
NoCOUT : NoC Topology Generation with Mixed
Packet-switched and Point-to-Point Networks

Jeremy Chan
School of Computer Science and Engineering

The University of New South Wales
Sydney, Australia

jeremyc@cse.unsw.edu.au

Sri Parameswaran
School of Computer Science and Engineering

The University of New South Wales
Sydney, Australia

sridevan@cse.unsw.edu.au

ABSTRACT
Networks-on-Chip (NoC) have been widely proposed as the future
communication paradigm for use in next-generation System-on-Chip.
In this paper, we present NoCOUT, a methodology for generating an
energy optimized application specific NoC topology which supports
both point-to-point and packet-switched networks. The algorithm uses
a prohibitive greedy iterative improvement strategy to explore the de-
sign space efficiently. A system-level floorplanner is used to evaluate
the iterative design improvements and provide feedback on the effects
of the topology on wire length.

The algorithm is integrated within a NoC synthesis framework with
characterized NoC power and area models to allow accurate explo-
ration for a NoC router library. We apply the topology generation al-
gorithm to several test cases including real-world and synthetic com-
munication graphs with both regular and irregular traffic patterns, and
varying core sizes. Since the method is iterative, it is possible to start
with a known design to search for improvements. Experimental re-
sults show that many different applications benefit from a mix of “on
chip networks” and “point-to-point networks”. With such a hybrid
network, we achieve approximately 25% lower energy consumption
(with a maximum of 37%) than a state of the art min-cut partition
based topology generator for a variety of benchmarks. In addition, the
average hop count is reduced by 0.75 hops, which would significantly
reduce the network latency.

1. INTRODUCTION
In the last decade, the available number of transistors per chip has

increased by several orders of magnitude. To maximize the use of
these transistors, meet crucial time to market deadlines, simplify ver-
ification, overcome clock skew problems and reduce reliance upon
extremely large design teams, there has been an increased need for
microprocessors in the design of emerging embedded systems. Such
systems often contain many microprocessors, with a few designs even
containing up to 300 microprocessors. This trend of having multiple
processors is only expected to increase. Multi-processing in an SoC
promises increased performance with reduced power consumption.

Reduced power consumption is enabled in Multi-Processor SoC (MP-
SoC), by reducing the context switching, having task specific proces-
sors (thus small) and switching off idling processors. In embedded
systems, which typically execute a single application or a class of ap-
plications, it is possible to optimize the system to reduce power. Re-
duced power consumption benefits the system by performing longer
on limited battery supplies, reducing weight by eliminating the need
for chip cooling technologies, and increasing reliability by dissipating
less energy and running cooler.

Limitations of traditional bus-based architectures start to become
apparent when numerous processing elements compete for commu-
nication resources. A typical bus-based architecture will require the
processing elements to wait, while other data transfers are being car-
ried out. Waiting, in turn, increases energy consumption due to leak-
age currents and decreases performance. Thus, a new communication
paradigm is a prerequisite in MPSoCs to enable processing systems to
reduce both latency and energy of data transfers between processors.
Networks-on-chip (NoCs) has been proposed as a future replacement
of on-chip buses in SoC applications where large bandwidth require-
ments and plentiful wiring resources are available. However, these net-
works add considerable logic to the design and require optimization to
make them energy efficient.

Motivation for this work
Customizing NoC topologies leads to faster, smaller and more energy
efficient networks. They can be made faster, by adding links between
congested routers and direct routes between frequently communicating
processing cores; smaller, by eliminating links, ports and routers which
are under-utilized; and more energy efficient, simply by the virtue of a
faster, smaller network.

In this paper, we present an iterative refinement strategy to gener-
ate an optimized NoC topology that supports both packet-switched
networks and point to point connections. We use cost functions to
rank various local improvements to guide the optimization process.
The first phase creates a good initial starting point while the second
phase optimizes the topology. For each topology change, a system-
level floorplanning tool estimates the wire lengths. We use character-
ized energy macro-models to account for routers with differing num-
ber of ports. Experiments are performed to illustrate the potential for
the algorithm to generate good custom NoC topologies for specific
applications for both asymmetric communication patterns as well as
symmetric.

The remainder of the paper is organized as follows: Section 2 sur-
veys the related work and states our contribution. Section 3 overviews
the framework and describes the topology generation problem and ap-
plication and architecture model. Section 4 describes the topology
generation algorithm and its implementation. Section 5 presents the
experimental results. Section 6 concludes the paper.

2. RELATED WORK
Various NoC router circuits supporting services such as fault toler-

ance and quality of service have been previously proposed using sev-
eral different regular topologies. Regular networks benefit by allowing
for a simplified placement and early exploration of topologies. Several
researchers have developed algorithms to map processing cores onto
tiles of regular topologies such as the mesh and torus [8, 12]. In [13],
Ogras et al. enhanced the mesh topology by adding customized long-
range links to minimize hop distance. Other works have addressed the
selection of the best topology from a large library of alternatives [9].

Several methods have been proposed for synthesizing application
specific topologies for point-to-point networks and ring architectures
[2, 15]. Krishnan et al. [18] presented several mixed integer linear
programming (MILP) formulations that minimize total network band-
width. However, these works lack floorplanning information.

More recently, Krishnan et al. [17] presented a MILP formulation
that addresses both wire and router energy by splitting the topology
generation problem into two distinct sub-problems: system-level floor-
planning and topology and route generation. In [14], Pinto et al. con-
sidered the synthesis of topologies including both networks and point-
to-point buses. They mapped the topology generation into two sub-
problems: k-median and multi-commodity min-cost flow and solved
these problems using approximation algorithms. The main drawback
of these two approaches is that it assumes that the routing resources
have negligible impact on the floorplan. In [11], Murali et al. pro-
posed a two step topology generation procedure using a general pur-
pose min-cut partitioner to cluster highly communicating cores on the
same router and a path allocation algorithm to connect the clusters to-
gether.

Our work is similar to that presented in [11], in that we produce
an energy optimized topology from an application graph using cali-
brated energy models with the aid of a system-level floorplanner. How-

3B-2

265978-1-4244-1922-7/08/$25.00 ©2008 IEEE

�������	
���
������
����
����� ������
������

��
�����

����������������
�������
����

�����������
�����
���

���������
����� ������!�
��

�����"���� #
�
�����������
�������
�����$�������%�!�
����

&'(%����")��'�"*"�+%�,

-����������������
����
%�	��
��.���++.��/"

/�����������
����

0�������������
����

����1�&�� ��.������"����
�� ����#�2���	����

�� �������
�
	����

+������
����
3�
���041-5

�����������
�$.�+������
�

Figure 1: Complete NoC synthesis flow

ever, our approach differs from [11] in the following ways: we sup-
port both point-to-point connections and packet-switched networks al-
lowing further energy reductions in certain applications. Instead of
exhaustively exploring all balanced cuts of the application graph, we
start from a point in the design space and iteratively evolve the solution
through a series of guided local moves. The benefit of this approach is
that it enables us to control the parts of the design space to be explored,
thus allowing additional architecture constraints to be added.

The novel contributions of our work are:
• an iterative optimization technique and selection heuristic for

guided design space exploration of NoC topologies using floor-
plan feedback

• a design flow that allows architectural constraints to be added
without major algorithmic changes

• a methodology that supports hybrid networks with both packet-
switched routers and point-to-point connections

• an augmented system-level energy model to explore active, idle
and leakage energy in custom NoC topology generation

3. SYNTHESIS OF A CUSTOM TOPOLOGY
Figure 1 presents the proposed NoC synthesis flow. There are three

major parts to this framework: (i) energy estimation, (ii) NoC opti-
mization and (iii) NoC generation. The focus of this paper is the NoC
topology optimization component. The other parts of the flow allow
energy characterization and generation of a realizable NoC. We refer
interested readers to [4] and [5]. We have implemented all three parts
as an extensible web-application. This NoC generation framework al-
lows the creation of new router models through the definition of router
templates, automated characterization of their energy characteristics
and the creation of an optimized NoC using the algorithms described
in this paper.

The input to the NoC optimization step is the application model,
NoC router libraries for implementation and an estimate of the sili-
con area of the processing cores. The NoC optimization step produces
an annotated topology graph that describes the interconnection net-
work between the processing cores as well as their placements. Our
HDL generator takes this topology graph and produces a synthesiz-
able hardware description of the routers and their interconnections. A
floorplanner is used to estimate wire lengths and estimate the energy
contribution of the topology. The NoC energy is estimated using char-
acterized macro-models.

3.1 Application Model
In this work, an application volume graph is used to capture the

traffic flow characteristics to enable energy estimation. The application
graph is a directed graph A(V, E), where each vi represents a core
and the directed edge (vi, vj) represents communication between the
cores. The communication volume between cores volij is specified
for each edge. An application run-time t is specified and it is used
to calculate the total leakage energy and idle energy dissipated. An
example application volume graph for a H.263 decoder combined with
an MP3 decoder (263decmp3dec) is shown in Figure 2 (a) from [19].
We use this example throughout the paper to illustrate the operation of
our algorithms.

0-

0/

644

00

7484

/

6

644

8

/89-

04

04

:

-4;/

4

0;9 -6

0

-64

9

-6

-

/89-7444

7

/;4

-4/89-

;

644
07

:

00

0-

0/ 04

6

06

/

0

4

;

7

8
9

-

(a) Application graph (b) Topology Graph

Figure 2: Input graphs

In addition to volume, each core in the application graph is anno-
tated with a fixed core size with width W (vi) and height H(vi). An
application volume capacity constraint volMAX is specified for each
edge to ensure that the generated topology can support the bandwidth
requirements. The communication volume volij must be less than
volMAX for each edge.

3.2 Architecture Model
A topology graph is used to describe the interconnections between

the routers and cores. The topology graph is a directed graph T (N, L),
where each vertex ni ∈ N represents a node in the topology. Each
node can be either a core pei or router ri. Each core in the application
graph vi must be mapped to one node pei in the topology graph. Each
directed edge in the graph (ni, nj) represents a physical bus connect-
ing nodes ni and nj with traffic flowing in a single direction. For every
edge (vi, vj) ∈ A, there must exist a path (ni, ri), (ri, rk), ...(rk, nj)
in the topology graph T that connects communicating cores ni and nj .
Figure 2(b) shows the topology output for the 263decmp3dec bench-
mark.

We use the custom packet-switched wormhole routers from the NoC-
GEN framework [4]. We assume a fixed buffering amount on each
router and support a maximum of sixteen ports. We limit the number
of ports because we lack calibration data for a greater number of ports.

3.3 Problem Description
The topology synthesis problem can be defined as follows: Given an

application abstraction, a NoC router area model and a characterized
router power/energy model, find an NoC topology T that minimizes
the communication energy Enoc.

The NoC energy can be modeled by the combination of the router
logic E(r), network interfaces E(n) and interconnect energy E(e).
The NoC energy Enoc can be modeled as follows:

Enoc =
∑

r∈R

E(r) +
∑

e∈L

E(e) +
∑

n∈N

E(n)

where R is the set of routers and L is the set of links in the intercon-
nection network and N is the set of nodes.

The energy dissipation of each NoC router can be separated into
four main categories: active energy Edyn; idle Estatic; static leakage
Eleak and wire energy Ewire. Active energy is consumed by packet
related activities and increases linearly with increasing volume.

The router energy of a single router can be defined as:

Erouter(ri) = Edyn(ri) + Ewire(ri) + Estatic(ri) + Eleak(ri)

To enable efficient computation of the total NoC energy, we separate
the router’s active energy into input and output components. The ac-
tive energy component of the edge weights are computed as the output
energy of the source node Edyn s summed with the input energy of the
target node Edyn t. We assume the wire capacitance scales linearly
per unit length Cw for a particular technology library. The wire en-
ergy also becomes part of the edge weight to the topology graph. The
idle energy and leakage is modeled as a fixed cycle energy that is con-
sumed at a given frequency f . Combining these components together,

3B-2

266

����<����,���$����
+������
�

�� �����
���+����*����
��
#
��������

	����="������� �����

��������
���#�#

����
�������<��
%��>��� ���
���������

*�
���

�
��
��
��
��

�

���������������������
�$.�
+������
�

	�<��#����������
��������

���������� ������
����

0

-

/

7

6

8

�����&��*	#��&�	����+%�,

*�
���

�
��
��
��
��

��
�
��
��

�
��
�

��
��
��
��
��
�?
��
��

��
�

Figure 3: Iterative Improvement Flows

the total NoC energy can be expressed as:

Enoc =
∑

(i,j)∈L

(Edyn s(ni) + Edyn t(nj) + Cwdij) · volij

+
∑

n∈N

(Estatic(n) + Eleak(n, f)) · t

The linear regression based technique from [5] is used to develop
analytical energy models for a library of routers [4] with varying in-
put and output ports. We extracted energy models for a large number
of routers, validated them on numerous traces with varying switching
activity and timing characteristics with low error rates (< 5%). The
energy contributions of the abstract NoC events for each component
were collated into lookup tables to allow quick evaluation of energy.
Non-characterized points in the energy model are estimated using cu-
bic interpolation. Analytical area models are developed from logic
synthesis estimates with input ports, output ports and buffering depth
as model parameters. These analytical expressions were found to be
very accurate at predicting the gate count (< 2%) as the router is highly
modular.

3.4 Floorplanning
A floorplanner is used to evaluate the wire lengths between each

processing element and router. Each topology graph is floorplanned
and mapped to a two-dimensional layout. Each node in the topology
graph ni is represented by a rectangular region with width, W (ni)
and height, H(ni) and network interfaces at coordinates X(ni) and
Y (ni). The distance dij between two nodes is measured by the man-
hattan distance between their network interfaces |X(ni) − X(nj)| +
|Y (ni) − Y (nj)|. For point-to-point links, the network interfaces are
located on the perimeter of cores. As there may be multiple network
interfaces on each core, the network interface is assumed to be con-
nected from the center of the cores. The network interfaces for the
processing cores are assumed to be located on the corner while routers
nodes are in the center. The edges in the floorplanning problem are
weighted proportional to the activity (the relative number of packets)
that traverses across the links between the nodes. We create dummy
edges based on the application graph to allow high communicating
pairs of nodes to organize themselves close together to reduce the wire
length for the point-to-point networks.

We evaluated three academic standard-cell floorplanners (Parquet
[1], Capo 10.2 [16] and mPL6 [6]) for our floorplanning input. Both
Parquet and Capo 10.2 produced adequate floorplans but exhibited
large run-to-run wire length variability (about 20% in the several tested
cases) due to the randomized algorithms used. The analytical placer
mPL6 produced stable results but its floorplans had significantly longer
wire lengths.

The high variability in wire lengths makes the comparison of two
topologies difficult as one may have lower energy because of a bet-
ter floorplan run. We overcame the inherent instability of the floor-
planning algorithm, by picking the best floorplan out of multiple runs
(about 100). To reduce the runtime, we parallelize the multiple runs
over multiple processors with a near linear speed up in processing time.

4. TOPOLOGY GENERATION ALGORITHM
Our topology generation algorithm consists of two distinct phases:

an initial topology creation phase and a refinement phase shown in

Figure 3. In the first phase, we create a floorplan based on the appli-
cation volume graph (Step 1). The pin locations from the floorplan are
used to group together frequently communicating cores into partitions
(Step 2). We use the term partition or cluster interchangeably to de-
scribe processing elements connected to the same router. To connect
the routers in the initial partition, we use a modified route shortest path
algorithm similar to that presented in [11] (This will be explained in
Section 4.2). The first three steps form an initial topology that can be
refined quickly towards the optimized solution. It is possible to sub-
stitute this stage with a known initial topology such as a mesh or other
known custom topology.

In the second phase, the topology is refined through three steps: (i)
coarse partition refinement, (ii) fine partition refinement and (iii) route
refinement. The coarse partition refinement step evolves the topology
by changing the number of routers or aggressively swapping groups of
processing elements across routers or adding point-to-point links (Step
4). It transforms the partitions by increasing/decreasing the number
of routers by merging smaller partitions, splitting large partitions and
moving groups of processing elements between partitions. Figure 4
shows the scaling trends of the input and output ports for dynamic and
static energy. Static energy increases linearly with input ports at about
0.1 mW per router port for a 4-flit buffer due to an increase in buffer-
ing. The merge operation is typically used to combine two routers to
reduce their buffer resources. A split operation breaks large partitions
into two smaller independent pieces which results in lower dynamic
energy costs as there are fewer router ports. In Step 5, the fine parti-
tion refinement step moves single routers to improve the partitioning.
The route refinement procedure (Step 6) modifies the links between
the routers to either decrease dynamic energy by reducing the number
of links or reduces hop energy by adding profitable links.

2 4 6 8 10 12 14 16

3.5

4

4.5

5

x 10
−12

Dynamic Energy

Input ports

F
li

t
e

n
e

rg
y

 (
J)

2

4

8

12

16

(a)

2 4 6 8 10 12 14 16
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3
Static Energy

P
o

w
e

r
(W

)

Input Ports

(b)

Figure 4: Port scaling of dynamic energy

Each design is evaluated using the cost function in Equation 1. The
topology is floorplanned and traffic flows are mapped to the topology.
The paths taken by each traffic stream can be determined using a mod-
ified shortest path algorithm on every processing element in the topol-
ogy graph with edges weighted based on their dynamic energy and
wire energy. Once shortest paths are determined, the total NoC energy
is computed from the edge volumes. To support the volume constraint,
each traffic flow is mapped to a commodity in the multi-commodity
min-cost flow (MCMCF) problem with capacity constraints. We have
used the linear programming based MCMCF solver PPRN [3] to deter-
mine the shortest paths. If the volume capacity constraint on an edge is
not met, the candidate topology is rejected. Deadlock prevention is im-
plementable using turn prohibition methods[20]. The prohibited turns
can be implement using the MCMCF solver. Due to space constraints,
we are unable to discuss this in detail.

We use tabu lists to prohibit the same sequence of moves from re-
peating. Separate tabu lists are maintained for each of the possible
moves (split, merge, split-move, move, add and remove). Some tabu
lists are cleared when a split and merge occurs as the nodes no longer
correspond to the nodes in the tabu list. In the route refinement and
fine partition refinement steps, we maintain an unchanged threshold
count Uthreshold to decrease the algorithm run-time when the current
set of moves is making no improvement to the topology.

4.1 Forming the initial topology
The initial topology is formed by performing an activity weighted

floorplan based on the application graph [7]. The network interfaces
of frequently communicating cores will be clustered together by the
floorplanner as it attempts to minimize wire length. The pin locations

3B-2

267

/0/ 8-9 :74 0-6/ 0689

-6/

649

984

040/

0-89

4

0

-

/

7
6

8 9

;

: 04

00

0-

0/

Figure 5: Activity weighted floorplan without routers

are assigned to be the corner of the rectangular cores as shown in Fig-
ure 5. For each unique set of pin locations, we group together pins
reachable within the distant constraint D. The diamond in the figure
shows the pins reachable within 0.5mm (manhattan distance) of the
clustered network interfaces for cores 0, 6 and 8. We form partitions
greedily by grouping the pins with the most intra-cluster volume. In
the diagram, the cluster with the highest intra-cluster traffic was cen-
tered around cores 0, 6 and 8 which includes cores 0, 1, 2, 3, 4, 5, 6,
8, 7 and 10. All these cores are initially connected on a single router.
The next iteration groups 11, 12, 13 and final iteration groups core 9
onto a separate router.

From experiments, we found that setting the distance constraint to
the height of the largest core produces a good initial partitioning for
most of the benchmarks tested. A distance constraint that is set too
high under-partitions the topology, resulting in large routers. On the
other hand, a small distance constraint will create small partitions and
many routers. Neither pose a problem because the refinement proce-
dure quickly merges the small partitions or splits the large partitions.

4.2 Route assignment
The purpose of the route assignment procedure is to add links to

the topology graph to connect routers and provide more direct paths,
thus reducing hop count. A weighted fully connected graph with |R|
nodes is used to determine the shortest paths for each flow, where |R|
is the number of routers in the topology. Each edge that already has a
direct link between two routers is weighted by the cost of transferring
one packet of data (dynamic energy cost). Edges that do not currently
exist in the topology graph include an additional installation cost, i.e.,
the sum of the dynamic energy cost of transferring the packet on the
larger router; the increase in cost for other traffic on both source and
destination router; and the static energy for lifetime of the application.
Each communication stream is mapped to communication paths using
a shortest path algorithm to determine whether it is better to use exist-
ing routes or add additional routes to connect that traffic flow. instal-
lation costs are minimized by assigning highest communication traffic
streams first.

Algorithm 1 Coarse Partition Refinement

1: while merge, split and split-move candidates exist do
2: Attempt best merge, split, split-move or multi-merge
3: Perform fine partition refinement (return refined T)
4: if last merge/split or split-move improves on topology then
5: Accept refined topology T , adjust tabu list
6: else
7: Add that merge/split/split-move to the tabu list

8: return topology

4.3 Coarse partition refinement
The pseudo code for the partition refinement step is shown in Algo-

rithm 1. We use suitability functions to evaluate the benefit of the each
potential merge, split and split-move operation. The method used to
evaluate merge, split and split-move will be described in the next three
subsections. After each potential move is evaluated, it is ranked and
the best move is chosen.

4.3.1 Selecting a merge candidate
The merge gain is evaluated by estimating the change in router dy-

namic, static and leakage energies for each pair of merge candidates.
There are three contributing factors that affect the suitability of a merge:
(i) static energy reduction due to the removal of common ports (ii) de-
creased volume due to reduction in hop distance and (iii) increase in

8

0

9

7444

-

/89-

7

/;4

:

04

-4;/

/89--4

6

/89-

4

-64

-6

-6

8

0

9

7444

-

/89-

7

/;4

:

04

-4;/

/89--4

6

/89-

4

-64

-6

-6

(a) Application subgraph (b) 1st split partition

Figure 6: Split partition example

packet energy due to more router ports. The decrease in volume can
be estimated by summing the traffic between the two partitions. The
increase in dynamic energy is computed by estimating the cost before
and after the merge.

Any pair of router nodes that has a positive merge gain is added to
a list to be considered for merging by the coarse refinement algorithm.
The coarse partition refinement algorithm will attempt to merge mul-
tiple routers at once, if they are beneficial. New links may need to be
added to ensure the connection of all streams. In these cases, the route
assignment procedure is used to route the unconnected traffic streams.
It is also possible to perform two merges simultaneously where they
are likely to be beneficial.

Algorithm 2 Get Split Candidates

1: for each router partition p ∈ P do
2: Construct application subgraph A′ from p
3: Add edges in subgraph A′ to edge list EL
4: Sort edge list EL by communication volume (ascending order)
5: while partition p can be split further do
6: Split N Partition(A′, EL)
7: if Gain(p) > split threshold, add to split candidates

8: return split candidates

4.3.2 Selecting a split candidate
The split is the opposite operation to the merge operation. Sim-

ilar to the merge case, the split gain is evaluated by estimating the
change in router dynamic, static and leakage energies. However, for
each partition there may be multiple ways to split the nodes. For ex-
ample breaking a large router such as a sixteen port router into two
eight port routers halves the per packet dynamic energy (See Figure
4(a)). Conversely, splits should be avoided in cases that would result
in a large amount of traffic between the newly formed partitions. Given
a router and an assignment of nodes into two partitions, the potential
gain can be computed in a similar fashion as the merge candidates.
The potential gain/loss due to a split operation can be analytically cal-
culated by examining: (i) the increase in total network volume between
the newly formed routers; (ii) the decrease in dynamic energy due to
smaller routers and (iii) the change in static energy. A split is added to
the list of candidates when the potential gain is above the split thresh-
old. The split threshold is set to a slightly negative value so as to
include split candidates that increase router energy but decreases wire
energy through greater placement freedom.

The router can be split in two partitions in multiple ways. We use
a greedy edge removal strategy, which is presented in lines (2 - 8) of
Algorithm 2 to generate several splits of the router partition.

For each partition p, construct a subgraph A′ of the original applica-
tion volume graph containing only the nodes and edges in the partition.
Next, create edge list EL containing all the traffic flows/edges of sub-
graph A′, sorted in ascending order by volume (Algorithm 2 Line 4)
and iteratively remove the minimum volume edge from the application
subgraph until two unconnected partitions are formed. A depth first
search is used to determine whether two partitions are formed. If two
or more partitions are formed, we evaluate the split gain as described
above. To find the next split, the last removed edge is added back to
the application volume graph and edges are removed until another split
partition is found. Each additional partition found by splitting will find
partitions with increasing inter-partition communication costs.

An example application subgraph from the 263decmp3dec applica-
tion in shown in Figure 6(a). In this example, the processing elements

3B-2

268

{0, 1, 2, 4, 5, 6, 7, 9 and 10} are connected to the same router. If we
remove the smallest edges {20, 25} as shown in Figure 6(b), two par-
titions {9, 10} and {0, 1, 2, 4, 5, 6, 7} are formed. The next partition
is formed by adding back the 0 to 9 edge and removing the next two
smallest edges with volumes 25 and 250. The next partition formed
is {0, 9, 10} and {1, 2, 4, 5, 6, 7}. This procedure continues until no
more partitions can be formed.

The split-move is a variant of the split with the newly created split
router merged with another partition. The procedure for a split-move
is similar to both the split and merge methods, except the cost func-
tion considers both split and merge simultaneously. Due to space con-
straints, we do not describe this suitability function.

4.3.3 Point-to-point networks
When there are no more split and merge candidates left, each edge

in the application graph is analyzed to determine which traffic streams
would benefit from point-to-point links. Point-to-point links are added
late in the design space exploration phase, to avoid prematurely adding
direct links which would artificially improve a poorly designed initial
topology. Two optimization passes are performed to discover poten-
tial point-to-point links. The first pass evaluates the effects of adding
point-to-point links to replace streams in the original application graph.
The second pass evaluates the gain or losses from disconnecting an en-
tire node from the network by converting all of its communication into
point-to-point links.

Evaluation is performed by comparing the energy cost of routing
the stream through the network and by a point-to-point link. Adding
a point-to-point link, will add a static installation cost which includes
the static and leakage energy of network interfaces. By adding one or
more point-to-point links, the network interfaces or router links may
become redundant and hence can be removed. These are evaluated as
part of the cost function. The wire length in point-to-point networks
is evaluated by considering the distance from the two closest sides of
communicating cores.

Algorithm 3 Fine Partition Refinement(T)

1: while move candidates != ∅ and u < Uthreshold do
2: Attempt best move candidate
3: Perform route refinement (return refined T)
4: if Last move improves topology then
5: Accept refined topology T
6: else
7: Add Last move to the tabu list, increment u
8: return topology

4.4 Fine partition refinement
The fine partition refinement step (Algorithm 3) moves processing

elements between partitions to reduce the size of large routers and/or
reduces the hop count by migrating processing elements nearer to their
communicating partners. Similar to the coarse partitioning refinement
step, processing element - router pairs are evaluated based on a suit-
ability function.

The suitability function for moving a processing element determines
the gain/loss due to router sizing and hop gain. A function is used to
determine the best existing router to move a processing element to.
The move is attempted and the routes refinement step is executed. The
route-refined topology is evaluated for the energy cost. If the move
improves on the best topology so far, it is accepted and new move
processing element candidates are computed. If the move does not
improve the design, it is rejected and removed from the candidate list
and prohibited from future move candidate lists. When there are no
more move processing element candidates, the best topology found
will be returned.

4.5 Refining routes
Routes are improved by adding new links to provide more direct

routes or removing existing links that are infrequently used. Addition
of new links is not always profitable as there is a significant cost for
opening up a channel between two routers.

Additional router-to-router links are evaluated to determine an es-
timate of the energy effects. For a link addition to be beneficial, the
network volume reduction must be great enough to justify the addition
of ports between the two routers. A volume threshold criteria is used

Component Energy/Power
NI src dynamic 1.6e-12 J

NI target dynamic 1.2e-12 J
NI src static 0.16 mW

NI target static 0.16 mW

Table 1: Network interface power

to filter out candidates whose network volume reduction is below the
installation cost. The addition of some links may cause others to be-
come redundant. Where a redundant link is removed, the installation
cost of the new link is not considered.

The candidate edges for addition are ranked according to their po-
tential benefit to the topology, i.e., how much bandwidth is reduced.
We use a lottery system to decide which of the candidate edges will be
added. The number of tickets allotted to an edge is equal to network
volume that is decreased. Edges that reduce greater bandwidth are
given more, while the worst edge receives no tickets (edges that do not
reduce total volume in the network). A random ticket is selected and
that edge addition is evaluated for energy improvements. Removal of
edges is done in a similar fashion to addition. We prohibit the removal
of routes that would cause the traffic requirements of the application
to be violated.

4.6 Supporting additional constraints
Additional architectural constraints such as a maximum router port

constraints can be added to ensure that the topology is implementable.
A maximum router port constraint restricts the number of ports in any
router in the topology. This requires the selection criteria for merge,
move processing element, and add to be modified to filter out candi-
dates that would violate this constraint. A swap processing element
operation is also added to allow local partition refinement when router
partitions approach the maximum port constraint. In a swap, pairs of
moves are considered such that they do not increase the number of
router ports past the port constraint.

5. EXPERIMENTAL RESULTS
We conducted experiments to evaluate our topology generation al-

gorithm against the min-cut based algorithm presented by Murali et al.
[11]. To allow fair comparison, we re-implement their algorithm using
our energy models and the hMetis partitioner [10].

The topology generation algorithm was run on a 2.0 GHz Pentium-
M processor. The floorplans were distributed on a cluster of 3 × four-
core Opteron 2.0 GHz servers running the Capo 10.2 placer with the
block flipping and rotation option enabled. The chip dimensions were
selected for each benchmark relative to the total sum of the core sizes.
A fixed capacitance of 500 fF per mm for each bus line is set. Point-to-
point network interfaces are located on the perimeter of the core and
have a minimum net length of 0.1mm. We set the optimizer to use
energy models for 250 MHz operation. In most benchmarks, the core

sizes varied between 62500μm2 to 4mm2. We select the best floor-
plan of one hundred runs of the final topology comparison purposes.
The network interface power consumption is shown in Table 1.

5.1 Experiments Conducted
Graph PE Flows k flits t (cycles)

G1 263decmp3dec 14 16 23.56 20000
G2 263encmp3dec 12 12 230.2 200000
G3 mp3encmp3dec 13 12 16.52 20000
G4 vopd 13 12 3.116 3000
G5 imp 27 96 11040 1600000
G6 large 14 16 23.56 20000
G7 long 14 16 23.56 100000
G8 broadcast 16 120 120.0 50000
G9 mesh4x4 16 40 48.00 30000

G10 random-a 100 200 283.0 50000

Table 2: Benchmark Description

Table 2 summarizes the characteristics of the ten benchmarks graphs.
The first seven benchmarks (G1-G7) are application volume graphs
obtained from [8, 19, 11] which contain a mixture of MP3, H263 de-
coders and encoders, video object plane decoders and image proces-
sors with varying cores sizes. The image processing benchmark imp,
features twelve processors with private memories and three shared re-
sources with are used equally by each processor. The large and long

3B-2

269

Graph
Mincut NoCOUT w/o ptp NoCOUT Impr

|R| |L| Hops P(mW) CPU |R| |L| Hops P(mW) CPU |R| |L| Hops P(mW) CPU %
G1 2 23 1.003 7.45 50 4 24 1.068 7.38 130 1 17 0.012 6.01 150 19
G2 2 18 1.000 6.50 40 2 18 1.001 6.50 16 0 12 0.000 4.93 20 24
G3 2 21 1.010 6.43 37 2 22 1.001 6.45 160 1 14 0.020 4.90 310 24
G4 2 23 1.008 7.46 37 3 24 1.110 7.39 200 0 12 0.000 5.14 280 31
G5 8 68 1.236 42.5 200 13 78 1.290 39.5 1050 1 58 0.121 26.6 1200 37
G6 3 24 1.031 7.79 51 3 23 1.026 7.69 165 1 17 0.012 6.24 375 20
G7 1 21 1.000 5.05 50 1 21 1.000 5.05 40 2 19 0.786 4.70 55 7
G8 1 30 1.000 24.0 50 1 30 1.000 24.0 350 1 30 1.000 24.0 375 0
G9 2 34 1.356 15.5 50 2 34 1.356 15.5 200 2 38 1.002 15.5 220 3

G10 20 215 1.389 75.0 250 14 218 1.222 73.5 1500 15 224 0.627 66.5 1800 11

Table 3: Energy consumption of Min-cut and NoCOUT

4

0
-

/

7
68

9
;

:04

00
0-

0/

07

06

40

-

/

7 68

9

;
:

04

000-

0/ 07

(a) Mincut (b) NoCOUT with point-to-point

Figure 7: 263decmp3dec floorplans

benchmarks are identical to 263decmp3dec except that the core area is
increased by a factor of nine in G6 and the total application execution
time is increased in the long benchmark. These two benchmarks illus-
trate the effect of increasing the relative wire energy, and operating at
lower activity rates.

Graphs G8 and G9 show mesh and broadcast type communication
patterns used in scientific applications. In the broadcast benchmark, all
cores communicate with each other. We generated a synthetic asym-
metric volume graph (Graphs G10) with one hundred cores to test the
scalability of the algorithms. We control the number of in-edges, out-
edges and the distribution of volumes of edges and core sizes.

5.2 Results
Table 3 reports the number of routers |R|, links |L|, average num-

ber of hops, power consumption and algorithm runtime (in seconds) of
both the min-cut and NoCOUT algorithms. For the SoC benchmarks,
our algorithm generated designs with a mixture of routers and point-
to-point networks. Figure 7 shows two floorplan generated by the Min-
cut algorithm and NoCOUT for the 263decmp3enc benchmark. Most
of the traffic streams use point-to-point links (shown with the dashed
lines connecting the centers of cores) to communicate with their neigh-
boring cores resulting in shorter wire lengths. Point-to-point networks
were beneficial in these benchmarks (G1-G7) because the cores com-
municated in a mostly pipelined fashion with an in-degree and out-
degree close to one. The 263encmp3dec and vopd applications cre-
ated topologies containing only point-to-point connections. If we dis-
able the point-to-point generation in our algorithm, it produces designs
which are similar to the min-cut solution with small improvements
in energy up to 6%. In some cases, we are able to produce a better
partition of the router nodes that takes into account energy effects of
power/energy model.

For the broadcast benchmark, a single 16-port router was created
by both algorithms. As there were many communication partners, no
individual stream benefited greatly from point-to-point connections,
hence the algorithm correctly chose not to add any. For the mesh4x4
benchmark, both algorithms created a two router network with half
of the mesh nodes connected to each router. Point-to-point links were
added between nodes 1 and 2, and 14 and 15, as these reduced the wire
energy significantly to justify the extra network interface.

5.2.1 Runtime and Scalability of algorithms
In the benchmarks presented above, the number of generations need-

ed to produce the final solution is typically limited to about 100. Each
generation can take about five to ten seconds to evaluate due to the
need to floorplan every design many times. The complete NoC topol-
ogy solution is generated in minutes. This runtime can be further re-
duced with the use of a larger cluster running floorplanning problems.

In future, we plan to investigate analytical floorplanning techniques
that will remove the need to run the floorplanner multiple times. Al-
though the min-cut partitioner is more efficient at producing solutions,
as more parameters such as link sizes are added in, it requires the min-
cut procedure to be run in the inner loop of any optimization algorithm.
We believe our method of exploring the design space iteratively will
be competitive in runtime when other parameters are added and con-
strained further. In very large cases, for example greater than 1000
cores, multi-level partitioning approaches similar to that used in floor-
planning should be considered. We found that in the fine and route
refinement stages, the average processor-to-router and router-to-router
wire lengths remain relatively consistent. It may be possible to esti-
mate the potential gain in these stages without running the floorplan-
ning for every design iteration, reducing the number of runs.

6. CONCLUSIONS
The topology generation problem contains multiple NP-hard prob-

lems. These problems are often treated separately and solved using
approximation algorithms. In this paper, we presented a technique for
the generation of an energy efficient application specific NoC topology
with awareness of floorplan and characterized energy and area models.
We show that using a guided local search, it is possible to find solutions
of similar quality to a min-cut partitioner on various benchmarks. Our
algorithm allows a mixture of both point-to-point networks and packet-
switched networks to allow further reduction in energy consumption
through shorter point-to-point wires and fewer routers.

References
[1] S. N. Adya and I. L. Markov. Fixed-outline floorplanning : Enabling hierarchical

design. IEEE Trans. on VLSI, 2003.
[2] T. Ahonen, D. A. Sigenza-Tortosa, H. Bin, and J. Nurmi. Topology optimization for

application-specific networks-on-chip. In SLIP, 2004.
[3] J. Castro and N. Nabona. An implementation of linear and nonlinear multicommodity

network flows. European Journal of Operational Research, 1996.
[4] J. Chan and S. Parameswaran. NoCGEN: A Template Based Reuse Methodology for

Networks on Chip Architecture. In VLSI Design, 2004.
[5] J. Chan and S. Parameswaran. NoCEE: energy macro-model extraction methodology

for network on chip routers. In ICCAD, pages 254–259, 2005.
[6] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie. mPL6: enhanced multilevel

mixed-size placement. In ISPD, 2006.
[7] J. Hu, Y. Deng, and R. Marculescu. System-level point-to-point communication syn-

thesis using floorplanning information. In ASP-DAC/VLSI, January 2002.
[8] J. Hu and R. Marculescu. Energy-aware mapping for tile-based noc architectures

under performance constraints. In ASP-DAC, January 2003.
[9] Y. Hu et al. Physical synthesis of energy-efficient networks-on-chip through topology

exploration and wire style optimization. In ICCD, 2005.
[10] G. Karypis and V. Kumar. Multilevel k -way hypergraph partitioning. In DAC, 1999.
[11] S. Murali et al. Designing application-specific networks on chip with floorplan infor-

mation. In ICCAD, 2006.
[12] S. Murali and G. D. Micheli. SUNMAP: A Tool for Automatic Topology Selection

and Generation for NoCs. In DAC, pages 914–919, 2004.

[13] Ü. Y. Ogras and R. Marculescu. Application-specific network-on-chip architecture
customization via long-range link insertion. In ICCAD, pages 246–253, 2005.

[14] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli. Synthesis of on-chip intercon-
nection structures: From point-to-point links to networks-on-chip. Technical Report
UCB/EECS-2006-147, UC Berkeley, 2006.

[15] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. Efficient synthesis of
networks on chip. In ICCD, 2003.

[16] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov. Min-cut floorplacement. IEEE
Trans. on CAD, 25(7):1313–1326, July 2006.

[17] K. Srinivasan and K. S. Chatha. A low complexity heuristic for design of custom
network-on-chip architectures. In DATE, 2006.

[18] K. Srinivasan, K. S. Chatha, and G. Konjevod. Linear Programming based Tech-
niques for Synthesis of Network-on-Chip Architectures. In ICCD, 2004.

[19] K. Srinivasan, K. S. Chatha, and G. Konjevod. Linear-programming-based tech-
niques for synthesis of network-on-chip architectures. IEEE Trans. VLSI Syst., 2006.

[20] D. Starobinski, M. Karpovsky, and L. A. Zakrevski. Application of network calculus
to general topologies using turn-prohibition. IEEE/ACM Trans. Netw., 2003.

3B-2

270

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

