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ABSTRACT

In this paper we present a mathematical programming formu-
lation of the integer time budgeting problem for directed acyclic
graphs. In particular, we formally prove that our constraint ma-
trix has a special property that enables a polynomial-time algo-
rithm to solve the problem optimally with a guaranteed integral
solution.

Our theory can be directly applied to solving a scheduling prob-
lem in behavioral synthesis with the objective of minimizing the
system power consumption. Given a set of scheduling constraints
and a collection of convex power-delay tradeoff curves for each
type of operation, our scheduler can intelligently schedule the op-
erations to appropriate clock cycles and simultaneously select the
module implementations that lead to low-power solutions. Ex-
periments demonstrate that our proposed technique can produce
near-optimal results (within 6% of the optimum by the ILP for-
mulation), with 40x+ speedup.

I. INTRODUCTION

Power-efficiency is emerging as a first-order design metric

in nanometer-scale IC designs. Innovations on low-power opti-

mizations are required throughout all stages of the VLSI CAD

design automation flow. One of the most effective methods

for reducing circuit power consumption without significantly

degrading performance is to exploit the “slacks” (or timing

slacks) available in the system. Slack is defined as the amount

of extra delay that each component (either a small gate or a

large module) of a design can tolerate without violating the

given timing constraint. Since many inter-dependent compo-

nents of a system or a subsystem may compete for the same

timing slack, it is very important to consider and budget the

slowdowns of these modules simultaneously to achieve the op-

timal solution. This is generally referred to as the “time bud-

geting problem” (also known as delay budgeting).

In this work we focus on power optimization at the high

level during the behavioral synthesis step, which automatically

transforms untimed or partially timed functional specifications

into cycle-accurate RTLs. Behavioral synthesis promises a

higher optimization potential and is able to explore a wider

range of tradeoffs within a shorter turn-around time than what

can be achieved by logic synthesis. As pointed out in [16],

using synthesis techniques such as scheduling, resource bind-

ing, pipelining, and behavior-level optimization can poten-

tially achieve up to a 70% power reduction, whereas RT-level

and logic-level optimization can only achieve, at most, a 40%

power saving.

Scheduling, which exploits the parallelism in behavior-level

design and determines the time at which different computations

and communications are performed, is commonly recognized

as one of the most important problems in behavioral synthe-

sis. Not surprisingly, a variety of scheduling techniques have

been proposed over the years to reduce power consumption.

An optimal scheduling solution is given in [18] for the time-

constrained scheduling problem under variable supply volt-

ages. However, the optimality only holds when the voltage

curve satisfies the linear differential property, i.e., the differ-

ence of the squares of consecutive voltage points on the curve

must be a constant. Multi-Vdd scheduling for high through-

put, functionally pipelined designs is addressed in [2] based

on a dynamic programming approach. An ILP formulation is

given in [8] for the scheduling problem undermultiple Vdds. A

dual-Vth scheduling and module selection problem is proposed

in [19]. The authors heuristically solve a maximum weight in-

dependent set problem to reduce leakage power under the la-

tency constraint. Their approach considers the operation bind-

ing constraints for resource sharing.

In this paper we simultaneously consider the integer time

budgeting (ITB) problem and scheduling problem to efficiently

explore the large solution space at the high level. Our low-

power scheduler (LPS) can efficiently handle various schedul-

ing constraints such as dependency constraints, latency con-

straint, frequency constraint, and resource sharing constraints,

etc. Without resource sharing constraints, the LPS can opti-

mally minimize the total node power consumption by minimiz-

ing the separable convex objective function. When the resource

sharing constraints are present, we are still able to optimize the

total functional unit power in a near-optimal way. Overall, the

contributions of our approach include:

(i) We formulate the low-power time budgeting problem as a

linearly constrained separable convex optimization prob-

lem (to be defined in Section II). In particular, we formally

prove that the underlying constraint matrix of the formu-

lated problem is totally unimodular, which automatically

guarantees that the optimal integral solutions can be ob-

tained in polynomial time.

(ii) We apply our time budgeting theory to low-power

scheduling in behavioral synthesis. Our scheduler gener-

ically captures the power-delay tradeoffs of different re-

sources as a set of convex pareto-optimal curves, and in-

telligently assigns the operations to appropriate clock cy-

cles and selects resource implementations simultaneously

through the slack distribution.
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(iii) We prove that the low-power scheduling problem is NP-

Complete with the presence of resource sharing con-

straints. Using our time budgeting theory, we propose an

efficient heurisitc which globally rounds the optimal frac-

tional solution to integral solution in polynomial time.

The remainder of this paper is organized as follows: Sec-

tion II give the preliminaries and problem formulation of our

ITB problem, and presents our new theories that provide foun-

dation of our solution to the ITB problem; Section III applies

our time budgeting approach to solve a low-power schedul-

ing problem for behavioral synthesis; Section IV reports ex-

perimental results and is followed by conclusions and ongoing

work in Section V.

II. INTEGER TIME BUDGETING FOR DAGS

In this section, we propose a mathematical programming

based approach on the ITB (integer time budgeting) problem,

which can handle convex objective functions. This formulation

can be extended to solve the power optimization problem by

adding various scheduling constraints.

The problem of distributing the slacks to different modules

of a design is generally referred to as the time budgeting prob-

lem (also known as delay budgeting). In addition to power

minimizations, time budgeting has been extensively studied in

many other optimization domains, such as design timing clo-

sure (e.g., [9]), timing-driven placement/floorplanning (e.g.,

[14]), etc. However, most of the early techniques cannot guar-

antee the optimal integral values of the results. In fact, the re-

quirement for an integral solution of time budgeting is intrinsic

to behavioral synthesis where the clock cycle time is fixed for

synchronous designs, and each operation has to take an integral

number of control steps.

An optimal integral budget assignment algorithm was pro-

posed in [1]. The maximum weighted sum of the delay bud-

gets can be obtained using linear programming followed by a

re-budgeting algorithm to optimally convert the solution with

fractional values to integers. This work was later enhanced

by [5] using a network-flow-based formulation for better effi-

ciency. A recent work [11] explored the delay relaxation prob-

lem for design closure. Their approach can handle concave ob-

jective functions; the general integer budgeting formulation is

transformed into a convex cost integer dual network flow prob-

lem which can be solved in polynomial time.

In this section, we propose an alternative approach to the ITB

problem with separable convex objective function. We formu-

late the ITB problem in a mathematical programming frame-

work which allows utilization of the existing state-of-the-art

solvers in this field. The application to low-power schedul-

ing also shows that the mathematical programming formulation

is flexible and easily extendible to handle various application-

specific design constraints.

In the following, we first show that the constraint matrix

of our formulated time budgeting problem possesses a special

property called total unimodularity. Using this important prop-

erty, we prove that the problem is optimally solvable in poly-

nomial time when the objective function is separable convex.

A. Problem Formulation

Given a directed acyclic graphG(V, E) and a time constraint
T , we describe our generalized time budgeting problem using
a mathematical programming formulation:

min f (b1,b2, ...,b|V |) (1)

a j ≥ ai + bi ∀ei j ∈ E (2)

bi ≥ di ∀vi ∈V (3)

ai ≥ 0 ∀vi ∈ PIs (4)

ai ≤ T ∀vi ∈ POs (5)

In the DAG, each node vi ∈ V is associated with a non-
negative constant di, which represents the minimum possible

time required to propagate all the input signals of node vi to

its outputs. We also assign a delay budget variable bi to each

node vi. The value of bi represents the total budgeted delay on

node vi, and it should be larger than or equal to di. Primary in-

puts (PIs) refer to the nodes without predecessors and primary
outputs (POs) refer to the nodes without successors. We also
define the concept of arrival time ai to be the maximum total

budgeted delay along any path from PIs to node vi.

In the constraint system, equation (2) captures the depen-

dences between nodes; Equation (3) ensures that the delay bud-

get of each node is valid, i.e., bi is no less than the minimum

delay di; Equations (4) and (5) define the timing constraints at

PIs and POs.

The objective is to minimize a convex function f on the de-
lay budget variables for all the nodes (or a subset of nodes)

in G. Together with the linear constraints, we form a spe-
cial class of linearly constrained convex programming prob-

lems (LCCP). Specialized convex programming solvers, such

as [10], are available to efficiently generate the optimal solu-

tions for continuous problems.

Definition 1 A function f (x1,x2, ...xn) : Rn → R is separable
convex if and only if f (x1,x2, ...xn) = ∑n

i=1 fi(xi) where each fi

is a univariate convex function.

In this paper, however, we are more interested in solving the

integer version of the problem formulated by (1)–(5). Specifi-

cally, assuming that the given minimum delay values di’s and

the timing constraint T are integral, we show in subsequent
sections that the optimal integral solution can also be obtained

when the objective function f is separable convex.

B. Totally Unimodular Constraint Matrix

Definition 2 (Papadimitriou and Steiglitz [15]) A matrix A
is a totally unimodular matrix (TUM) if every square sub-
matrix of A has a determinant of -1, 0, or 1.

For an integer linear programwhose constraint matrix is totally

unimodular, the problem can be solved efficiently since its LP

relaxation gives rise to integer basic solutions.

In this subsection we prove that the underlying matrix

formed by constraint inequalities (2)–(5) is a TUM. For the

sake of convenience,we transform all the inequality constraints

into a standard form Ax ≤ s. A is an m× n matrix where m is
the total number of linear constraints and n is the total number
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of variables. Since each node vi ∈ V is associated with an ar-
rival time variable ai and a delay budget variable bi, we have

n = 2|V |. Specifically, we move all variables to the left-hand
side of the inequality constraints. We then unify the variables

ai and bi into x j in the following manner:

x j =

{
a j, 1≤ j ≤ n/2
b j−n/2, n/2+1≤ j ≤ n

(6)

After the transformation of the inequalities, the resulting

standard-form matrix A has the following form:

xi + xi+n/2− x j ≤ 0 ∀ei j ∈ E (7)

−xi+n/2 ≤−di ∀vi ∈V (8)

−xi ≤ 0 ∀vi ∈ PIs (9)

xi ≤ T ∀vi ∈ POs (10)

A necessary and sufficient condition for a matrix A =
(ai j)m×n to be totally unimodular is proposed by Ghouila-

Houri [6] as follows:

Lemma 1 (Ghouila-Houri [6]) A 0,±1 matrix A is totally
unimodular if and only if each subset J of the columns can be
partitioned into two classes J1 and J2 such that for each row i,
we have |∑ j∈J1 ai j −∑ j∈J2 ai j| ≤ 1.

Using the above lemma, we can formally prove that the con-

straint matrix of our time budgeting problem is a TUM.

Theorem 1 The standard-form constraint matrix A of the time
budgeting problem is totally unimodular.

Proof: Observe that the corresponding rows of the inequali-
ties (8), (9), and (10) are simple, and each single row in this

category has at most one non-zero element. Thus they always

satisfy the Ghouila-Houri condition regardless of the selected

column subset. Therefore, we only need to consider the rows

introduced by the inequality (7). Given any column subset J,
we partition J into two classes, J1 and J2, which are defined as
follows:

J1 = { j ∈ J | ( j > n/2)∧ (∃iai j = 1)∧ ( j−n/2∈ J)}
J2 = J− J1

(11)

Suppose that row i is generated by one particular depen-
dencies edge ekl . In this row we have ai,k = ai,k+n/2 = 1 and
ai,l = −1, which are the only non-zero elements. Intuitively,
J1 and J2 serve to separate two +1 entries ai,k+n/2 and ai,k if

they coexist in J. In the meantime, one of them will be together
with the −1 entry ai,l .

To formally verify that the Ghouila-Houri condition holds

for the rows of this type, we discuss two separate cases:

1. k ∈ J: According to equation (11), we have column (k +
n/2) ∈ J1 if (k + n/2) ∈ J, and column l ∈ J2 if l ∈ J.
This implies that ∑ j∈J2 ai j = aik + ail = 0 if l ∈ J2, and
∑ j∈J2 ai j = aik = 1 if otherwise. In the meantime,∑ j∈J1 ai j

is also either 0 or 1, since only column (k+n/2) is eligible
for J1. Thus we safely conclude |∑ j∈J1 ai j−∑ j∈J2 ai j| ≤ 1.

2. k /∈ J. Based on equation (11), column (k + n/2) must
not belong to partition J1. This implies that ∑ j∈J1 ai j = 0

since none of the non-zero columns qualify J1. For parti-
tion J2, ∑ j∈J2 ai j can be -1, 0 or 1 depending on whether

columns (k + n/2) and/or l are selected in set J or not.
Thus |∑ j∈J2 ai j −∑ j∈J2 ai j| ≤ 1 holds.

Therefore, we prove that for any subset J of the columns, we
can always derive an appropriate partition on J so that Ghouila-
Houri condition holds for all rows in A. According to Lemma 1,
A is a totally unimodular matrix. �
To our knowledge, this is the first formal proof on the total

unimodularity of the constraint matrix for the time budgeting

problem. In [1] the authors mention total unimodularity of the

matrix in special cases when the input graph is a directed path.

Authors in [5] show that the dual of the edge budgeting prob-

lem can be mapped to a min-cost network flow problem, which

indirectly suggests that the constraint matrix of the dual prob-

lem is totally unimodular.

C. Separable Convex Objective Function

In this subsection we further show that our ITB problem can

be solved optimally when the objective function f is separable
convex, namely, f (b1,b2, ...,b|V |) = ∑vi∈V fi(bi) where each fi

is a univariate convex function.

As pointed out by Hochbaum and Shanthikumar [7], convex

separable optimization is not much more difficult than linear

optimization. Combining their work and Theorem 1, we im-

mediately arrive at the main theorem of this paper.

Theorem 2 Integer time budgeting (ITB) problem formulated
by (1)–(5) is optimally solvable in polynomial time, if the ob-
jective function is a convex separable function.

In this work we employ a more efficient and scalable ap-

proach byMiller andWolsey [13] to solve the integer separable

convex programming problem. Specifically, we replace each

convex function fi in the objective with its piecewise-linear ap-

proximation function f ′i , and reformulate the original problem
as a linear programming problem.

III. LOW-POWER SCHEDULING PROBLEM

In this section we apply our proposed ITB algorithm to

solve low-power problems in the behavioral synthesis domain.

We first introduce the problem formulation of our low-power

scheduling problem. We then present our time-budgeting-

based scheduling algorithm to reduce the overall power con-

sumption of the resulting system.

As opposed to the previous low-power scheduling method-

ologies, we are not limiting our optimization scope purely to

voltage scaling. For each type of operation, we generically

capture the power-delay tradeoffs as a convex curve, on which

each point corresponds to one particular pareto-optimal hard-

ware implementation for the corresponding operation. In the-

ory, we can vary the supply voltage, threshold voltage, gate

sizing, and even perform the microarchitecture switching (e.g.,

changing a ripple-carry adder to a carry-lookahead adder) to

derive the tradeoff curve.
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A. Problem Statement

In this work we focus on the low-power scheduling problem

for data-flow-intensive designs such as those in digital signal

processing and image processing domains. Power-efficiency is

a forefront concern for these types of designs since they are

widely used in mobile battery-powered consumer applications.

During the process of behavioral synthesis, we typically use a

data flow graph to capture the behavior of an input design.

Definition 3 A data flow graph (DFG) is a directed acyclic
graph G(Vo, Ed), where the vertices in Vo represent the oper-
ation nodes, and the edges in Ed represent the data dependen-
cies between operations. A directed edge e(vi, v j) denotes that
operation vi produces one of the input operands for operation
v j.

The problem we are seeking to solve in this section is

a latency-constrained low-power scheduling problem (LPS),
which is formally stated as follows:

Given: (1) A DFG G(Vo, Ed); (2) A set of scheduling con-
straints which may include latency constraint T (in terms of
the number of clock cycles on G), cycle time constraint, re-
source sharing constraints, etc.; (3) A set of power-delay trade-

off curves for each type of operation such as addition, multipli-

cation, etc.

Goal: The scheduler assigns each operation to one or more
consecutive time steps within T so that the given scheduling
constraints are satisfied and the final total power is minimized.

B. Low-Power Scheduling Algorithm

In this subsection we extend the SDC-based scheduling al-

gorithm [4] with the proposed ITB techniques to solve the

latency-constrained low-power scheduling problem. The SDC-

based scheduling algorithm forms a system of difference con-

straints (SDC) to represent a number of common scheduling

constraints including dependency constraints, resource con-

straints, frequency constraints, latency constraints, and relative

timing constraints. It is also capable of modeling and optimiz-

ing the schedule latency with a linear objective function.

To explicitly optimize the slack distribution and power con-

sumption, we introduce the concept of budgeting variables into

the scheduling constraints. Although the new constraint sys-

tem is no longer a pure SDC, the underlying matrix remains

totally unimodular. We also use a set of convex functions to de-

scribe the power-delay tradeoff curves for different resources.

Without resource sharing constraints, our low-power sched-

uler (LPS) can optimally minimize the total node power con-

sumption by minimizing the separable convex objective func-

tion. When the resource sharing constraints are present, we are

still able to optimize the total functional unit power in a near-

optimal way.

B.1 Scheduling and Budgeting Variables

To formally capture the schedule of an operation node in the

DFG, we introduce the concept of scheduling variables and
budgeting variables, which are defined as follows.

Definition 4 Given a DFG G(Vo, Ed), each node vi ∈ Vo is
associated with a scheduling variable sv(vi) and a budgeting

variable bv(vi). The value of a scheduling variable sv(vi) cap-
tures the starting time step of the operation vi in the final sched-
ule, and the value of a budgeting variable bv(vi) represents how
many clock cycles the operation vi lasts in the final schedule.

For the sake of simplicity, we assume that the latency of each

operation is at least one clock cycle (i.e., bv(vi) ≥ 1).
1

B.2 Modeling Scheduling Constraints

As discussed in [4], the SDC-based scheduler is able to math-

ematically model a number of common scheduling constraints

as a set of linear constraints such as resource constraints, de-

pendence constraints, overall latency constraint, and relative

timing constraints. With the new budgeting variables, we need

to adjust the data dependency constraint and latency constraint.

We also introduce ourmethod for handling the resource sharing

constraints.

• Data dependency constraint: Data dependencies are in-
trinsic scheduling constraints that must be satisfied to pre-

serve the functionality of the input description. To be

more concrete, if there is a data edge from node vi to node

v j, then v j cannot be scheduled unless vi has completed its

execution.

∀e(vi, v j) ∈ Ed : sv(vi)+ bv(vi)− sv(v j) ≤ 0 (12)

• Latency constraint: A latency constraint specifies the
maximum acceptable latency over the given DFG. Sup-

pose that a latency constraint T is specified, we then gen-
erate the following constraint on each operation node.

∀vi ∈Vo : sv(vi)+ bv(vi) ≤ T (13)

• Resource sharing constraints: We can also efficiently
model the resource sharing constraints described in [19]

to consider the resource sharing. Essentially, these bind-

ing constraints partitions Vo into a set of operation groups

F = { f j| f j = (v j
1,v

j
2, ...,v

j
k), j = 1, ...m}. Each group f j

represents one functional unit which executes the oper-

ations v j
1,v

j
2, ...,v

j
k in order. To enforce the ordering be-

tween the operations bound to the same function unit, we

generate the following precedence constraint.

∀v j
i ∈ f j : sv(v j

i )+ bv(v j
i )− sv(v j

i+1) ≤ 0 (14)

Note that the final latency of a functional unit is deter-

mined by the minimum time budget among all relevant

operations bound to this module instance. To capture this

relationship, we can create a budgeting variable bv( f j) for
each functional unit f j and generate the following con-

straints.

∀v j
i ∈ f j : bv(v j

i ) ≥ bv( f j) (15)

1This implies that operation chaining will not be allowed in the final sched-
ule. However, we can easily extend our algorithm to support operation chain-

ing.
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B.3 Optimizing Low-Power Objectives

Given the power-delay tradeoff curve for each type of opera-

tion, we can model the relation between power and time budget

on each node (or each functional unit) with a power function.

Definition 5 A power function pwop(bv(vi)) of a node vi (or
pwop(bv( f j)) of a functional unit f j) is the piecewise-linear
approximation of the tradeoff curve for the operation type op =
type(vi) (or op = type( f j)).

Optimizing total node power: Without the resource sharing
constraints, we can optimize the total node power by solving

a linearly constrained convex separable optimization problem

with the following objective function:

∑
vi∈Vo

pwtype(vi)(bv(vi)) (16)

Similar to the proof for Theorem 1 in Section II, we can

show that the constraint matrix formed by (12)–(13) remains

totally unimodular and LPS can optimally minimize the object

function (16) in polynomial time by linear programming relax-

ation. Because each SDC constraint can have at most two non-

zero elements, SDC constraint must satisfy the Ghouila-Houri

condition.

Optimizing total functional unit power: With the resource
sharing constraints specified by F , it is natural to optimize the
total power consumption on the functional units with the fol-

lowing objective.

∑
f j∈F

| f j| ∗ pwtype( f j)(bv( f j)) (17)

Unfortunately, we can show that the constraint matrix is no

longer a TUM with constraints in (15). We can further prove

that the scheduling problem formulated by constraints (12)–

(15) and the objective (17) is NP-Complete by a polynomial

reduction from the 3-SAT problem. Due to page limitation, we

omit the proof here.

Therefore, we propose a two-step heuristic to solve this

problem. At the first step, we solve the continuous version of

the original problem to get the “optimal” budget f b(vi) for each
node vi. Although the values of f b(vi)might be fractional, they
provide very good hints for achieving optimal integral solu-

tion. At the second step, we first remove the constraints in (15)

to recover the total unimodularity. We then perform a global

rounding on the node budgets by minimizing a least-squares

objective.

∑
vi∈Vo

(bv(vi)− f b(vi))
2 (18)

Since the above objective function is separable convex, we

can optimally round the node budgets to the desired integral

values with minimum least-squares error.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We test our low-power optimization algorithm on a set of

real-life DSP programs: PR, LEE , ARAI, DIF, DIT, and MCM

from [17]. These benchmarks mainly consist of additions, sub-

tractions, and multiplications. In this experiment we assume a

uniform 16-bit precision for the operands and operators.

We measure the power-delay tradeoffs for each type of op-

eration using Magma’s Blast Create [12] on a TSMC 90-nm
standard cell library tcbn90ghp. Our goal is to minimize the
average power of all function units under a latency constraint

T (which actually minimizes the total energy consumption as
well). We vary the multi-cycle constraints t on the subject op-
erator to guide the Magma tools to perform appropriate gate

sizing, and calculate real average power in time steps T by cal-
culating average power(t)∗ t/T (note that the value of T is not
important to the optimization process, we can choose T=1 for
any design). The curves for a 16-bit adder and a 16-bit multi-

plier are shown in Figure 1. Theoretically, we can also perform

threshold voltage scaling and supply voltage scaling to obtain

the curves of a wider range. Nevertheless, this would not com-

promise the efficacy of our approach provided we choose the

power-delay points so that the consecutiveness and convexity

of the tradeoff curve are maintained.
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Fig. 1. Power-delay tradeoff curves for (a) a 16-bit adder and (b) a 16-bit
multiplier.

We implement the time-budgeting-based low-power

scheduling algorithm in our C-to-RTL behavior synthesis sys-

tem.We take behavioral C as input and output RT-level VHDL

along with multi-cycle constraints to specify the actual needed

cycle count between the input registers and output registers

of the functional units that implement multi-cycle operations.

Typical runtimes of our scheduler on the benchmark designs

are within one second on a 2.4GHz Pentium 4 Linux PC. We
use the Magma Blast Create toolset [12] to synthesize the

RTL code and analyze the power consumption of the resulting

designs.

B. Scheduling Results

As mentioned in Section III, our LPS algorithm can opti-

mally minimize the total node power in polynomial time. With

resource sharing constraints presented, our LPS algorithm can

also efficiently optimize the total functional unit power with a

least-squares objective in (18). In this experiment, we gener-

ated the resource constraints based on the technique proposed

in [3], which considers the resource availabilities and tries to

minimize the switching activity when serializing the opera-

tions.

To evaluate the efficacy of LPS, we make comparisons with

two alternative solutions: (i) An heuristic approach that honors

operation binding constraints but optimize the total node power
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Fig. 2. Power comparisons (estimated by our algorithms) among LPS,
LPS-NRS and ILP on all benchmarks.
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Fig. 3. Power comparisons (reported by Magma tools) among LPS, LPS-NRS
and ILP on all benchmarks.

(LPS-NRS); (ii) An exact approach based on integer linear pro-

gramming (ILP), in which we enforce all budgeting variables to

be integral and directly optimize the total functional unit power

objective in (17). This approach is exact but has an exponential

time complexity.

Figure 2 shows the comparison of the estimated power

among these three algorithms with a latency constraint of 1.2x

the critical path length. The estimated power consumption by

LPS is within 2% of the optimum. The final power data ob-

tained by Magma tools demonstrate high correlation with the

power values estimated by the algorithms as shown in Fig-

ure 3. On average, the solutions generated by LPS algorithm

consume only about 6% more power than the ILP approach

and use about 30% less power than the LPS-NRS algorithm.

This shows that the LPS algorithm can effectively consider the

binding constraints during the optimization process. Not sur-

prisingly, the ILP-NRS algorithm is much faster than the ILP

approach in runtime, especially for larger designs (with an ap-

proximate 40X speedup). In addition, our proposed algorithm

introduces very marginal area (about 3%) and frequency (about

1%) overhead.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present a mathematical programming ap-

proach to the integer time budgeting problem and apply the

theory to a low-power scheduling problem. Experiments on

real-life designs demonstrate near-optimal results (within 6%

of the optimum). Our future work is attempting to handle con-

trol flows during scheduling.
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