

7

LRF

6

ALU

LRF

9

LRF

8

ALU

LRF

11

LRF

10

LRF

13

LRF

12

LRF

15

LRF

14

LRF

2

LRF

1
LRF

3
Idx Idx

On Chip RAM

Memory

Distributed Register Files
INOUT

Distributed register file architecture

4B-5

340978-1-4244-1922-7/08/$25.00 ©2008 IEEE

2.2 VLIW Scheduling
A VLIW scheduler takes a set of operations and produces a

schedule that specifies which operations to issue to which

functional unit on a given cycle. The key problems in VLIW

scheduling are finding enough parallel operations, and

scheduling those operations to occur on a particular

functional unit on a particular cycle in a way that effectively

utilizes this parallelism. Compared to traditional VLIW

scheduling for central register file, the VLIW scheduling for

distributed register files also includes the communication

scheduling for data transmission among register files [10].

When all the instruction assignment are finished, graph

coloring method is used for register allocation [14, 15].

2.3 Experimental platform
Imagine and FT64 [5, 7] is examples of the combination of

distributed register files/VLIW. Based on these practical

platforms 1 , it is easy to find new challenges and

opportunities for effectively managing distributed register

files pressure, enabling us to carry out research on load

scheduling.

4 5 6 7 8 9 10 11 12 132 1431 15LRF#

Instr

Cycle

DSQ SP COM ALU0 ALU1 ALU2 MUL0 MUL1

Figure 2 Register pressure of kernel Blocksearch
We can see in Figure 1 that every ALU has several local

register files, the spill of register files normally is not the

spill of the entire register files but the spill of one local

register file, since it is partial spilling caused by imbalanced

register load. Figure 2 shows the segment of register

allocation of the Kernel Blocksearch that is running on

Imagine. Each column represents one register file, and

vertical axis represents the instruction schedule length.

Depth of the color shows the pressure on the register, the

deeper the color represents the more variables assigned to

the register file on the cycle. We can see that the distribution

in the register load is extremely imbalanced.

Figure 3 is a study of an Imagine that contains 15

distributed register files, it shows the average demand for

register capacity in each register file. 1~15 is the index of

register file. We have studied 9 Kernels, suppose that the size

of each register file is 16 entries, since the requirement

between each register files are imbalanced, to each kernel,

some of the register file requirement are over 100% and

1 All data are acquired from ISIM [10], the cycle accurate simulator

of Imagine, and FT64.

some can not even reach 20%.

3 RELATED WORK
For VLIW architecture with distributed register files ISCD

compiler [10] tries to introduce heuristic to ease register

press during communication scheduling. But since the

heuristic is added onto a single operation, it can not consider

the whole system. Besides, the heuristic may increase the

chances of communication scheduling failures. Experiment

result shows that register files still overflow severely (see

Table 1). Nan et al. [13] suggests the cutting strategy, re-cut

Figure 3 Average demands for register capacity

the basic segments to reduce register pressure, avoid spilling,

but the cost is huge deduction in performance.

In the literature we can find many works dealing with

register pressure for some other architecture. One opinion is

that register allocation and instruction scheduling are two

separate phases, this introduces the problem of phase

coupling. It is suggested to consider register allocation and

operation scheduling at the same time [12, 16, 18]. Also for

load imbalance problem between cluster register files,

Zalamea [12] suggests executing early or delay some of the

operations in the full loaded register files based on cycle-

driven. Cycle-driven is no better than operation-driven for

the VLIW scheduling that needs communication scheduling,

since it can not ensure that communication between

operations on the critical path are scheduled first. However,

operation-driven mode will make it impossible for operation

to execute earlier or later, after operation scheduling is

finished.

Spilling variable from full register file to other register file

with free register is not a new idea. Some scheduling

algorithms target specific architectures that take incremental

steps beyond a clustered register file architecture. Compiler

[11] targets architecture with multiple cluster register files

that includes a small number of cross-cluster buses, it still

provides each functional unit input and output with a

dedicated bus and register file port to access its cluster

register file. The Cydra5 compiler [3] targets an architecture

in which each functional unit input can read from multiple

4B-5

341

register files, but provides each input with a dedicated bus

and a dedicated register file port to access each register file.

The contribution of this paper is applying the idea to the

distributed register file architecture as shown in Figure 1. It

is different from shared multiple register file architecture.

Compared to published papers, there are differences in

architecture or method. Some new problems, such as

communication network scheduling, limited Load/Store

ports and register ports, application domains, need to be

considered.

4 Load scheduling
This section describes the algorithmic details of load

scheduling. Pseudo-code of load scheduling implemented in

compiler is shown. We describe the following terms for easy

interpretation:

Tup, Tdown For a register file, the period of time that the

number of registers needed exceeds the number of registers

available is called overflow zone, its beginning and end are

called the upper limit and lower limit of the overflow zone.

Tup is its upper limit and Tdown is its lower limit.

Toverflow: any cycle during the overflow zone.

Tproduce: the beginning of the live range of a variable.

Tlastuse: the end of the live range of a variable.

Tout: the cycle when the spilled variable is moved out from

the source register file.

Tearly: the cycle when the spilled variable was last used

before Toverflow, if it was never used before Toverflow, Tearly=

Tproduce

Tsbegin, Tsend: The beginning and the end of split live range of

the spilled variable.

Tuse: the cycle of the first use of the spilled variable, after

Toverflow.

Tback: the cycle of moving spilled variable back to the source

register file.

After the accomplishment of the VLIW operation

assignment, communication scheduling and register pre-

allocation, load scheduling that we have suggested have the

following five main steps:

Step 1. Construct residual network
After all the processor resources, including interconnect

buses, registers and functional units, are allocated, the

schedule result as Figure 4a can be derived.

a

b

0: e=

a+b

e

1:c=

e+e

a

b

2:d=

a+b

a

c

3: =

a+c

ADD0 ADD1

e

d

ADD2

c

Reg allocate

fails

1

2

3

...

ADD0 ADD1 ADD2

1

2

3

...

... c

c

Figure 4a (left) Schedule for shared interconnect architecture

Figure 4b (right) Residual network

Figure 4a illustrates some functional units, interconnect,

and register file activity on each cycle. If we eliminate all the

grey area, which stands for the used resource, in the

Figure4a, we would get the residual network as shown in

Figure 4b. The residual network indicates all the available

resource after VLIW scheduling, including functional unit

(FU) interconnect and local register file. The load scheduling

is going to be carried out in the residual network.

Experiment shows that in most cases, residual network

contains adequate available resource. The idle rate of the

main resources when running kernels on Imagine is usually

exceeds 40%.

Step 2. Choosing spilled variable
To overflowing register file, it can reduce its register

pressure by spilling any of the variables which existing in

the overflow zone, multiple variables spilled can keep

register from overflow (if route is available). Each overflow
zone contains one or more Toverflow. As to any Toverflow, as

long as Tproduce Toverflow and Toverflow <Tlastuse, the variable that

is not used on cycle Toverflow can be used as spilled variable.

Theorem 1.1 Register files that has n writing ports and

reading ports, suppose that the latency of copy operation,

that is used for moving variable, is L, when the capability of

register file is no less than n*L, it is always possible to find

spilled variables.

Proof: when register file overflows, there are at least

n*L+1 variables whose live ranges contain Toverflow, as to

these n*L+1 variables, their Tproduce are not later than Toverflow.

Since the writing ports and reading ports of the register file

is n, it only allows a maximum of n variables used at one

cycle. From Toverflow, choose the last used variable from

n*L+1 variables, so called v, when v is used, the distance

between this use and the last use, or this use and its produce

cycle is at least L, we can use copy operation to move them

out or back, reducing the pressure on register file on cycle

Toverflow. As long as the route is available, multiple variables

spilled can avoid the overflows of the register file. The

choice of spilled variable affects the difficulty of following

route assignment and influences other register files. In this

paper the following rules are used to choose spilled variables

and there are two definitions to be explained as follows:

The distance before recently usage (D1): Before the cycle

Toverflow, the distance between Tearly and Toverflow. The wider

the distance before recently usage is, the bigger the

probability is to spill such variable out.

The distance after recently usage (D2): After the Toverflow

cycle, the distance between the first use and Toverflow, the

wider the distance of the distance after recently usage is, the

bigger the probability is to move such variable back after

Toverflow.

Suppose that the weighted value P = C1×D1 C2×D2

{D2 0, C1 and C2 are experience values}, the bigger P is,

the bigger the probability is to find route. Then we select the

variable with the biggest P to spill, if the biggest one

couldn’t find route, then select the second biggest variable

and likewise.

Step 3. Assign route
After choosing the spilled variable, the route needs to be

assigned to move such variable. The route is a circular route;

if one spilled variable is spilled out from a register file, it has

to be moved back before the next usage. Suppose the live

range of the chosen spilled variable is [Tproduce Tlastuse]. A

route consists of the following elements:

1) Tout: Tout has to satisfy Tout Toverflow to make the moving

4B-5

342

valid. Any cycle between [Tproduce, Toverflow] can be chosen as

Tout, the closer to Tproduce, the more effect it is to the

destination register. Besides, the effect on the source register

is also decided by Tearly. In the interference graph, Tsbegin

max (Tout, Tearly).

2) Port of moving out: The output port of the register file and

the output port of the functional unit, which are needed for

moving out spilled variable, are bound in VLIW scheduling

(fixed operation latency), and can be seen as one port

resource. On cycle Tout, the chosen spilled variable is output

from the output port: OutputPort [Tout] = v. There are two

scenarios that the output port is available. One is when

OutputPort [Tout] =IDLE, at this point a v=copy(v) operation

can be inserted into the respective functional unit, making

OutputPort [Tout]= v. The other one is OutputPort [Tout] = v,

now no operation is needed to be inserted.

3) Functional unit of moving out: The variable v is moved

from the functional unit to interconnect on Tout. There are

two scenarios that the functional unit is available. One is that

functional unit of moving out is the functional unit whose

output is connected to the source register file, also when

FU.OutputPort[Tout]= v. The second one is that there is other

functional unit outputting variable v on Tout (at this moment

the destination register file can get the variable from such

unit, not from the functional unit connected to the source

register file). There is an important special situation, which

is when Tout = Tproduce, then always FU

FU.OutputPort[Tout]=v. This is to say that when time of

moving out Tout equals time of produce, there must be a

functional unit whose output variable is v.

4) Destination register file: For the register files for

temporary storing of the spilled variable that is moved out,

the suitable destination register has to meet two requirements:

free register and free writing port. It’s best that there is free

register in this destination register file during the overflow
zone of the source register file. However it is also acceptable

if there is free register on cycle Toverflow. If such moving

caused the destination register file to overflow, load

scheduling algorithm can be called repetitively to start the

next movement. The free register and writing port can be

found through searching the residual network. There may be

several register files that match the requirements, the

following rules apply to rank them, e.g.,

Reg.InputPort=IDEL & Reg.ResidualCapacity=MAX

(choosing the register file with free register during [Tout , Tuse]

and free writing port on Tout, can avoid recursion movement,

ranking them by the number of free registers).

5) Interconnect of moving out: The interconnect path

between the spilling-out functional unit and the destination

register file, depends on the hardware topology. The load

scheduling algorithm applies to all kinds of topology of full

connected. For the interconnect topology as Figure 1 shows,

the communication scheduling is used to assign the

interconnect path of the moves. As long as the source

functional unit is available, the destination functional unit is

available, and the structure is full interconnect one, there

must be moving out interconnect available to use.

6) Tback: Tback has to satisfy Toverflow <Tback Tuse. Tback can be

any cycle between [Toverflow+1, Tuse]. In the interference

graph, Tsend Tback.

7) The functional unit of moving back, interconnect of

moving back and port of moving back are similar to the ones

for moving out, they are just the opposite of the other ones.

For such reason they will not be described here in detail.

The pseudo-code used in assigning route is as follows:

Function RouteAssign
Imput:

RN /* the residula networks constructed by step1*/
v /*the var need to be spilled, which is chosen by step2*/
Toverflow /* the instr cycle on which the register file overflows*/
latency /* the latency of copy operation*/

Output:
 route /* the route assigned to move v*/

route.exist=fasle;
for (cycle Tout= v.Tproduce; Tout<= Toverflow; Tout++){
/*look for the cycle on which v will be spilled out*/

route.OutFU=NULL

 for (i=0, i < Number of FUs in RN, i++)
 if (RN->Fus[i]->OutPort[Tout] = v){

route.OutFU=RN->Fus[i]; break;}
 /* look for the available outport to spill v out*/
 if (route.OutFU!=NULL | (v.FU->OutPort[Tout]=IDLE &

 v .FU ->OP[Tout-latency+1]=NOP)){

 /* v can be spilled out by a copy operation*/
 List <Reg > FreeRegs = NULL;

for (j=0, j < Number of RFs in RN, j++) {
/*look for free register file, ordered by the free capacity*/
 if (Reg.inPort[Tout]=IDLE){

Add Reg to FreeRegs ordered by the free capacity
 of each RFs in RN during [Tout,Tuse];}

while (!FreeRegs .empty){
MaxFreeRegs=FreeRegs .pop();

 for (cycle Tback= v.Tuse; Tback>Toverflow; Tback--){

 /* look for he cycle to move v back*/
 if (MaxFreeRegs .FU->OutPort[Tback]=IDLE &

 Max FreeRegs.FU->OP[Tback-latency+1]=NOP &

v.Regs->InPort[Tback] = IDLE &
(route.OutFU != NULL |(Tback -Tout) >=2*latency)){

/*v can be moved back by copy operation*/
route.exist=true;

 break out all ;}
}
if (route.exist) {

route.Tout=Tout;
route.Tback=Tback;
route.DesReg=MaxFreeReg;
/*construct route for spilling v out*/

 /*function ConstructTansform construct route connected FU, interconnet and
registers*/

if (route.OutFU!=NULL){
route.OutConnect=ConstructTansform(route.OutFU, DesReg);
route.OutCopyFU=NULL;}

else{
route.OutConnect=ConstructTansform(v.FU, DesReg);
route.OutCopyFU=v.FU;}

/*construct route for moving v back*/
route.BackConnect=ConstructTansform(DesReg.FU, v.Reg);}

return route.exist;

 Step 4. Inserting copy operation
After route is assigned, inserting copy operations [17] in

the route, and assign the output and input of such copy
operation.

Copy operation is going to acquire the data directly on the

cycle of the production of the variable, and store it in other

register file with free register. Then after Toverflow and before

the time when variable is needed, move it back to the source

register file to use. The live range of the spilled variable in

the source register file is [Tback Tlastuse]. If at the time of

variable production, the input port of the destination register

file is not available, a second copy operation can be inserted

between Toverflow and time of production, and executed by the

functional unit connect to the source register file. This copy
operation acquires data from the port of the production of

variable, and such variable is stored in the same register file.

The result of the basic register allocation method shows that

such copy operation would not increase pressure on the

source register file. The first copy operation gets variable

from the output of the second copy operation. Suppose the

inserting time of the second copy operation is Tincopy2 and

4B-5

343

divide the live range of the variable in the source register file

into two parts: [Tproduce Tincopy2] and [Tback Tlastuse], which

can also reduce pressure on source register file on Toverflow.

For residual network as Figure 5a shows, the result of load

scheduling is shown in Figure 5b. After the route is assigned,

the resource such as the part marked X in Figure 5b, which

falsely allocated because of register allocation failure, can be

released. At the same time, the live range of the variable in

the coloring graph is changed according to Tsbegin and Tsend

Step 5. Re-allocate register using graph coloring
Using graph coloring to re-allocate registers, if it still fails,

go back to step one for another variable spilling, till all the

c=

copy c

ADD0 ADD1 ADD2

1

2

3

...

... c

c

a

b

0: e=

a+b

e

1:c=

e+e

a

b

2:d=

a+b

c=

copy c

a

c

3: =

a+c

ADD0 ADD1

e

d

ADD2

c

1

2

3

...
Figure 5a (left) New route in residual network

Figure 5b (right) Schedule result

registers are successfully allocated or workload is unable to

moved.

The algorithm presented in this paper is suitable for

several times of spilling or recursion movement. The former

refers to be spilled out again after variable moved back. The

latter is saying when destination register file overflows then

it has to be moved to other register file. Recursion

movement can be avoided through the heuristic when

choosing destination register.

5 EXPERIMENT EVALUATION
In this section we use media stream processor Imagine and

the stream processor FT64 that is for scientific computation

as experimental platform. Both have 15 distributed register

files, each register file in Imagine and FT64 have 16 entries.

We perform our evaluations using Kernels, which press

register file with heavy load. These kernels are chosen from

SPEC2000 benchmarks, media benchmarks, Mibenchmarks.

These application domains represent the typical applications

of Imagine and FT64. Kernel Jacob is run on FT64. Others

are run on Imagine. All kernels were written in a limited

subset of C. There are three scheduling strategies in the

evaluation:

-default: normal ISCD schedule [10], VLIW scheduling and

communication scheduling, then register allocation.

-rf3: VLIW scheduling and communication scheduling with

the heuristic, considering functional unit and register

pressure during VLIW scheduling, then allocate register [10].

-ls: VLIW scheduling, communication scheduling, register

allocation, and then load scheduling.

Firstly, define a evaluating metric: the maximum need of

registers: N[idx], the maximum number of variables that are

assigned to the number idx register file during scheduling

length. This number implies pressure on such register file,

and overflows would happen if such number exceeds the

size of register file storage.

M
d
5

B
lo

ck
sa

d

C
o

n
v

o
lv

e

V
lc

B
lo

ck
se

ar
ch

S
p
an

E
d

g
es

U
p
d

at
e

Ja
co

b

av
g

default -rf3 -ls

Figure 6 Peak register pressure by different strategies

Figure 6 shows the peak value of register demand

(Max(N[1..15])) 2, such value determines the size of each

register file on the condition of no overflows). Normally

ISCD schedule does not consider register allocation fail. If

let 16 being the size of each register file, it can be seen that

the peak register demand of kernel Md5 is more than three

times of its actual storage. After optimizing by –rf3, it

reduces the peak register demand of some Kernels. However,

it is only 9% on average. Some of the peak value of register

demand of Kernels is not decreased but increased, which

means that the heuristic estimation of register pressure is not

accurate, and it can not ensure reducing the maximum need

of registers. Load scheduling algorithm can carry out

schedule according to the final result, grasping the load

distribution more accurately, and reducing maximum need of

registers more effectively. Figure 6 shows that load

scheduling reduces 45% more of the peak register pressure

than normal ISCD schedule.

M
d
5

B
lo

ck
sa

d

C
o

n
v

o
lv

e

V
lc

B
lo

ck
se

ar
ch

S
p

an

E
d
g

es

U
p
d

at
e

Ja
co

b

default -rf3 -ls

Figure 7 Standard deviation of register demand

Figure 7 reflects the difference of register demands among

distributed register files (N[1] ~ N[15]), shown by way of

standard deviation. Obviously, the need difference between

register files, before load scheduling, is very dramatic,

average standard deviation across kernels is 7.7, after -rf3

2 To acquire the register demand limit by load scheduling, we make

the algorithm continually spills variable out from register file

which assigned the most variables to until no available route, in

despite of register file’s capacity.

4B-5

344

optimazation, the value is 7.2. Compare to that without reached 1.1 by load scheduling (compared to –default).

optimazation, it is reduced by 7%, after load scheduling, the

value is 2.9, reduced by 62% and 60% compared to the

previous two respectively. This demonstrates the load

scheduling effectively balances the load among distributed

register files.Table 1 shows the effect of three scheduling

strategies on kernel execution time. Colomn ‘spilled vars’

indicates the number of variables spilled out to memory.

Colomn ‘spill time’ indicates time caused by spilling out to

memory (cycle). Colomn ‘total run time’ indicates kernel

execution time (cycle). The load\store intruction latency is

set to be 3 cycle. Table 1 shows that the number of variables

spilled out to memory is decreased effectively, the running

time is reduced by 16% on average, average speedup

Generally speaking, load scheduling can balance between

distributed register files better, it can ensure reducing the

peak register pressure on distributed register file. There are

three aspects of its meanings to this technology. First is that

in processors whose capacity of register file is fixed, load

scheduling can reduce the circumstances when maximum

register demand exceed register file storage, avoiding access

memory. Second is reducing data spilling efficiently can

effectively support loop optimization and other compiler

optimization technology, on the condition of no changes to

the number of registers. Third is that for processor designers,

load scheduling can save the number of registers in each

register file, it is especially useful in embedded processor.

Table 1 Scheduling result by three scheduling strategies
Kernel spilled

vars

spill

time

total run

time

speedup Kernel spilled

vars

spill

time

total run

time

speedup

Md5 default 91 4368 11232 1 Span default 1 1536 30976 1

Md5 –rf3 60 2880 9776 1.14 Span -rf3 0 0 29440 1.05

Md5 -ls 0 0 6864 1.63 Span –ls 0 0 29440 1.05

Blocksad default 5 120 1370 1 Edges default 92 210864 394224 1

Blocksad–rf3 0 0 1312 1.04 Edges –rf3 93 213156 396516 0.99

Blocksad –ls 0 0 1250 1.09 Edges –ls 41 93972 277332 1.42

Convolve default 25 375 1474 1 Update default 22 1056 4976 1

Convolve–rf3 17 255 1380 1.06 Update -rf3 20 960 4880 1.01

Convolve –ls 0 0 1099 1.34 Update –ls 0 0 3920 1.26

Vlc default 5 690 17006 1 Jacob default 96 2880 4680 1

Vlc -rf3 3 414 16279 1.04 Jacob -rf3 97 2910 4710 0.99

Vlc –ls 0 0 16316 1.04 Jacob –ls 82 2460 4260 1.09

Blocksearch default 29 4002 37473 1 Blocksearch -rf3 20 2760 36927 1.01

Blocksearch -ls 16 2208 35679 1.05

6 CONCLUSIONS
We have presented a new post register allocation scheduling

method, balancing load among distributed register files by

load scheduling. It can largely avoid single register file

overflows and helps the success of register allocation. One

register file is stored in other un-filled register files, without

repetitive computation and avoids more burdens. Since load

scheduling uses the residual network to apply spills, it does

not increase scheduling length and hardware cost.

Although the experiment is conducted under Imagine and

FT64, this algorithm is also applicable to other VLIW

compiler, which is for distributed register files. Given that

embedded VLIW processors usually have fewer registers

than our experimental assumptions, it would be particularly

interesting to evaluate the impact of load scheduling in such

an environment.

Acknowledgements. This research was supported by

NSFC No. 60673148, 60703073, SRFDP No. 20069998025

REFERENCE
[1] Scott Rixner, William J. Dally, Brucek Khailany, Peter Mattson

et al. Register Organization for Media Processing. In Proceedings

of the Sixth International Symposium on High Performance

Computer Architecture, pages 375-387, January 2000.

[2] Brucek Khailany et al. A Programmable 512 GOPS Stream

Processor for Signal, Image, and Video Processing, ISSCC 2007

[3] Brucek Khailany. the VLSI Implementation and Evaluation of

Area and Energy Efficient Streaming Media Processors. Ph.D.

Thesis, Dept. of Electrical Engineering, Stanford University 2003

[4]T.I.Inc. TMS320C62x/67x CPU and Instruction Set Reference

Guide. 1998

[5] S.Rixner,W.J.Dally et al. A Bandwidth-Efficient Architecture

for Media Processing, proceedings of the 31 st annual ACM/IEEE

international symposium on microarchitecture,1998 .

[6] William J.Dally, Mattan Erez et al. Merrimac: Supercomputing

with Streams, SC'03, November 15-21, Phoenix, Arizona, USA.

[7]Xuejun Yang et al. A 64-bit Stream Processor for Scientific

Applications, ISCA2007

[8]P.N.Glaskowsky. MAP1000 unfolds at Equator. Microprocessor

Report. 12(16) Dec. 1998

[9]Ivan D. Baev. Prematerialization: Reducing Register Pressure

for Free. PACT2006

[10] Peter Mattson. A Programming System for the Imagine Media

Processor, Dept. of Electrical Engineering. Ph.D. Thesis ,Stanford

University.2001

[11]David J.Kolson. A Method for Register Allocation to Loops in

Multiple Register File Architecture In proceedings of IPPS’1996.

[12]Javier Zalamea. Modulo Scheduling with Integrated Register

Spilling for Clustered VLIW architectures. IEEE 2001.

[13]Nan Wu et al. Register Allocation on Stream Processor with

Local Register File, ACSAC 2006.

[14] Muchnick, S. Advanced Compiler Design and Implementation,

Morgan Kaufmann, 1997.

[15] Preston Briggs. Register Allocation via Graph Coloring. PhD

thesis, Rice University, Houston, TX, USA, 1992.

[16] Bart Mesman et al. Efficient Scheduling of DSP Code on

Processor with Distributed Register Files, In proceedings of the 12th

International Symposium on System Synthesis, 1999

[17] Peter Mattson. Communication Scheduling, Proceedings of the

Ninth International Conference on Architectural Support for

Programming Languages and Operating Systems, Nov. 12-15, 2000,

Cambridge, MA, pp. 82-92.

[18] Josep M. Codina, Jesus Sanchez and Antonio Gonzalez. A

Unified Modulo Scheduling and Register Allocation Technique for

Clustered Processors, IEEE 2001

[19] James C.Dehnert, Ross A. Towle. Compiling for the Cydra 5,

Journal of Supercomputing 7(1/2), 1993, pp. 218-219.

4B-5

345

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

