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ABSTRACT
Nowadays many customised embedded processors offer the pos-
sibility of speeding up an application by implementing it using
Application-Specific Functional units (AFUs). However, the AFUs
must satisfy certain constraints in terms of read and write ports be-
tween AFU and processor register file. Due to these restrictions
the size and complexity of AFUs remain small. However, in re-
cent some work has been done on relaxing the register file port
constraints by serialising register file access (i.e., by allowing multi
cycle read and write). This makes the problem of selecting best
AFU significantly more complex. Most previous approaches use a
two staged process to solve this problem, i.e., first selecting AFUs
under some higher I/O constraints and then serialise them under
the actual register file port constraints. Not only these methods
are complex but also lead to suboptimal solutions. In this paper
we formulate the AFU selection problem as an Integer Linear Pro-
gramming and solve it optimally. We show experimentally that our
methodology produces significantly better results compared to state
of art techniques.

1. INTRODUCTION AND MOTIVATION
The availability of customised embedded processors has made

the ISE (Instruction Set Extension) identification and AFU genera-
tion one of the most effective ways to improve the performance of
the base processor. The problem of ISE identification has attracted
the attention of many researchers in the last decade resulting in
copious amount of publications. A typical approach for ISE iden-
tification is to start with a compiler’s intermediate representation
of an application (such as a dataflow graph), find the best ISE and
create a new AFU to execute the ISE.

An AFU corresponds to a collection of instructions from the
original application; however, not any collection of instructions can
be a valid AFU. The corresponding AFU must satisfy some con-
straints such as bounded I/O ports between AFU and the register
file. In other words, the problem of finding the best AFU is some
kind of optimisation problem under various constraints. Most of
the algorithms for ISE identification work by pruning the set of po-
tential AFUs based on I/O and other constraints. Hence, for higher
I/O constraints these approaches are ineffective.

Note that removing some of the constraints might improve the
performance of selected AFU. Pozzi and Ienne showed in their
work [9] a way to relax I/O constraints on the AFU by serialis-
ing the register file access. In other words, the actual AFU might
have more number of inputs and outputs than available register file
ports, however, while executing the AFU in hardware the access to
register file is serialised in such a way that in each cycle the number
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Figure 1: (a) An AFU with I/O constraints (3, 3), (b) Pipelining
the AFU of part (a) under the I/O constraints (3, 3), (c) pipelin-
ing an AFU under the constraints (2, 1), and (d) the optimal
pipelining of the same AFU under the I/O constraints (2, 1).

of I/O access between AFU and register file is within limits.
An example of serialising the I/O access is shown in Fig. 1. In

Fig. 1(a) an AFU is shown which has 3 inputs and 3 outputs. If
the actual number of I/O constraints is also (3, 3), then this AFU
can be pipelined as shown in Fig. 1(b). All the three inputs are
accessed at the beginning of the first cycle, and the four instructions
with hardware latencies 0.3, 0.3, 0.4, and 0.6 are executed in the
first cycle, and the remaining two instructions are executed in the
second cycle. In other words, the whole AFU can be executed in
two cycles in hardware.

Now consider another AFU shown in Fig. 1(c). Suppose the
I/O constraints are (2, 1). In this case a possible pipelining of the
AFU is shown in Fig. 1(c). As one can verify, in each cycle at
most two inputs are read from register file and at most one output is
written. The total number of cycles used in this implementation is
4, which is not the best possible execution time of the AFU. In fact,
the optimal pipelining of this AFU under the I/O constraints (2, 1)
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is shown in Fig. 1(d), which makes the AFU execute in 3 cycles.

2. NONOPTIMALITY OF PRIOR ART
Pozzi and Ienne showed in their work [9] that pipelining the

I/O access is extremely helpful in increasing the speedup of the
application and might increase the speedup by 1.5x compared to
nonpipelined AFUs. The algorithm used by Pozzi and Ienne first
finds a set of best AFUs under some higher I/O constraints and then
pipelines each of these AFUs under the actual I/O constraints and
selects the one with maximum speedup. Although their method
produces AFUs with significant speedup, it has certain drawbacks
which make it suboptimal and in some cases impractical. In partic-
ular their approach suffers from the following problems:

• Since pruning-based ISE identification algorithms are im-
practical for higher I/O constraints, the Pozzi algorithm con-
siders AFUs only up to a fixed I/O constraints. However,
there is no guarantee that the optimal AFU will also have a
bounded number of I/O. Normally the Pozzi algorithm con-
siders the I/O constraints from (2, 1) to (10, 5). However,
in the benchmark aes the optimal AFU turns out to have 22
inputs and 22 outputs, for instance. This is one of the main
sources of suboptimality of their algorithm.

• Their algorithm also solves the problem using a two stage
process. In the first stage they find the best AFUs under
higher constraints and in the second stage they pipeline these
AFUs under actual constraints and choose the best one. How-
ever, it might be possible that an AFU which was not opti-
mal under higher I/O constraint, might become optimal after
pipelining under the actual I/O constraints. An artificial ex-
ample illustrating such a case is shown in Fig. 2. In Fig. 2,
the software latency of each node is one cycle. The optimal
AFU under the I/O constraint (1, 1) by the original method
is a path of 6 nodes where nodes in the path have hardware
latencies 0.5 and 0.6 alternatively. One can notice that in
the nonpipelined version this AFU saves 2 cycles; however,
due to timing constraint the only possible way of pipelining
this AFU requires 6 stages, which means that the pipelined
version of AFU has zero speedup. On the other hand, if
we consider the other AFU shown in the Fig. 2 consisting
of two nodes, it saves one cycle in both pipelined and non-
pipelined version. In other words, the optimal nonpipelined
AFU might become suboptimal after pipelining. This is an-
other reason why the Pozzi’s algorithm is not optimal.

• The algorithm used in [9] for pipelining an AFU under actual
constraint has an exponential complexity in the number of
I/O. Since they consider only AFUs with I/O bounded by
(10, 5), this is not a problem. However, since the number
of I/O of the best AFU is unbounded, this approach might
become impractical. Also there is no proof of the optimality
of their pipelining algorithm.

In this paper we present an approach based on Integer Linear
Programming (ILP) to solve the same problem, and show that in
some cases our approach produces better results compared to the
algorithm proposed by Pozzi and Ienne. Also our approach ter-
minates only in a few minutes, compared to their approach which
takes several hours for bigger applications such as aes. The rest
of the paper is organised as follows: Section 3 describes the re-
lated work on ISE identification problem. The following section
formally defines the problem we want to solve. Next in Section 4
we rewrite the whole problem as an instance of ILP problem, which
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Figure 2: An example showing that the relative merit of AFUs
might change after pipelining Assume that software latency of
each node is 1.0.

is solved using ILP solver CPLEX [5]. This is followed by experi-
mental results in Section 6 and concluding remarks in Section 7.

3. STATE OF THE ART
The problem of ISE identification is not new and a wealth of

literature exists on the topic. Most of the earlier work considers
the problem as finding a cluster of instructions satisfying certain
I/O constraints. Some of these approaches, such as [3, 6], consider
finding clusters which have repeated occurrences in the application.
However, these repeating clusters are usually small and do not gain
significant speedup.

The work of other researchers such as [2, 8, 11, 4] show the
importance of growing large clusters in order to achieve higher
speedup. All these works consider all possible clusters of instruc-
tions and reject the ones which have either higher number of I/O’s
than allowed, contains some forbidden instructions such LOAD,
STORE, JUMP etc., or the ones which create a self-loop. These
three criteria are used effectively in pruning the search space and
the algorithm mentioned in [8] can even handle the applications
consisting more than a thousand nodes. Atasu et al. have pro-
posed an approach [1] based on Integer Linear Programming to
solve the same problem, which not only converges faster but can
also be stopped during its execution to provide approximate solu-
tions for larger applications.

Some approaches have also been proposed to relax some of the
constraints on AFUs. The work of Pozzi and Ienne [9] suggested
a method to relax I/O constraints as discussed in the earlier sec-
tion. Some other researchers such as Nagaraju et al. have also
presented some heuristics [7] for ISE generation under relaxed I/O
constraints. However, their approach assumes that all the inputs
and outputs of optimal AFU must be forbidden instructions, which
is not always true. In a recent work Verma et al. [10] have presented
an efficient heuristic to solve the same problem. However, their al-
gorithm assumes that the underlying speedup model is monotonic,
i.e., increasing the size of an AFU will never decrease the speedup.
Although the assumption holds for a typical single-issue RISC pro-
cessor, in general this assumption can be wrong. In this paper we
extend the work of Pozzi and Ienne by formulating the whole prob-
lem as an instance of Integer Linear Programming and solve it us-
ing an efficient ILP solver.

4. PROBLEM FORMULATION
In this section we define the problem more formally. Each basic

block can be represented as a directed acyclic graph (DAG) G =
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(V, E), where the nodes correspond to instructions (such as ADD,
MUL, etc.) and the edges correspond to data dependencies between
the instructions. Since each basic block has certain inputs and out-
puts, we can construct a supergraph G+ = (V ∪ V +, E ∪ E+)
of G. The additional nodes V + represent the inputs and outputs of
the basic blocks and the additional edges E+ connect V + to V and
vice versa. Now onwards we will use G in place of G+

Along with G, we are also given a subset F of V , known as
forbidden nodes. The forbidden nodes correspond to instructions
which cannot be the part of any AFU. LOAD, STORE, JUMP and
other instructions which require the access to main memory may
fall in this category. Also note that the cluster of nodes which will
be selected as an AFU should not create a self-loop, i.e., the AFU
should not have an instruction whose input is available only when
the AFU has been executed. In other words, the cluster must be
convex and any two nodes inside the cluster must have all paths
between them inside the cluster.

For each node u ∈ V , we have two positive real values SWu

and HWu which denote the latency of the corresponding instruc-
tion when implemented in software and hardware. Similarly, for
a cluster S of the nodes, SW (S) and HW (S) denote the laten-
cies when the cluster S is implemented in software and hardware
respectively.

The task is to find a convex subgraph S of G, which does not
contain any forbidden nodes and maximises the gain in terms of cy-
cle count when implemented in hardware, i.e., maximises SW (S)
− HW (S). Note that both the functions SW (S) and HW (S) are
processor-specific. As an example, for RISC processor SW (S)
can be approximated as:

SW (S) =
X
u∈S

SWu.

On the other hand, for VLIW processor some of the instructions can
be scheduled in parallel, and in that case the SW (S) can be approx-
imated as the critical path delay of S in software. The problem be-
comes even more complicated for superscalar processors that per-
form dynamic optimisations at runtime.

In contrast, HW (S) depends on the specifics of AFU synthesis,
and depends on the number of available I/O ports between AFU
and register file. If the number of input ports is m and the number
of output ports is n, then HW (S) can be computed by pipelining
the AFU S under the I/O constraints (m,n) [9]. In other words
one needs to insert registers in the edges of the induced graph S+

(the graph containing S, its inputs and outputs, a source node vsrc

connected to all input nodes and a sink node vsink connected to all
output nodes of S). The total latency of the DAG, once pipelined,
is denoted by R. If we denote the number of registers on edge
(u, v) by ρ(u, v), then pipelining the DAG can be formulated as
the following optimisation problem:

PROBLEM 1. Minimise R under the following constraints:

• Pipelining: The circuit must operate at some given cycle
time (let’s say λ), i.e., for any path which has no registers on
its edges the total hardware latencies of the nodes in the path
must not exceed λ.

• Legality: All operands of a node must arrive at the same
time. In other words, for any node v ∈ S+ all paths from
vsrc to v must contain the same number of registers. We
define R − 1 as the number of register on any path between
vsrc and vsink .

• I/O Serialisation: At any cycle at most m inputs can be read
from the register-file, and at most n outputs can be written at

register-file. More formally for any i ≥ 0 number of input
nodes whose incoming edges have exactly i registers must
not exceed m, and similarly all output nodes whose outgoing
edges have i registers must not exceed n.

The optimal value of R corresponds to HW (S). Apart from
finding the optimal subgraph one also needs to pipeline the sub-
graph optimally.

5. ILP FORMULATION
Integer Linear Programming (ILP) has been shown to be a very

effective way to solve combinatorial problems such as the one men-
tioned above. Although solving an ILP is an NP-hard problem,
there are efficient tools such as CPLEX [5] which can solve the
sufficient large ILP’s in reasonably small time.

Any instance of Integer Linear programming has two elements:
constraints and objective function. The constraints are represented
using linear inequalities and equalities, and the objective function
must be a linear function of input variables. In CPLEX many kind
of input variables are allowed such as real, integer, Boolean, piece-
wise continuous variable etc. Next we show how to describe the
above problem in terms of an ILP instance. We give the formu-
lation for a RISC processor model; however, any model can be
chosen as long as SW () and HW () can be described in terms of
linear equalities and inequalities.

Before describing the constraints and objective function, we de-
scribe the input variables and their interpretation which will help in
understanding the ILP formulation. The list of the input variables
is as follows:

• xi: For each node ni in the graph, we introduce a Boolean
variable xi, which is true if the corresponding node is in the
chosen subgraph, and false otherwise.

• pi, si: The two variables pi and si are also Boolean vari-
ables corresponding to node ni. pi is set true if at least one
of the predecessor nodes of ni is in the chosen subgraph, and
false otherwise. Similarly si is true if one of the successors
of ni is in the subgraph.

• ρij: The variables ρij’s are used for pipelining the chosen
subgraph, and denote the number of registers on the edge
connecting node ni to nj . Note that if there is no edge from
ni to nj , then ρij must be zero. Additionally, if none of the
two nodes ni and nj are in the chosen subgraph, then also
ρij must be zero. This is because we only want to pipeline
the subgraph corresponding to an AFU and not the whole
DAG.

• Ai, Bi: The first of the two variables is an integer vari-
able and denotes the first cycle in which all inputs to node
ni become available. Once again, note that, since we want
to pipeline only the subgraph corresponding to the AFU, Ai

for any node outside the AFU must be zero. On the other
hand Bi is a real value and denotes the smallest time after
the Ai-th cycle at which the output of ni is ready.

• cIN
ik , cOUT

ik : cIN
ik is also a Boolean variable and is true if the

node ni is an input of the chosen subgraph and is read after
k cycles of execution. Similarly cOUT

ik is a Boolean variable
and is true if node ni is an output of the optimal subgraph and
is written back to the register file after k cycles of execution.

Next we describe the constraints on these variables. Since if-
else, max, min, and, or etc. can be written in terms of linear con-
straints, we will describe our constraints in terms of these functions
to improve readability.
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No Forbidden Nodes: Since the optimal subgraph should not
contain any of the forbidden nodes, the xi corresponding to each
forbidden node ni must be zero, i.e.,

∀ni ∈ F, xi = 0.

Convexity Constraint: Since the optimal subgraph should be
convex, the values of xi’s cannot be chosen arbitrarily. In fact, if
at least one of the predecessors as well one of the successors of a
node are in the subgraph, then that node must be in the subgraph
too. In other words,

pi and si ⇒ xi,

i.e., pi + si − xi ≤ 1.

Here the pi (si) are the Boolean variables which are true if at least
one of the predecessors (successors) of ni is in the chosen sub-
graph. The pi and si can be defined as follows:

pi =

(
0 if ni has no children.

∪(xj ∪ pj) where n′
js are children of ni.

si =

(
0 if ni has no parents.

∪(xj ∪ sj) where n′
js are parents of ni.

In other words, a predecessor of ni is present in the chosen sub-
graph if one of the two conditions are true: either one of the chil-
dren of ni is in the chosen subgraph, or the predecessor of a child
of ni is in the subgraph.

Only the Subgraph Should be Pipelined: We need to en-
sure that only the chosen subgraph is pipelined and not the whole
DAG. In other words, the variables ρij , Ai, and Bi corresponding
to nodes and edges outside S+ must be zero. More formally, if we
choose M to be a large integer (at least as large as N ), then

ρij ≤ M(xi + xj),

Ai ≤ Mxi,

Bi ≤ Mxi, and

Bi ≤ λ.

where λ is the cycle time. The last constraint implies that an in-
struction, executing in a cycle should be finished before the cycle
ends.

All Inputs of a Node Must Arrive on the Same Cycle: This
constraint is the same as the second constraint of the optimisation
problem of Section 4, which says that all inputs of a node in the
subgraph must arrive on the same cycle. Since Ai is the first cycle
at which all inputs of node ni are ready, if some inputs arrive before
that cycle, one needs to delay them by inserting registers on their
outgoing edges to the node ni. Formally we can write

if (xi = 1 and nj is a children of ni)

then Ai = Aj + ρji.

Also, according to the second constraint, all paths from vsrc to
vsink must have exactly R − 1 registers. Since in our ILP for-
mulation we do not have vsrc and vsink , we have to define these
constraints in terms of Ai of the output node and ρij of the output
edges.

if (xi = 1 and xj = 0 and ni is a child of nj)

then R − 1 = Ai + ρij .

The above constraint means that if ni is an output of the chosen
subgraph (which is only true if ni is inside the subgraph and one of
its parents is outside the subgraph), then the output of ni must be

delayed until (R − 1)-th cycles by inserting edges on its outgoing
edge.
Relations between Bi Values of a Node and its Children: We
have defined earlier that Bi for a node is the time after Ai-th cycle
by which the output of ni is ready. Suppose nj is a child of ni.
Now there can be two cases:

• either there will be some register on the edge between ni and
nj , or

• there will be no registers on the edge between ni and nj .

At this point we define a new variable mji such that mji is zero
if there is at least one register on the edge between ni and nj ; oth-
erwise we set the value of mji as Bj . It is easy to see that all
operands of instruction corresponding to node ni will be ready by
the time Ai + maxj(mji). In other words, Bi will be the same as
HWi + maxj(mji). More formally we can write these constraints
as follows:

if (xi = 1 and ρji ≥ 1 and nj is a child of ni)

then mji = 0,

if (xi = 1 and ρji = 0 and nj is a child of ni)

then mji = Bj , and

Bi = HWi + maxj (mji).

The first two constraints define the value of mji, while the last
constraint defines the value of Bi using mji’s.

Definition of cIN
ik and cOUT

ik : Note that cIN
ik is set true only for

those nodes which are inputs to the subgraph (i.e., the node should
not be in the chosen subgraph, but one of its parents must be in the
subgraph). In order to find out the cycle at which this input is read,
one needs to compute the minimum number of registers on those
outgoing edges of this node which enter the chosen subgraph be-
cause that is the first time when the value of this node was accessed.
In other words, cIN

ik is true if xi is false (i.e., the node is outside the
chosen subgraph), at least one of the parents of this node is in the
chosen subgraph, and the minimum of all ρij (where xj is true) is
k. Formally we can write these constraints like this:

if (xi = 0, xj1 = · · · = xjr = 1 and

nj1 , nj2 , . . . , njr are parents of ni)

then Ii = min (ρij1 , ρij2 , . . . , ρijr ).

Here Ii is an integer variable denoting the cycle at which ni was
accessed for the first time. Now if this cycle is equal to k, then cIN

ik

will be set to 1, and 0 otherwise. In other words,

if (Ii = k) then cIN
ik = 1.

On the other hand, for cOUT
ik we only need to check whether ni

is an output node of the subgraph; if it is, then the variable will be
true if its outgoing edge has exactly k registers. In other words,

if (xi = 1 and xj = 0 and ρij = k and ni is a child of nj)

then cOUT
ik = 1.

Register-Port Constraints: Due to register-port constraints we
need to ensure that in each cycle at most m variable are read from
register file, and at most n values are written on register-file. This
means that for any k the sum of all cIN

ik must not exceed m, and
the sum of all cOUT

ik must not exceed n:X
i

cIN
ik ≤ m and

X
i

cOUT
ik ≤ n.
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Figure 3: Comparison of the speedup values of AFUs generated by our algorithm with the state of art techniques.

Since the number of inputs and outputs of the optimal AFU can
be arbitrarily large, the number of registers on incoming edges to
the AFU as well as the number of registers on the outgoing edges
of the AFU can be extremely high. In other words cIN

ik and cOUT
ik

can be true for significantly large values of k. At this point one
might think that we should define all variables cIN

ik and cOUT
ik for

all values of k from 0 to | V | −1. However, we can trivially
bound k for cIN

ik to |V |
m

and |V |
m

for cOUT
ik by assuming that even

if all nodes of the DAG are inputs to the chosen subgraph, then
also maximum number of registers on incoming edges of the sub-
graph can be |V |

m
(and similarly for outgoing edges). In practice,

the maximum number of registers on incoming and outgoing edges
of optimal AFU turns out to be much smaller than these bounds; by
choosing a smaller value of k the convergence of ILP can be made
significantly faster.

The second element of each ILP is the objective function. In our
case we want to maximise the savings in terms of cycles. Hence,
the objective function will be to maximise SW (S) − HW (S). In
other words,

maximise
X

i

SWnixi − R.

Note that the above objective function assumes that the underly-
ing processor is a RISC processor (that is why SW (S) is written asP

i SWnixi). This can be generalised to any processor provided
that SW (S) can be approximated by solving a system of linear
constraints.

6. EXPERIMENTAL RESULTS
We have implemented our algorithm in C++; it takes the descrip-

tion of an application in the form of a graph and outputs the ILP
instance whose solution corresponds to the best AFU of the appli-
cation. The instance of the ILP is solved by the ILP solver CPLEX.
In order to measure the relative performance of AFUs we use the
RISC speedup model. The software latency of an instruction is es-
timated as the latency of corresponding instruction in the execution
stage. However, the hardware latency of an instruction is estimated
by synthesising the corresponding operator on a common standard
cell library for UMC 0.18μm CMOS technology and normalise to
the delay of 32-bit MAC (multiply-accumulate) operation.

We ran our algorithm on four applications namely adpcmcoder,
adpcmdecoder, viterbi, and aes. For each benchmark we consider
three sets of I/O constraints: (2, 1), (4, 2) and (10, 5). For each
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Figure 4: The speedups obtained for aes benchmark, when the
ILP was run for an hour.

application we consider a maximum of 16 AFUs. For selecting
multiple AFUs we use an iterative method similar to the one pre-
sented in [8]. In this method the AFUs are selected using a greedy
approach one by one, and after selecting each AFU, the selected
nodes are set as forbidden nodes to find the next AFU. We compare
our results with Atasu et al. [8] where no pipelining is done, as well
as with the work of Pozzi and Ienne [9] which considers pipelining.

We can see in Fig. 3 that for all benchmarks pipelined version
has higher speedup than the nonpipelined version. Also note that
the difference between the speedup for nonpipelined and pipelined
version reduces as the I/O constraints grow. This is because in non-
pipelined version for smaller I/O constraints many potential AFUs
which although give better speedup cannot be selected due to I/O
constraints, while in pipelined version they are selected irrespec-
tive of their actual number of inputs and outputs. However, when
we increase the I/O constraints the nonpipelined version can select
these AFUs with a higher number of I/O’s and reduces the gap be-
tween speedups obtained by pipelined and nonpipelined version.
Also, we can see that in all cases the ILP approach produces better
results compared to the Pozzi and Ienne algorithm. The reason for
this gain is already explained in Section 2.

Apart from the speedup numbers it is also important to note the
execution time of the algorithm. In all our benchmarks we run the
ILP solver for 3 minutes. If the solver does not converge in that
much time, we take the AFU found in that much time. Except the
aes in all other benchmarks the ILP solver converges within 180
seconds. However, in case of aes it produces the result shown in
Fig. 3 in the alloted time. If we allow more time we get only slightly
better results in case of aes: Fig. 4 shows the speedups obtained for
aes when the ILP solver was run for an hour. On the other hand, the
execution time of Pozzi and Ienne’s algorithm varies from minutes
to hours. For aes it takes several hours and produces inferior results
than the ILP method. On other benchmarks it takes several minutes.

7. CONCLUSIONS
In this paper we have shown the suboptimality of previous ap-

proaches for ISE identifications. Apart from optimality issues, the
state of art techniques also suffer from high runtime complexity,
which makes them impractical for larger applications. We have
presented a new method for ISE identification based on ILP. Our
approach not only improves the speedups compared to the state of

art techniques, but also reduces the execution time. The additional
advantage of using an ILP solver is that for larger applications the
execution can be terminated at any time, and the solver produces
the best results found so far, often quite close to the optimal.

Our method is also generalisable to any processor model as long
as the software and hardware latencies of an AFU can be modelled
in terms of linear constraints, which is true for most processors.
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