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Abstract— This paper considers the problem of synthesizing
application-specific Network-on-Chip (NoC) architectures. We
propose two heuristic algorithms called CLUSTER and DECOM-
POSE that can systematically examine different set partitions of
communication flows, and we propose Rectilinear-Steiner-Tree
(RST) based algorithms for generating an efficient network topol-
ogy for each group in the partition. Different evaluation functions
in fitting with the implementation backend and the correspond-
ing implementation technology can be incorporated into our so-
lution framework to evaluate the implementation cost of the set
partitions and RST topologies generated. In particular, we exper-
imented with an implementation cost model based on the power
consumption parameters of a 70nm process technology where
leakage power is a major source of energy consumption. Ex-
perimental results on a variety of NoC benchmarks showed that
our synthesis results can on average achieve a 6.92× reduction in
power consumption over the best standard mesh implementation.
To further gauge the effectiveness of our heuristic algorithms, we
also implemented an exact algorithm that enumerates all distinct
set partitions. For the benchmarks where exact results could be
obtained, our CLUSTER and DECOMPOSE algorithms on aver-
age can achieve results within 1% and 2% of exact results, with
execution times all under 1 second whereas the exact algorithms
took as much as 4.5 hours.

I. INTRODUCTION

Network-on-Chip (NoC) architectures have been proposed
as a scalable solution to the global communication challenges
in nanoscale SoC designs [1,2]. They can be designed as regu-
lar or application-specific network topologies. Regular topolo-
gies have been successfully employed in a number of tile-based
chip-multiprocessor projects, e.g. [15, 16], which are appropri-
ate because of processor homogeneity and application traffic
variability. On the other hand, for custom SoC applications, the
design challenges are different in terms of varied core sizes, ir-
regularly spread core locations, and different communication
bandwidth requirements. Therefore, an application-specific
network architecture customized to the needs of the applica-
tion is more appropriate. This synthesis problem is the focus of
this paper.

The NoC synthesis problem is challenging for a number of
reasons. First, for a large complex SoC design, an optimal so-
lution will likely involve multiple networks since each core will
likely communicate only with a small subset of cores. There-
fore, a single network that spans all nodes is often unnecessary.
Part of the synthesis problem is to partition the set of specified

communication flows into subsets and derive a separate optimal
physical network topology for each subset. In general, flows
may be grouped together even though they don’t share common
sources or destinations because they may be able to beneficially
share common intermediate network resources. Second, be-
sides deciding on the set partition, our synthesis problem must
also decide on the physical network topology of each group in
the set partition. Finally, depending on the optimization goals
and the implementation backend, the appropriate cost function
may be quite complex. In particular, in this paper, we consider
the power minimization problem that considers both leakage
power and dynamic switching power. It is well-known that
leakage power is becoming increasingly dominating [10, 12].
Therefore, it is important to properly account for leakage power
when adding routers and channels to the synthesized architec-
ture. However, when considering leakage power, the cost func-
tion may need to account for possibly discrete as well as non-
linear cost increments of links and routers whereas dynamic
switching power may be best modeled as a function of cumula-
tive data rates. Other optimization goals may include minimiz-
ing hop-counts along with power minimization.

In this paper, we describe two heuristic algorithms called
CLUSTER and DECOMPOSE that systematically examine
different set partitions of communication flows. For each
set partition considered, we use well-developed Rectilinear-
Steiner-Tree (RST) algorithms [18–20] to generate a physical
network topology for each group in the set partition. Though
the RST problem is in itself NP-hard, well-developed fast RST
algorithms are available that can be effectively used, as indi-
cated by the run-times presented in Section VII. For each RST
derived, the routes for the corresponding flows and the band-
width requirements for the corresponding network channels are
determined. We then use the specified evaluation function to
evaluate the implementation cost of the corresponding set par-
tition and RST-generated physical topologies. At the end of
each algorithm, the best solution found is returned. Although
we use Steiner trees to generate a physical network topology
for each group in the set partition, the final NoC architecture
synthesized is not necessarily limited to just trees as RST im-
plementations of different groups may be connected to each
other to form non-tree structures.

For the rest of the paper, Section II outlines related work.
Section III presents the problem description and our formu-
lation. Sections IV and V describe the CLUSTER and DE-
COMPOSE algorithms respectively. The router merging al-
gorithm for further performance improvement is discussed in
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Section VI. The experimental results and the conclusion are
presented in Section VII, and VIII respectively.

II. RELATED WORK

The work presented in [9] addresses the complementary
problem of providing custom network architecture instantia-
tions. Other existing NoC solutions assume a regular mesh-
based NoC architecture [3,4], and their focus is on the mapping
problem. On the problem of designing application-specific
NoC architectures without assuming an existing interconnec-
tion network architectures, several techniques have been pro-
posed [5–8]. The optimization method presented in [5] is
primarily concerned with providing connectivity under node
degree constraints, but it does not consider the dimension-
ing of links or routers and their implementation and power
costs. In [6], techniques were presented for the constraint-
driven communication architecture synthesis of point-to-point
links by using heuristic-based k-way merging. However, their
technique is limited to topologies with specific structures that
have only two routers between each source and sink pair. In [7],
novel NoC synthesis algorithms were presented, but their so-
lutions only consider topologies based on a slicing structure
where router locations are restricted to corners of cores and
links run around cores. In addition, as stated in [7], their
power minimization problem is one of minimizing the total
traffic flowing through the routers of the derived NoC archi-
tecture, which corresponds well to process technologies where
dynamic switching power dominates, but not necessarily when
leakage power is substantial. In [8], an innovative NoC synthe-
sis flow was presented with detailed backend integration. Their
method is based on the min-cut partitioning of cores to routers.

III. PROBLEM DESCRIPTION AND FORMULATION

A. Description

Figure 1 illustrates an example of our application-specific
NoC architecture synthesis problem. Consider the small exam-
ple specification shown in Figure 1(a) where the nodes repre-
sent cores, edges represent communication flows, and edge la-
bels represent the bandwidth requirements for the correspond-
ing flows. In our design flow, an initial floorplanning step is
performed in advance of NoC synthesis to obtain a placement
of the cores. An example floorplan is shown in Figure 1(b).

In general, floorplanning solutions do not have to follow a
slicing structure, and the state-of-the-art floorplanning meth-
ods allow for non-slicing floorplans to achieve more efficient
solutions. The only requirement is that the cores are non-
overlapping. Also, in our problem definition, modules in a
design do not necessarily have to be attached to the on-chip
network. Modules can also be connected by means of con-
ventional routing of interconnects, as shown in the un-labeled
rectangles in Figure 1(b). The floorplanning problem has
been extensively studied with many well-developed solutions
(e.g. [21–24]). Recent work has considered modifications to
floorplanning metrics in the context of NoC synthesis [7].

After floorplanning, the (x, y) coordinates of the communi-
cation ports of the cores are known, and they are provided as
input to our synthesis problem. In addition, the communication
bandwidth requirement for each traffic flow is also provided, as
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Fig. 1. Illustration of the NoC synthesis problem.

shown in Figure 1(c). Specifically, the input to our synthesis
problem is a directed graph G(V, E, π, λ), called a commu-
nication demand graph (CDG), where each node vi ∈ V is
associated with a communication port of a core, and each di-
rected edge ek = vi → vj ∈ E represents a communication
flow from vi to vj . The position of each node vi is given by
π(vi) = (xi, yi). The bandwidth requirement for each commu-
nication flow ek is given by λ(ek). Based on the optimization
goals and cost functions specified by the users, the output of our
NoC architecture synthesis problem is a optimized custom net-
work topology with minimum cost with pre-determined routes
for the specified communication flows on the network such that
the bandwidth requirements are satisfied.

For example, Figures 1(d) and 1(e) show two different
topologies for the CDG shown in Figure 1(c). Figure 1(d)
shows a network topology that interconnects all the nodes in
the system. In this topology, the pre-determined route for flow
e1 traverses through node v0, v2, v4, v3, and v1. Figure 1(e)
shows an alternative topology comprising of two separate net-
works. Here, flow e1 is simply transferred over the network
channel from v0 to v1 with the corresponding dimensioning.

After an optimized NoC architecture has been synthesized
with the corresponding routers and links, the floorplanning step
can be invoked again to update the placement of cores and com-
munication ports, and the NoC can be resynthesized with the
updated floorplanning information. As shown experimentally
in Section VII, our NoC synthesis algorithms are fast, making
it possible to iterate NoC synthesis with floorplanning.

B. Formulation
In general, the solution space of possible application-specific

network architectures is quite large. Depending on the commu-
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nication demand requirements of the specific application un-
der consideration, the best network architecture may indeed be
comprised of multiple networks. However, the decision on the
number of networks and the partitioning of communication of
flows among them is not a simple question of partitioning com-
munication flows into groups where the corresponding sets of
communication ports are disjoint. Consider again the example
depicted in Figure 1(c). The communication flows e3 and e4

have disjoint communication ports. However, it may still be
best to group them together on the same network, as depicted
in Figure 1(e), because both flows must travel a common dis-
tance in the horizontal direction, and they are able to share the
cost of the network channel that spans the horizontal distance.

In general, the solution space of distinct set partitions of n
flows, commonly known as the nth Bell number, is known to
grow Θ(n logn)n [17]. Bn grows rapidly, with e.g. B10, B11,
and B12 equal to 115975, 678570, and 4213597, respectively,
and so on. The goal of the heuristic algorithms CLUSTER and
DECOMPOSE presented in Sections IV and V, is to signifi-
cantly reduce the number of set partitions needing to be exam-
ined in a systematic manner.

Besides deciding on the set partitioning of flows, physical
network topologies must be decided for carrying the commu-
nication flows. In current process technologies, layout rules
for implementing wires dictate physical topologies where the
network channels run horizontally or vertically. Thus, the
problem is similar to Rectilinear Steiner Tree (RST) problem.
Given a set of nodes, the RST problem is to find a network
with the shortest length using horizontal and vertical edges
such that all nodes are interconnected. The RST problem
is well-studied [18–20] with very fast implementations avail-
able [19,20]. Figures 1(d) and 1(e) show possible RSTs for the
set partitions {{1, 2, 3, 4}} and {{1, 2}, {3, 4}}, respectively.
We use an RST solver in the inner loop of our heuristic algo-
rithms to generate topologies for the set partitions considered.
RSTs are only re-evaluated for the the portion of the set parti-
tion that changed at each step, and previously computed RSTs
can be cached.

After a physical topology is generated for each group in a
set partition, the routes for the corresponding flows and the
bandwidth requirements for the corresponding network chan-
nels can be readily derived. The routes for the flows follow
directly from the tree structure of the RST solution. Corre-
spondingly, the cumulative bandwidth requirements along the
edges also follow. Routers are allocated at junctions where ei-
ther flows from multiple channels must be multiplexed to the
same outgoing channel or flows from the same channel must
be de-multiplexed to multiple outgoing channels. We can also
consider merging of ”nearby” routers if merging them will lead
to a reduction in cost (this is further discussed in Section VI).

Our RST formulation provides us a way to generate physical
topologies. However, depending on the optimization goals and
the implementation backend, the appropriate evaluation func-
tion may be quite a bit more sophisticated than the total length
metric used in RST algorithms. To facilitate different objective
functions and implementation backends, the evaluation func-
tion can be provided as an input to our algorithms. For exam-
ple, in this paper, we investigate the NoC synthesis problem
with the objective to minimize the power consumption, includ-

ing both the leakage power and dynamic switching power, as
well as satisfy the performance constraints. Other optimization
goals may include minimizing hop-counts along with power
minimization.

IV. CLUSTER

In this section, we present an algorithm called CLUSTER
that reduces the number of set partitions considered from
Θ(n log n)n to Θ(n3), which is a significantly smaller subset
of set partitions. The details of the algorithm is shown in Al-
gorithm 1. The CLUSTER algorithm takes a communication
demand graph and an evaluation function as input and gener-
ates an optimized network architecture implementation details
as output. The algorithm starts by implementing each edge in
the communication demand graph separately. The solution for
each single edge is a simple RST connecting two terminals. It
sets these single edges as the initial set partition, denoted as
P 0 = {{e1}, {e2}, . . . , {en}}, as shown in lines 2-5.

Then, in lines 7-18, at each iteration, the algorithm system-
atically generates new candidate set partitions starting from the
set partition chosen from the previous iteration. In particular,
in the first iteration, the algorithm starts with the initial set par-
tition P 0 = {{e1}, {e2}, . . . , {en}} with n groups, each group
containing exactly one edge. Then, in lines 8-13, the algorithm
generates new candidate set partitions from P 0 by considering
all pairwise mergings of groups in P 0. The groups are denoted
as gu and gv in the pseudo-code. For each pairwise merging
considered, an RST solver is called to generate a physical net-
work topology for the merged set of flows, and the cost of this
network is calculated using the specified evaluation function
C. We do not need to solve an RST problem for the entire
set of flows, just the subset of flows in the merged groups is
considered. We then, in line 12, compute the total cost of the
resulting set partition by summarizing the cost of implement-
ing all the other sets using their own networks. In lines 15-16,
we select the merging that achieves the best cost in this itera-
tion and choose it as P 1. In general, we start from the chosen
set partition, P t, from the iteration to generate pairwise merg-
ings of groups from P t, and the best merging is selected as the
new chosen set partition P t+1. At each iteration, the number of
groups that need to be considered is reduced by 1, but the size
of groups will become increasingly larger. Finally, in the last
iteration, we only need to consider the mergings of two groups.

At each iteration in lines 7-18, we maintain the chosen set
partition and the associated cost calculations for that iteration.
Then, in the end of the algorithm, lines 23-24, we choose the
set partition with the minimum cost. Since at each iteration t,
there can be at most (n − t)(n − t − 1)/2 possible pairwise
group mergings, and there are (n−1) iterations, the number of
set partitions considered in the CLUSTER algorithm is Θ(n3).

V. DECOMPOSE

The DECOMPOSE algorithm described in this section re-
duces the number of set partitions considered from Θ(n logn)n

to Θ(n2). The details of the algorithm is shown in Algorithm 2.
This algorithm works in the opposite direction as CLUSTER
when generating candidate set partitions and the correspond-
ing RST topologies. It starts by considering all communication
demands as a single cluster. In each iteration, the algorithm
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Algorithm 1 CLUSTER (G(V, E, π, λ), C, T )
Input: G(V, E, π, λ): communication demand graph

C: specified evaluation function for implementation cost
Output: T : synthesized network architecture
1: initialize P 0 = ∅

2: for all ek ∈ E do
3: P 0 = P 0 ∪ {ek}
4: cost({ek}) = EvaluateCost(T ({ek}), C)
5: end for
6: t = 0
7: while |P t| > 1 do
8: for all gu, gv ∈ P t do
9: guv = gu ∪ gv

10: T (guv) = SolveRST(guv )
11: cost(guv) = EvaluateCost(T (guv ), C)
12: β(gu, gv) = cost(guv) +

∑
gi∈P t,gi �=gu,gv

cost(gi)
13: end for
14: (u, v) = arg mingu,gv∈P tβ(gu, gv)

15: P t+1 = P t\{gu, gv}
16: P t+1 = P t+1 ∪ {gu ∪ gv}
17: t = t + 1
18: end while
19: for all t ∈ [0, n − 1] do
20: c(P t) =

∑
gu∈P t cost(gu)

21: soln[P t] =
⋃

gu∈P t T (gu)
22: end for
23: t = arg mint∈[0,n−1]c(P

t)

24: T = soln[P t]
25: return T

considers different ways of breaking up an existing group in
the set partition chosen from the previous iteration into two
smaller ones. Then, the differential cost of splitting a group is
evaluated by generating an RST for each sub-group and eval-
uating their costs using the specified evaluation function. To
facilitate this decomposition process, two important graphs are
used in DECOMPOSE: Affinity Graph (AG) and its Minimum
Spanning Tree (MST). The affinity graph A is built by associ-
ating each flow in the communication demand graph to a ver-
tex in the affinity graph. An edge is added between each pair
of the vertices in the affinity graph to form a complete graph.
A weight is attached to each edge e′ = (v′i, v

′
j) and is calcu-

lated as w(e′) = cost({ei, ej}) +
∑

ek∈E,ek �=ei,ej
cost({ek}),

where ei is the flow in the communication demand graph as-
sociated with v′i in the affinity graph. cost({ek}) is calculated
by calling on the evaluation function to evaluate the cost of im-
plementing {ek} separately and cost({ei, ej}) is calculated by
evaluating the cost of implementing a generated RST topology
for {ei, ej} together. The weights of the edges in the affinity
graph reflect the benefits of implementing flows represented by
vertices in the affinity graph together using shared resources.
by only negative weighted edges so that the total implemen-
tation cost is minimized. The smaller the weight, the less the
resulting total cost of clustering the two flows connected by that
edge. The motivation is to only cluster flows that are connected
by small weighted edges so that the total implementation cost
is minimized. Then the minimum spanning tree M of A that
contains the minimum number of minimal weighted edges con-
necting all the vertices in A is derived. The affinity graph and
its MST of the example in Figure 1 are shown in Figure 2. The
cost considered is the total power consumption based on the
70nm technology power estimations shown in Table I.

Recall that the vertices in the spanning tree M corresponds
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(a) Affinity graph.
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(b) MST of affinity graph.

Fig. 2. Affinity graph and MST of AG for the NOC synthesis example

to flows in the communication demand graph G. Since M is
initially a spanning tree, it interconnects all vertices, which is
interpreted as having all flows in a single cluster. During the
course of the DECOMPOSE algorithm, we will selectively re-
move edges from M to create disjoint set of vertices, which will
correspond to disjoint sets of flows into groups, thus forming a
particular set partition.

In each iteration shown in lines 5-9, the algorithm system-
atically generates new candidate set partitions starting from
the set partition chosen from the previous iteration. Inside the
while loop, new set partitions are generated by temporarily re-
moving one edge from M . This is achieved by calling the rou-
tine SelectEdgetoDelete(M ). With an edge removed, the cor-
responding group is split into two sub-groups. We evaluate the
cost of this splitting by solving an RST problem for each sub-
group and calling on the evaluation function to compute the
new costs. In the first iteration of the algorithm, the spanning
tree M has (n − 1) edges. Thus, (n − 1) new candidate set
partitions will be generated. The set partition with the best cost
will be chosen as the set partition for the current iteration. This
set partition, and the corresponding modified M , will be used
as the starting point for the next iteration. At iteration t, M
will have (n − t− 1) remaining edges. Therefore, (n − t − 1)
candidate set partitions will be generated and considered. The
algorithm ends when all flows in the problem have been split
into their own individual groups. Then, at the end of the algo-
rithm, at line 10, we choose the set partition with the minimum
cost among the set partitions chosen from all iterations. Since
at each iteration t, there can be at most (n−t−1) candidate set
partitions, the number of set partitions considered in the DE-
COMPOSE algorithm is Θ(n2), which is again considerably
smaller than Θ(n log n)n.

VI. ROUTER MERGING

After the physical network topology has been generated for
each set partition of flows, a router merging step is used to
further optimize the topology and reduce the cost. Since for
each set partition, routers are allocated at Steiner points or ter-
minal points of the RST generated, routers that connect with
each other can be merged to eliminate router ports and thus
possibly the corresponding costs. Routers that connect to the
same ports can also be merged to reduce ports and costs. We
propose a greedy router merging algorithm, which works it-
eratively by considering all possible mergings of two routers
connected with each other in each iteration. For each candi-
date merging, the cost difference of the resulting topology after
merging and the one before merging is calculated. Then they
are sorted in the increasing order of the cost difference. In the
merging step, for each candidate merging from the sorted list,
routers are merged if they have not merged yet and the cost is
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Algorithm 2 DECOMPOSE (G(V, E, π, λ), C, T )
Input: G(V, E, π, λ): communication demand graph

C: specified evaluation function for implementation cost
Output: T : synthesized network architecture
1: A = GenerateAffinityGraph(G)
2: M = GenerateMinSpanningTree(A)
3: t = 0
4: n = |E|
5: while |M | < n do
6: (e, soln[t], cost[t]) = SelectEdgeToDelete(M )
7: remove e from M
8: t = t + 1
9: end while

10: T = soln[argmintcost[t]]
11: return T

SelectEdgeToDelete(M )
1: for all ei ∈ M do
2: temporarily remove ei from M
3: components(M) = CalculateConnectedComponents(M )
4: for all gi ∈ components(M) do
5: T (gi) = SolveRST(gi)
6: soln[ei] = soln[ei] ∪ T (gi)
7: cost[ei] = cost[ei] + EvaluateCost(T (gi), G, C)
8: end for
9: add ei back to M

10: end for
11: e = arg minei∈Mcost[ei]
12: return (e, soln[e], cost[e])

improving. After all routers are considered in the current iter-
ation, they are updated by replacing the routers merged with
the new one generated. Those routers are reconsidered in the
next iteration. The algorithm keeps merging routers until no
improvement can be made further.

VII. RESULTS

A. Experimental Setup

We have implemented our two proposed algorithms CLUS-
TER and DECOMPOSE in C++, using a fast public domain
Rectilinear Steiner Tree solver called GeoSteiner4.0 [19,20] to
generate the physical network topologies in the inner loop. The
proposed router merging algorithm has been integrated into the
two algorithms as well.

Three sets of benchmarks were used to evaluate these algo-
rithms. The first set of benchmarks are four different video
processing applications obtained from [9], including a Video
Object Plane Decoder (VOPD), an MPEG4 decoder, a Picture-
In-Picture (PIP) application, and a Multi-Window Display
(MWD) application. The next set of benchmarks were obtained
from [3] and [7]. They correspond to different encoder/decoder
combinations of a H.263 video codec, a MP3 audio codec,
and a generic MultiMedia System (MMS). Finally, to gener-
ate larger benchmark instances, we generated synthetic bench-
marks from the above video applications.

All experimental results were obtained on a 1.5 GHz Intel
P4 processor machine with 512 MB of memory running Linux.

B. Method of Evaluation

In our experiments, we aim to evaluate the performance of
the two proposed algorithms CLUSTER and DECOMPOSE
on all benchmarks with the objective of minimizing the to-
tal power consumption of the synthesized NoC architectures.
The total power consumption includes the dynamic switching

TABLE I
POWER CONSUMPTION OF NOC COMPONENTS [11, 14]

(a) Power consumption of routers

0.1080

0.0172
4x3

0.0676

0.0099
3x2

1.2189

0.0319
5x5

0.9180

0.0260
5x4

0.86510.56630.3225Switching bit energy (pJ/bit)

0.02160.01330.0069Leakage power (W)
4x43x32x2Ports (in x out)

(b) Power consumption of links

9.6
0.007936

16

7.2
0.005952

12

4.82.40.6Switching bit energy (pJ/bit)
0.0039680.0019840.000496Leakage power (W)

841Wire length (mm)

power which is a function of data rate passing through each
component and the leakage power which is related to all the
components in the NoC architecture. To estimate power con-
sumption different router configurations considered during the
synthesis process, we used a state-of-the-art power simulator
called Orion [11, 12] that considers both leakage and dynamic
power. We set the operational frequency to be 1 GHz, the
buffer size to be 4 flits, and the size of each flit to be 128 bits.
The leakage power and switching bit energy of routers with
different example port configurations in 70nm technology are
showed in Table I. For the link power parameters, we used RC
wires with repeated buffers and a minimum global wire pitch.
The static power and switching bit energy parameters in 70nm
technology were obtained using the models from [14] and are
listed in Table I.

For evaluation, fair direct comparison with previously pub-
lished NoC synthesis results is difficult in part because of vast
differences in the power parameters assumed1. Therefore, to
evaluate the performance of our proposed algorithms, we have
designed two sets of experiments. In the first set of experi-
ments, we generated mesh topologies for the benchmarks by
modifying the design procedure to synthesize NoCs based on
mesh structure. To obtain mesh topologies, we generated a de-
sign with each core connecting to a single router and restricted
the router sizes to have 5 input/output ports. We also gener-
ated a variant of the basic mesh topology, optimized mesh (opt-
mesh), by removing those ports and links that are not used by
the traffic flows. These experiments are designed to show the
benefits of application-specific NoC architectures. In the sec-
ond set of experiments, we implemented an exact algorithm,
referred to as EXACT, that exhaustively enumerates all distinct
set partitions. These experiments are designed to show how
close our heuristic algorithms are to exact results.

C. Comparison of Results

The synthesis results of CLUSTER and DECOMPOSE on
all benchmarks at 70nm with comparison to mesh and opt-
mesh topologies are shown in Table II. The power results show
that both algorithms can achieve substantial reduction in power
consumption over the standard mesh and opt-mesh topologies
in all cases. In particular, a 6.92× and a 6.77× reduction on av-
erage in power consumption over standard mesh topologies can
be achieved by CLUSTER and DECOMPOSE respectively,
with a 2.68× and a 2.60× reduction over the optimized mesh
topologies for each of them. The execution times reported

1We use the Orion simulator to evaluate the NoC power consumption [11,
12]. The power estimates from Orion are consistent with another published
power-optimized NoC implementation described in [13]. The power estimates
are on the same order of magnitude for the same router configuration in the
same technology.
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TABLE II
NOC SYNTHESIS RESULTS COMPARISON WITH MESH TOPOLOGIES

1.425
1.008
0.495
0.633
0.642
0.257
0.376
0.178
0.099
0.100
0.258
0.155
0.260
0.178
0.276
0.272

Power
(W)

mesh

0.3442.4210.0212.680.1422.4710.25130.500.13948444in1
0.3002.428.137.540.1242.498.3773.020.1204036V+M+M

0.1542.899.290.960.0532.899.297.450.0532120M+P

0.2022.247.041.300.0902.357.3915.470.0862724V+M
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0.1523.606.420.340.0423.606.421.350.0421412VOPD
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TABLE III
NOC SYNTHESIS RESULTS COMPARISON WITH EXACT SOLUTIONS

14440.000.0281.100.230.0311.000.820.028G5
293.000.0361.000.140.0361.030.370.037H263

9.000.0211.000.090.0211.000.240.021PIP
7.000.0261.000.070.0261.000.190.026h263dec
1.000.0161.000.040.0161.000.110.016mp3dec
1.000.0231.000.050.0231.000.090.023mp3enc
t.o.t.o.n.a.12.680.142n.a.130.500.1394in1
t.o.t.o.n.a.7.540.124n.a.73.020.120V+M+M
t.o.t.o.n.a.0.960.053n.a.7.450.053M+P
t.o.t.o.n.a.1.300.090n.a.15.470.086V+M
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t.o.t.o.n.a.0.320.054n.a.1.880.054MMDec
t.o.t.o.n.a.0.770.073n.a.3.890.068MMEnc
t.o.t.o.n.a.0.320.031n.a.1.570.028MWD
t.o.t.o.n.a.0.300.040n.a.1.090.039MPEG4
t.o.t.o.n.a.0.340.042n.a.1.350.042VOPD

Time
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Power
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DE/EX

Time
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Power
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Improv.
CL/EX

Time
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Power
(W)

EXACTDECOMPOSECLUSTER

Appli.

show that both algorithms work very fast, in just seconds. As
can be seen, CLUSTER can achieve better results than DE-
COMPOSE because it examines more set partition candidates
in its solution space, but it requires longer run times.

In the next set of experiments, we compared our heuristic
algorithms with an exact algorithm that enumerates all distinct
set partitions. As the number of distinct set partitions grows
Θ(n log n)n, the CPU times for generating the exact solutions
increase very quickly. We set a CPU timeout period of 5 hours.
The results are compared in Table III. Out of the 16 bench-
marks tested, we were able to determine the exact solutions for
6 of the benchmarks. Of these 6 benchmarks, both algorithms
were able to achieve the exact solution in 5 out of the 6 cases,
and on average, the results are within just 1% and 2% of the
exact results for CLUSTER and DECOMPOSE respectively.
Moreover, the CPU times for the 6 benchmarks are all under
1 second whereas the EXACT algorithm took as much as 4.5
hours to achieve similar results.

VIII. CONCLUSIONS

In this paper, we proposed a formulation of the application-
specific NoC synthesis problem based on the decomposition
of the problem into the inter-related steps of finding a good set
partition of communication flows, deriving a good physical net-
work topology for each group in the partition, and calculating
the cost of the set partitions and topologies by means of an eval-
uation function. We proposed two heuristic algorithms called
CLUSTER and DECOMPOSE for systematically examining
different possible set partitions, and we proposed the use of

Rectilinear Steiner Tree algorithms for deriving good physical
network topologies. Although we use Steiner trees to generate
a physical network topology for each group in the set partition,
the final NoC architecture synthesized is not necessarily limited
to just trees as Steiner tree implementations of different groups
may be connected to each other to form non-tree structures.
Experimental results on a variety of benchmarks using a power
consumption cost model show that our algorithms can produce
effective solutions with fast execution times comparing to both
mesh implementation and EXACT solutions.
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