
MAIZEROUTER: Engineering an Effective Global Router

Michael D. Moffitt∗

IBM Austin Research Lab

11501 Burnet Road, Austin, TX 78758

mdmoffitt@us.ibm.com

Abstract — In this paper, we present MAIZEROUTER, winner of the in-
augural Global Routing Contest hosted at ISPD 2007. MAIZEROUTER re-
flects a significant leap in progress over existing publicly-available rout-
ing tools, and abandons popular algorithms such as multicommodity flow-
based techniques, ILP formulations, and congestion-driven Steiner tree
generation. Instead, the foundation of our algorithm draws upon simple
yet powerful edge-based operations, including extreme edge shifting, a tech-
nique aimed primarily at the efficient reduction of routing congestion, and
edge retraction, a counterpart to extreme edge shifting that serves to reduce
unnecessary wirelength. These algorithmic contributions are built upon a
framework of interdependent net decomposition, a representation that im-
proves upon traditional two-pin net decomposition by preventing duplica-
tion of routing resources while enabling cheap and incremental topological
reconstruction. A maintenance mechanism, named garbage collection, is
introduced to eliminate leftover routing segments. Collectively, these oper-
ations permit a broad search space that previous algorithms have been un-
able to achieve, resulting in solutions of considerably higher quality than
those of well-established routers.

I. INTRODUCTION

GLOBAL ROUTING is a critical step in modern VLSI physical

design. Its importance has recently been cast into the limelight

with the CEDA-sponsored Global Routing Contest hosted at ISPD

2007 [25], a competition that attracted nearly a dozen academic and

industrial participants from around the globe. As reported in EE Times

[7], contests such as these serve as an important bellwether of urgent

problems in EDA, as well as a showcase for state-of-the-art algorithms

and solutions.

Despite increased attention to the problem of global routing, there

remains little consensus as to what techniques contribute to a truly

successful routing engine. This can be seen not only in the wide range

in solution quality of entries to the competition, but also in the broad

spectrum of algorithms that have been proposed in recent years. A

survey of conventional approaches to global routing reveals a vari-

ety of methods, ranging from traditional maze-based algorithms [10]

to flow-based techniques [1] to Integer-Linear Programming formula-

tions [4] to congestion-driven Steiner tree generation [18]. The choice

of algorithm has a dramatic effect on competing qualities of the solu-

tion (i.e., overflow and wirelength), as well as the runtime incurred by

the solver.

Of equal importance to the design of an effective global router are

the various data structures and elementary atomic units used “under

the hood” to represent and maintain a partial (or complete) solution.

For instance, several academic routers require a strict decomposition

of Steiner trees into two-pin nets, while others instead operate di-

rectly on an explicitly-defined topology. Surprisingly little attention

has been paid in the literature to the mechanisms needed to manip-

ulate these representations dynamically during the course of a global

routing algorithm. This is due, in part, to limitations imposed by previ-

ous global routers on the flavor of manipulations allowed. In particu-

∗This material is based, in part, on preliminary work performed by the author at the
University of Michigan’s Artificial Intelligence Laboratory.

lar, topological reconstruction is usually avoided at all costs, a design

decision that simplifies the construction of algorithms, but severely

curtails the freedom of the routing engine.

In this paper, we reveal the fundamental design and architectural

details of MAIZEROUTER, a novel state-of-the-art global routing algo-

rithm. A preliminary version of MAIZEROUTER took 1st Place in the

three-dimensional track of the ISPD 2007 Global Routing Contest,

outperforming established engines such as BoxRouter [4] and Fas-
tRoute [19], in addition to several newcomers. At the highest level,

the design of MAIZEROUTER draws primarily upon two complementary

edge-based operations:

• Extreme edge shifting, a simplification and generalization of

edge shifting [18] that has been enhanced to restructure Steiner

tree topologies, providing particularly effective support for con-

gestion reduction.

• Edge retraction, a counterpart to extreme edge shifting that re-

duces unnecessary wirelength by safely sliding tree segments

into areas where overflow has been eliminated.

These algorithmic contributions are situated atop a framework of

interdependent net decomposition, a representation that improves

upon traditional two-pin net decomposition by preventing duplication

of routing resources while enabling cheap and incremental topological

reconstruction. We also introduce a maintenance mechanism named

garbage collection, a process whereby leftover routing segments pro-

duced by our edge-based operations are removed from the solution.

Collectively, these operations permit a broad search space that previ-

ous algorithms have been unable to achieve. Combined with a mod-

erate amount of maze-routing, our algorithm is shown to surpass pre-

vious routers in solution quality, and remains extremely competitive

in runtime. On the ISPD ’98 benchmarks, MAIZEROUTER achieves zero

overflow (i.e., full routability) on all ten instances, running over 7.5×
faster than BoxRouter and producing 2.02% shorter wirelength. In ad-

dition, a reduction in wirelength of 2.92% is observed over FastRoute
2.0.

The remainder of this paper is organized as follows. Section II cov-

ers preliminary background on global routing, including a basic prob-

lem formulation, previous algorithms, and leading solvers. Section III

introduces our algorithm, MAIZEROUTER, and its principle algorithmic

components. In Section IV, we discuss the underlying representation

that MAIZEROUTER uses to encode and manipulate its routing solutions,

along with some basic routines to maintain this structure. In Section

V we present an empirical comparison of algorithms. We also provide

a complete and thorough summary of the Global Routing Contest, in-

cluding performance statistics of all entries to the competition. We

briefly describe future work in Section VI, and end with concluding

thoughts in Section VII.

II. BACKGROUND

A. Global Routing: Problem Formulation

The problem of global routing can be characterized as follows:

there is a grid-graph G specifying a set of vertices V and a set of

3A-1

226978-1-4244-1922-7/08/$25.00 ©2008 IEEE

edges E. As shown in Figure 1, each vertex vi ∈ V corresponds

to a particular rectangular region (or cell) of the chip, and each edge

eij ∈ E corresponds to a boundary between adjacent vertices (with

a maximum allowable resource mij). There is also a set of nets N ,

where each net ni ∈ N is composed of a set Pi of pins (with each

pin corresponding to a vertex vi). A solution is a mapping of nets to

routes, in which each route connects all the pins of a net using the

edges of the graph G.

When evaluating a routing solution (or, for that matter, a routing en-

gine), one is typically concerned with three metrics. Overflow refers to

the total amount of demand that exceeds capacity over all edges [14].

As it directly corresponds to the routability of the design, overflow

is desired to be as small as possible (ideally zero). Wirelength is the

combined length of segments needed to route all nets, and should also

be minimized. In three-dimensional routing, this calculation can also

include vias, special wires used to connect routing segments between

consecutive layers of metal. Finally, one may be concerned with the

runtime needed to construct the solution. This is especially true in

cases where global routing is repeatedly used to guide a placement

algorithm [20], as is typical in “V-shaped” coarsening and refinement

strategies. Global routing is a textbook example of a multi-objective

optimization problem, in which the relative importance of the individ-

ual criterion depend heavily on the context in question.

B. Global Routing: Basic Algorithms

As is the case with many large-scale optimization problems, a wide

variety of algorithms have been proposed for global routing, many

of which are discussed in a comprehensive survey on the topic [10].

Maze routing is a grid-based search algorithm that has long held a rep-

utation as a brute-force approach to routing, connecting pairs of source

and target locations using the shortest possible path (with respect to

an arbitrary cost function). Naı̈ve implementations typically employ

BFS or Dijkstra’s algorithm, whereas A*-style approaches (using, for

instance, the Manhattan distance between two points as an admissible

heuristic) often perform substantially better.

Pattern routing [14] considers a significantly smaller number of

paths than does maze routing, in an attempt to increase the speed of the

routing algorithm. Simple patterns (such as one-bend ’L’ shapes and

two-bend ’Z’ shapes) allow substantially fewer grid edges to be exam-

ined. However, pattern routing offers no guarantee on the (local) op-

timality of the chosen path, and must typically be used in conjunction

with some amount of maze routing to generate solutions of adequate

quality. After the initial routes for a set of nets have been determined,

they may be repeatedly torn apart and reassigned in an iterative repair

framework known as Ripup-and-Reroute. R&R strategies often differ

by the order in which to visit nets, as this ordering may significantly

impact the allocation of resources.

Among the more exotic approaches to global routing is its refor-

mulation as a multicommodity flow problem [3, 1]. Here, the flow

problem is used to solve a linear programming relaxation of global

routing, whose dual solution provides a lower bound on the optimum

maximum relative congestion. Due to the computational expense of

global routing, some have explored the use of probability-based con-
gestion prediction [12, 17, 22, 23] in an effort to help placement al-

gorithms anticipate which regions of the chip will present the most

difficult areas for routability. Although recent work has cast doubt

on the usefulness of this technique [24], it is still commonly used in

industrial placement tools [15].

C. Global Routing: Leading Solvers

Prior to 2006, the leading global routing tools were Labyrinth [13]

(which uses primarily pattern routing) and the Chi Dispersion Router

[8] (which incorporates a form of congestion amplification into its

Cells

Global
Bins

Global
Edges

Global
Bins

Global
Edges

(a) Global bin decomposition (b) Corresponding grid graph

Fig. 1. The bin decomposition and grid graph of the global routing problem formulation.

flow). However, significant progress has been made in recent years

resulting in a new breed of state-of-the-art routers.

BoxRouter [4] progressively expands a box initiated from the most

congested region of the chip, applying an integer linear programming

(ILP) formulation to re-route wires between successive boxes. Al-

though the ILP considers only L-shaped patterns for each two-pin de-

composition, a round of maze routing is applied thereafter to compute

paths for wires that cannot be successfully routed.

FastRoute [18] uses a congestion map to warp the structure of a

Hanan grid [9] during Steiner tree generation, followed by edge shift-

ing and a form of pattern routing. It has also recently been enhanced

with monotonic routing and multi-source multi-destination maze rout-

ing [19], although the most recent version of FastRoute did not prove

to be competitive in the competition.

Both BoxRouter and FastRoute make use of the publicly-available

FLUTE package [5, 6, 28] to create initial Steiner trees. FLUTE uses

lookup tables to produce solutions of optimal wirelength for nets con-

taining up to nine pins, and applies a divide-and-conquer strategy to

handle nets of larger size.

III. MAIZEROUTER – ALGORITHM FUNDAMENTALS

In this section, we describe the algorithmic details and overall flow

of our routing engine, named MAIZEROUTER.

A. Solution Initialization

MAIZEROUTER begins by greedily generating complete, fully con-

nected routes for all nets independently from one another. In our im-

plementation, we use FLUTE to derive the topology for each net, al-

though any reasonably efficient RSMT or RMST package (such as

FastSteiner [11, 27]) will suffice. Since virtually no attempt is made

to improve routability at this stage, the cheap initial solution typically

comes at the expense of an extremely high amount of overflow.

B. Extreme Edge Shifting

Of the many techniques that the engine FastRoute [18] employs,

one particularly useful step called edge shifting is designed to move

tree edges out of highly congested regions.1 The approach leverages

the Steiner tree topology in such a way that guarantees no change

in wirelength. For instance, consider the Steiner tree in Figure 3(a),

which happens to lie in an area of high congestion. Edge shifting will

permit the bold edge to be slid anywhere between its current position

and the far left side of the diagram, since this area is bounded from

above and below by sibling segments. If the cumulative cost of any

of these alternate positions is more desirable than the current location,

the edge may be safely relocated. Hence, edge shifting provides a

means to re-route the path between a pair of points by exploiting the

presence of neighboring wires.

1A similar technique named segment-move is deployed in the DpRouter engine [2].

3A-1

227

EXTREME-EDGE-SHIFT(Edge e, int window)
// vertical edge case (e.from.x = e.to.x)

1. Point top = e.from, bottom = e.to
2. int minX = max(0, top.x – window)
3. int maxX = min(grids.W, top.x + window)
4. int bestCost = 0, bestVal = top.x

5. for y = [top.y .. bottom.y]
6. bestCost += cost(demandV[top.x][y] – 1, capV)

7. shiftCost = 0 // cost accumulates as edge shifts left
8. for x = [x–1 .. minX]
9. unless (netsH[x][top.y].contains(e.net))

10. shiftCost += cost(demandH[x][top.y], capH)
11. unless (netsH[x][bottom.y].contains(e.net))
12. shiftCost += cost(demandH[x][bottom.y], capH)
13. cost = shiftCost
14. for y = [top.y .. bottom.y]
15. unless (netsV[x][y].contains(e.net))
16. cost += cost(demandV[x][y], capV)
17. if (cost < bestCost) bestCost = cost, bestVal = x
18. shiftCost = 0 // cost accumulates as edge shifts right
19. for x = [x+1 .. maxX]
20. ... // repeat lines 9 through 17

21. Point temp1(bestVal, top.y), temp2(bestVal, bottom.y)
22. removeEdge(e)
23. addEdge(Edge(top, temp1)) // top of ‘C’
24. addEdge(Edge(temp1, temp2)) // side of ‘C’
25. addEdge(Edge(temp2, bottom)) // bottom of ‘C’

Fig. 2. Pseudocode for Extreme Edge Shifting

Although powerful, edge shifting is sharply limited in scope, in

that it provides a relatively narrow band where the tree edge may be

repositioned. In our current example, there is no place within the so-

called “safe region” where overflow can be completely avoided. As a

result, the effectiveness of the router may remained burdened by heavy

congestion in this area.

In response, we introduce a critical generalization of edge shifting

that we call extreme edge shifting. Extreme edge shifting relaxes the

requirement that Steiner tree topology be preserved when moving an

existing segment out of a congested region. In fact, the new edge may

be relocated far outside the original tree, so long as the appropriate

routing segments are added to connect it to the points of origin (form-

ing a ‘C’-shaped detour).2 As illustration, Figure 3(b) demonstrates a

case where the bold edge from Figure 3(a) has been moved to the far

right, a region where routing resource is relatively underutilized. Two

parallel segments must be added to join the central segment to the tree.

A second application of extreme edge shifting on another segment of

the tree is depicted in Figure 3(c), this time in an upward direction.

Pseudocode for our extreme edge shifting procedure is provided in

Figure 2. The algorithm is given a particular edge e, and the range of

the sweep is parameterized by the variable window. As different loca-

tions for the edge are attempted, the algorithm computes the cost of the

move incrementally, allowing O(l×window) runtime (where l is the

length of the edge). One may choose from any number of strategies

for cost() (i.e., step, linear, etc.) although our implementation makes

use of a logistic function whose shape is dynamically adjusted during

search. Just as in traditional edge shifting, cost need not be accumu-

lated for any cell that contains a wire for the current net, hence we

check for such a condition in lines 9, 11, and 15. We also note briefly

that our implementation of addEdge() transparently decomposes the

given segment into several irredundant wires if there does happen to

be overlap (that is, with other segments of the same net).

A single pass of extreme edge shifting will examine each cell in

the grid, and if the ratio of demand to capacity is above a particular

2A form of ’U’-shaped move is proposed in [16], but it too is constrained by the pre-
determined topology of the net.

SHIFT-EDGES(float thresh, float window)
// vertical edge case (e.from.x = e.to.x)

1. for x = [0 .. grids.W]
2. for y = [0 .. grids.H]
3. if (demandV[x][y] > thresh × capV)
4. for each Edge e in edgesV[x][y]
5. EXTREME-EDGE-SHIFT(e, window)

Fig. 4. Pseudocode for a Pass of Extreme Edge Shifting

threshold, it will attempt to detour as many segments away from that

cell as possible. Figure 4 demonstrates this high-level procedure. As

described earlier, the algorithm focuses only on individual segments

that pass through the region of congestion, and will not explicitly at-

tempt to manipulate or re-route the entire tree of any net (as would

typically be done in Rip-up-and-re-route). We perform several such

passes of extreme edge shifting to achieve its full benefit.

C. Edge Retraction

There are two notable disadvantages of our repair procedure that

require remedy: the first of these is the creation of superfluous wires,

such as the dangling segment shown in Figure 3(c). We will ad-

dress this concern in Section IV-B when discussing the underlying

representation used by MAIZEROUTER to incrementally maintain rout-

ing solutions. The second major deficiency of extreme edge shifting

is that, depending on how the cost function has been adjusted to bal-

ance overflow and wirelength, it may produce very long parallel wires.

Of course, this happens for good reason: namely, to route the central

segment toward a distant region that is less congested, thereby reduc-

ing overflow and freeing resources for other wires. However, as the

engine begins to reach a routable (or possibly near-routable) solution,

it becomes more important to recover whatever wirelength has been

sacrificed in intermediate steps.

Our solution is to reverse the process of extreme edge shifting, in

an attempt to “undo” its adverse effects. This new procedure, deemed

edge retraction, is identical to extreme edge shifting with two excep-

tions. First, the segment being moved must remain bounded from

above and below by neighboring wires.3 Second, we will move this

segment only so far as it will not create overflow in any of the cells

in its new position, thus maintaining whatever degree of routability

had been previously achieved. Once the segment has been assigned

its new position, unneeded wires may be removed from the net. Edge

retraction is similar in spirit to the PostRouting stage of BoxRouter
[4], since both reduce wirelength as a postprocessing step (although

our approach avoids the use of maze routing).

In Figure 5, we demonstrate edge retraction on our running exam-

ple. The segment on the far right can be moved two units to the left

without incurring additional overflow (Figure 5(a)). After this trans-

lation is performed, dead-end segments are detected and eliminated

(Figure 5(b)), thereby fulfilling the promise of reduced wirelength.

The final routing for this net is shown in Figure 5(c).

IV. MAIZEROUTER – ARCHITECTURE FUNDAMENTALS

In the previous section, we focused on the high-level algorithmic

design decisions of MAIZEROUTER, assuming that low-level mainte-

nance tasks (such as topological reconstruction) could be handled

transparently. In this section, we briefly discuss the underlying ar-

chitecture that allows these operations to be performed with minimal

complexity and computational expense.

3Since the objective of edge retraction is to reduce wirelength, we will not permit a
location that necessitates the addition of segments.

3A-1

228

(a) (b) (c) (d)
Fig. 3. Two applications of extreme edge shifting followed by garbage collection. Dark grey indicates an area of overflow; light grey indicates an at- or near-capacity area; white
indicates an area of relatively low demand.

(a) (b) (c)

Fig. 5. An example of edge retraction followed by garbage collection. Dark grey indicates an area of overflow; light grey indicates an at- or near-capacity area; white indicates an area
of relatively low demand.

A. Interdependent Net Decomposition

One common attribute of academic global routers is the tendency

to decompose Steiner trees into two-pin nets (or wires) and to sub-

sequently route these subnets independently from one another, a pro-

cess we will hereafter refer to as wire-independent net decomposition.

This holds true for the entire flow of BoxRouter, which performs no

topological reconstruction after its initial Steiner trees have been cre-

ated and decomposed. FastRoute 2.0 is slightly more complex, as it

may need to construct entirely new tree topologies from scratch during

multi-source multi-target maze routing. However, its monotonic algo-

rithm for routing two-pin nets does not consider new decompositions,

and has the potential to create duplicate (and unnecessary) wires.

Conventional wisdom stipulates that during the entire course of

a routing procedure, the topology of a net may alternatively be un-

derstood and represented recursively as a tree. However, given that

our edge manipulation algorithms make heavy use of topological re-

construction (a technique that has been largely avoided by academic

global routers due to its complexity and computational expense), we

require a means to incrementally modify the position of individual

segments without resorting to full-blown tree reconstruction. Such a

task is made difficult if trees are maintained in the traditional manner

(i.e., using an explicit representation of topology), since small local

perturbations may introduce large defects in the existing topological

construction.

In understanding the search space of MAIZEROUTER, it is more useful

to imagine the routing of a net simply as a global, unnested collection

of intervals (or flat wires) in two-dimensional (or, for multi-layer rout-

ing, three-dimensional) space. In other words, we do not explicitly en-

code net topology, as we instead operate on segments obtained from

an interdependent decomposition of routing segments, in which the

global set of non-overlapping intervals is shared among all subnets.

This facilitates our search paradigm, where flat wires are individually

re-routed to reduce (or eliminate) overflow while preserving connec-

tivity of their corresponding nets. For instance, if we designate the

upper-left coordinate of Figure 3(a) as (0, 6), the following set of in-

tervals captures the vertical and horizontal components of the tree:

VERT. EDGES HORIZ. EDGES

[(0, 0) − (0, 1)] [(0, 1) − (4, 1)]
[(0, 4) − (0, 5)] [(4, 1) − (5, 1)]
[(4, 1) − (4, 4)] [(0, 4) − (4, 4)]
[(5, 0) − (5, 1)]

Observe that even though we have made no explicit attempt to en-

code tree topology, this set of intervals implicitly reflects the over-

all structure of the net and all necessary branching points. Further-

more, since we operate on a segment-by-segment basis, only those

edges affected by local changes must be modified to accommodate

the candidate paths selected by our edge-based operations.4 Hence,

interdependent net decomposition models the global interaction that

occurs between routing segments (in contrast to the model of strict in-

dependence assumed in traditional two-pin decomposition), and also

enables cheap incremental updates.

B. Garbage Collection

Recall from previous sections that our edge manipulation algo-

rithms may, on occasion, produce superfluous wires. For instance,

in Figure 3(c) we observed a solitary dead-end routing segment that

could be removed without affecting connectivity. This defect is a con-

sequence of abandoning non-pin nodes that are rendered unnecessary

when shifting a segment across existing wires within the tree.

Fortunately, such edges can be easily removed through a process

we loosely term garbage collection, as it eliminates leftover remnants

of wasted wire. Figure 6 provides a rough outline of this procedure.

We cycle through all routing segments for a recently modified net, and

process each endpoint that begins or terminates a segment. Any node

that is seen only once (provided that it is not a pin) is, by definition, a

dead-end, and may be safely removed. The computational complexity

is linear in the number of segments.

The process of garbage collection is simple and straightforward;

nevertheless, it a necessary and important procedure for removing ex-

cess routing segments that arise from our approach to restructuring

tree topologies. Figure 3(d) shows our example after garbage collec-

tion has identified and removed the unneeded branch.

4MAIZEROUTER uses several techniques to accomodate the dynamic addition, re-
moval, and merging of segments; due to space limitations, we omit such details here.

GARBAGE-COLLECTION(Net ni)
1. Map(Point → Set〈Edge〉) segments
2. for each edge e in edges(ni)
3. segments[e.from].add(e)
4. segments[e.to].add(e)
5. for each node p in nodes(ni)
6. if (p /∈ pins(ni) and segments[p].size() = 1)
7. removeEdges(segments[p])

Fig. 6. Pseudocode for Garbage Collection

3A-1

229

name nets grids

ibm01 11507 64 × 64
ibm02 18429 80 × 64
ibm03 21621 80 × 64
ibm04 26163 96 × 64
ibm05 27777 128 × 64
ibm06 33354 128 × 64
ibm07 44394 192 × 64
ibm08 47944 192 × 64
ibm09 50393 256 × 64
ibm10 64227 256 × 64

TABLE I
THE ISPD ’98 BENCHMARKS

name nets grids

adaptec1 219794 324 × 324
adaptec2 260159 424 × 424
adaptec3 466295 774 × 779
adaptec4 515304 774 × 779
adaptec5 867411 465 × 468
newblue1 331663 399 × 399
newblue2 463213 557 × 463
newblue3 551667 973 × 1256

TABLE II
THE ISPD ’07 BENCHMARKS

C. Layer Assignment in Multi-layer Routing

The basic components of our routing representation and algo-

rithms extend easily to the case of three-dimensional routing. First,

MAIZEROUTER projects all pins, capacities, blockages, etc. into a sin-

gle layer, routing nets in two dimensions. It then iteratively unfolds

this solution level by level, using the same strategies to achieve layer

assignment as it did to avoid congestion in the original projected so-

lution. For instance, the parallel segments of extreme edge shifting

correspond to vias in the 3D solution, and candidate positions for the

central segment correspond to candidate layers.

Provided that there is no limit on the number of vias between the

cells of any pair of layers (as was the case in the Global Routing Con-

test), segments may be broken as needed to obtain a solution whose

overflow is identical to that in the projected solution.

V. EXPERIMENTAL RESULTS

A. Results on ISPD ’98 Benchmarks

In Table I we provide a summary of the ten ISPD ’98 benchmarks

[26] that have become standard in the routing literature. To empiri-

cally evaluate the performance of MAIZEROUTER on these instances, we

compare it to FastRoute 2.0, BoxRouter [29], and the Chi dispersion

router deployed in Fengshui 5.1.

In Table III we present the results of MAIZEROUTER against

BoxRouter and Chi. For each test case, we report the total number

of overflows, total wirelength, and CPU runtime for each solver (with

all tests being performed on the same machine). We confirm that

BoxRouter is indeed substantially superior to Chi both in overflow and

runtime, one of the reasons for its reputation as a highly robust router.

It completes six of the ten instances, and also consistently produces

comparable wirelengths. However, one can observe that MAIZEROUTER

outperforms BoxRouter on all counts, successfully routing the four re-

maining benchmarks, reducing wirelength by an average of 2.02%,

and running over 7.5× faster on the entire set of problems.

A comparison of solution quality between MAIZEROUTER and the

most recent results of FastRoute 2.0 [19] is shown in Table IV.5 Fas-
tRoute 2.0 fails to route three of the benchmarks, and its wirelength is

2.92% worse on average than that of MAIZEROUTER.

B. Results of the ISPD 2007 Global Routing Contest

Table II summarizes key statistics of the test cases released during

the Global Routing Contest. The relative sizes of these benchmarks

significantly dwarf those of the older set, both in terms of the number

of nets (which has increased by a full order of magnitude), and the

scale of the routing grids.

In Table V, we provide raw statistics for the solutions of all entries

to the routing competition; as can be seen, these submissions span a

remarkably wide range in quality. Solutions for each instance were

5At the time of this writing, a binary of FastRoute has not yet been made publicly
available, and so we are unable to provide a runtime comparison.

FastRoute 2.0 MAIZEROUTER Imprv.

name ovfl wlen ovfl wlen (%)

ibm01 31 68489 0 63720 −7.48%
ibm02 0 178868 0 170342 −5.01%
ibm03 0 150393 0 147078 −2.25%
ibm04 64 175037 0 170095 −2.91%
ibm06 0 284935 0 279566 −1.92%
ibm07 0 375185 0 369340 −1.58%
ibm08 0 411703 0 406349 −1.32%
ibm09 3 424949 0 415852 −2.19%
ibm10 0 595622 0 585921 −1.66%

average −2.92%

TABLE IV
COMPARISON OF FastRoute 2.0 AND MAIZEROUTER

ranked from best to worst by total overflow (using maximum over-

flow and wirelength as tie-breakers), and the average ranking for each

router was taken as a final score.

In the 3D category, MAIZEROUTER (1st Place) and BoxRouter (2nd

Place) were the only two contestants to produce routable solutions for

at least half of the benchmarks. That being said, the typical number of

violations produced by FGR (3rd Place) for routable instances was of-

ten very close to zero. However, despite their infrequency, these small

overflows prevented FGR from playing a much more competitive role

in the 3D category.6 Four of the six remaining teams were incapable

of routing more than a single instance, with one router in particu-

lar (Bockenem) completing none. Notably, BoxRouter generated one

more fully-routed solution (adaptec5) than could MAIZEROUTER. In

the 2D category, FGR (1st Place) displayed an extremely impressive

showing, fully routing many solutions with significantly lower wire-

length than other entries (including our own).

VI. FUTURE WORK

Development of MAIZEROUTER is an ongoing process, and despite

its victory at the ISPD 2007 Global Routing Competition, we sus-

pect that there remains further room for improvement. For instance,

its loss to FGR in the two-dimensional track suggests that there are

likely additional optimizations that could significantly enhance the so-

lution quality of MAIZEROUTER. Furthermore, the ability of BoxRouter
to route one more contest benchmark than MAIZEROUTER points to yet

another area of where progress can (and should) be made. In an ef-

fort to encourage others to improve upon our results, we have released

the source code of MAIZEROUTER to the academic community under a

general public license [30].

VII. CONCLUSION

In this paper, we have presented the design and architectural de-

tails of MAIZEROUTER, a novel and state-of-the-art global routing en-

gine. MAIZEROUTER reflects a significant leap in progress over existing

publicly-available routing tools, due in part to its simple yet power-

ful edge-based operations (extreme edge shifting and edge retraction),

and also due to its use of an interdependent form of net decomposi-

tion, a representation that improves upon traditional two-pin net de-

composition by preventing duplication of routing resources and en-

abling cheap topological reconstruction. The mechanism of garbage
collection complements our edge-based operations by eliminating the

leftover routing segments they produce. We believe that many of our

techniques can be incorporated into existing routers to substantially

improve their performance and quality, as evidenced by our success at

ISPD 2007.

6An upcoming version of the FGR solver is expected to correct this issue [21].

3A-1

230

Chi Dispersion Router BoxRouter MAIZEROUTER (our work) Imprv. on Chi Imprv. on BoxRouter

name ovfl wlen cpu(s) ovfl wlen cpu(s) ovfl wlen cpu(s) wlen cpu(s) wlen cpu(s)

ibm01 66006 189 10.28 102 65588 5.23 0 63720 3.61 −3.59% 2.85× −2.93% 1.45×
ibm02 178892 64 32.62 33 178759 20.83 0 170342 3.63 −5.02% 8.99× −4.94% 5.74×
ibm03 152392 10 23.97 0 151299 11.77 0 147078 2.61 −3.61% 9.19× −2.87% 4.51×
ibm04 173241 465 36.84 309 173289 14.46 0 170095 16.94 −1.85% 2.18× −1.88% 0.85×
ibm05 412197 0 71.38 0 409747 36.73 0 410031 1.37 −0.53% 52.10× +0.07% 26.81×
ibm06 289276 35 54.56 0 282325 23.22 0 279566 4.70 −3.47% 11.61× −0.99% 4.94×
ibm07 378994 309 83.23 53 378876 35.87 0 369340 4.86 −2.61% 17.13× −2.58% 7.38×
ibm08 415285 74 77.51 0 415025 59.67 0 406349 6.74 −2.20% 11.50× −2.14% 8.85×
ibm09 427556 52 85.21 0 418615 47.82 0 415852 6.35 −2.81% 13.42× −0.66% 7.53×
ibm10 599937 51 145.01 0 593186 69.39 0 585921 9.64 −2.39% 15.04× −1.24% 7.20×

average −2.81% 14.40× −2.02% 7.53×

TABLE III
COMPARISON OF Chi DISPERSION ROUTER, BoxRouter, AND MAIZEROUTER

adaptec1 adaptec2 adaptec3 adaptec4 adaptec5 newblue1 newblue2 newblue3
Router ovfl wlen ovfl wlen ovfl wlen ovfl wlen ovfl wlen ovfl wlen ovfl wlen ovfl wlen

3-
D

1. MaizeRouter 0 100 0 98 0 214 0 194 2 305 1348 102 0 140 32840 184
2. BoxRouter 0 104 0 103 0 236 0 212 0 298 400 102 0 155 38976 196
3. FGR 60 91 50 92 0 203 0 186 2480 265 2668 93 0 136 53648 168
4. FastRoute 122 249 500 244 0 523 0 469 9894 708 2602 248 0 380 34236 443
5. NTHU-R(3) 3476 194 3588 177 64 406 0 303 20632 505 5526 180 0 232 38146 317
6. FlexRouter 8698 120 7370 114 950 269 18 227 21802 336 7636 111 0 171 39488 216
7. Bockenem 1240 254 10428 211 166498 407 7370 392 98950 576 3936 220 674 272 301052 309
8. NTU1-R(9) 62638 115 24738 112 31178 413 1342 252 208804 556 17872 115 0 168 148646 203
9. NTU2-R(13)* 32488 253 13662 243 43332 668 4064 600 120602 719 6570 200 0 362 64102 605

2-
D

1. FGR 0 56 0 54 0 133 0 126 0 156 1218 48 0 78 36970 108
2. MaizeRouter 0 62 0 57 0 138 0 128 2 177 1348 51 0 80 32588 115
3. BoxRouter 0 59 0 56 0 141 0 129 0 164 400 51 0 80 38976 112
4. FastRoute 122 90 500 82 0 203 0 171 9680 252 1934 74 0 115 34236 155
5. NTHU-R(3) 3474 79 3588 66 64 176 0 142 20630 258 5526 56 0 88 38146 161
6. Bockenem 608 80 880 95 3266 178 396 157 3496 232 2754 84 0 99 100078 130
7. NCTU-R(10) 3800 81 5178 76 98 184 8 160 16400 236 6722 68 0 105 34310 147
8. FlexRouter 8698 65 7370 59 950 155 18 135 21802 181 7636 51 0 82 39488 119
9. NTU2-R(13) 32520 62 13860 62 43332 402 4064 143 119822 438 6570 53 0 89 64130 119

10. NTU1-R(9) 93608 58 24738 57 31178 142 1342 133 208804 166 17872 50 0 81 148646 117

TABLE V
COMPLETE SOLUTION STATISTICS FOR ALL ENTRIES TO THE ISPD 2007 GLOBAL ROUTING COMPETITION

VIII. ACKNOWLEDGEMENTS

We wish to thank Prof. Igor L. Markov from the University of

Michigan for valuable insight and several useful discussions. The au-

thor is currently supported by the 2007 IBM Josef Raviv Memorial

Postdoctoral Fellowship.

REFERENCES

[1] C. Albrecht, “Global routing by new approximation algorithms for mul-
ticommodity flow,” TCAD, vol. 20, no. 5, pp. 622–632, 2001.

[2] Z. Cao, T. Jing, J. Xiong, Y. Hu, L. He, and X. Hong, “DpRouter: A fast
and accurate dynamic-pattern-based global routing algorithm,” in Proc.
of ASP-DAC 2007, pp. 256–261.

[3] R. C. Carden IV, J. Li, and C.-K. Cheng, “A global router with a theoret-
ical bound on the optimal solution,” TCAD, vol. 15, no. 2, pp. 208–216,
1996.

[4] M. Cho and D. Z. Pan, “BoxRouter: A new global bouter based on box
expansion and progressive ILP,” in Proc. of DAC 2006, pp. 373–378.

[5] C. Chu, “FLUTE: fast lookup table based wirelength estimation tech-
nique,” in Proc. of ICCAD 2004, pp. 696–701.

[6] C. C. N. Chu and Y.-C. Wong, “Fast and accurate rectilinear steiner min-
imal tree algorithm for VLSI design,” in Proc. of ISPD 2005, pp. 28–35.

[7] R. Goering, “IC routing contest boosts CAD research,”
http://www.eetimes.com/showArticle.jhtml?articleID=198500084,
2007.

[8] R. T. Hadsell and P. H. Madden, “Improved global routing through con-
gestion estimation,” in Proc. of DAC 2003, pp. 28–31.

[9] M. Hanan, “On steiner’s problem with rectilinear distance,” SIAM Jour-
nal of Applied Mathematics, vol. 14, pp. 255–265, 1966.

[10] J. Hu and S. S. Sapatnekar, “A survey on multi-net global routing for
integrated circuits,” Integration, the VLSI Journal, vol. 31, no. 1, pp. 1–
49, 2001.

[11] A. Kahng, I. Mandoiu, and A. Zelikovsky, “Highly scalable algorithms
for rectilinear and octilinear steiner trees,” in Proc. of ASP-DAC 2003,
pp. 827–833.

[12] A. B. Kahng and X. Xu, “Accurate pseudo-constructive wirelength and
congestion estimation,” in Proc. of SLIP 2003, pp. 61–68.

[13] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Predictable routing,”
in Proc. of ICCAD 2000, pp. 110–113.

[14] ——, “Pattern routing: use and theory for increasing predictability and
avoiding coupling,” TCAD, vol. 21, no. 7, pp. 777–790, 2002.

[15] Z. Li, C. J. Alpert, S. T. Quay, S. S. Sapatnekar, and W. Shi, “Probabilistic
congestion prediction with partial blockages,” in Proc. of ISQED 2007,
pp. 841–846.

[16] C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L. Yang, “Efficient
obstacle-avoiding rectilinear steiner tree construction,” in Proc. of ISPD
2007, pp. 127–134.

[17] J. Lou, S. Krishnamoorthy, and H. S. Sheng, “Estimating routing conges-
tion using probabilistic analysis,” in Proc. of ISPD 2001, pp. 112–117.

[18] M. Pan and C. Chu, “FastRoute: A step to integrate global routing into
placement,” in Proc. of ICCAD 2006, pp. 464–471.

[19] ——, “FastRoute 2.0: A high-quality and efficient global router,” in Proc.
of ASP-DAC 2007, pp. 250–255.

[20] ——, “IPR: An integrated placement and routing algorithm,” in Proc. of
DAC 2007, pp. 59–62.

[21] J. Roy and I. L. Markov, Personal communication, 2007.

[22] C.-W. Sham and E. F. Y. Young, “Congestion prediction in early stages,”
in Proc. of SLIP 2005, pp. 91–98.

[23] J. Westra, C. Bartels, and P. Groeneveld, “Probabilistic congestion pre-
diction,” in Proc. of ISPD 2004, pp. 204–209.

[24] J. Westra and P. Groeneveld, “Is probabilistic congestion estimation
worthwhile?” in Proc. of SLIP 2005, pp. 99–106.

[25] http://www.ispd.cc/ispd07_contest.html

[26] http://www.ece.ucsb.edu/˜kastner/labyrinth/

[27] http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/FastSteiner/

[28] http://home.eng.iastate.edu/˜cnchu/flute.html

[29] http://www.cerc.utexas.edu/˜thyeros/boxrouter/boxrouter.htm

[30] http://www.eecs.umich.edu/˜mmoffitt/MaizeRouter/

3A-1

231

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

