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Abstract - We present a new test data compression 
technique that achieves 10x to 40x compression ratios 
without requiring any information from the ATPG tool 
about the unspecified bits. The technique is applied to 
both single-stuck as well as transition fault test sets. The 
technique allows aggressive parallelization of scan 
chains leading to similar reduction in test time. It also 
reduces tester pins requirements by similar ratios. The 
technique is implemented using a hardware overhead of 
a few gates per scan chain. 

I. Introduction 
The quality of structural testing for digital 

circuits is a function of the accessibility to the 
internal nodes of the circuit. The most widely used 
design for testability (DFT) technique to improve 
accessibility is scan-path, which is based on 
serialization of test data [1]. The main advantage of 
scan is improving the controllability and 
observability of the circuit under test by having direct 
access to the states of the flip-flops. Scan-based 
testing causes some challenges resulting in 
significant increase in test cost. These challenges are: 
(1) Test time and pin count trade off: every test 
pattern needs to be shifted into these shift registers 
before being applied. For example, a circuit with 
128K flip-flops organized into 32 balanced scan 
chains will have a chain length of 4,000 flip-flops. 
For every pattern to be applied, 4,000 clock cycles 
are spent loading that pattern into the scan chains. 
Increasing the number of scan chains to reduce the 
loading time causes an increase in another costly 
parameter, which is the number of tester pins 
available for loading and unloading the scan chains. 
(2) Test power consumption and shift speed trade 
off: Because all flip-flops are clocked while shifting 
patterns in and out of the scan chains, the power 
consumption of the circuit is much higher during test 
than it is during normal operation. Since the circuit is 
designed to work within the functional power budget, 
power consumption during shift operations causes 
major test validity concerns. One of the solutions for 
this problem is reducing the frequency at which 
patterns are shifted in and out but that negatively 
contributes to the previous problem. 

Another fundamental problem with test today is 
the test data volume. The major cause for the 

problem is accessibility limitations. The problem 
exists both in scan and sequential test. 

Existing solutions in the industry often address 
some but not all of the above challenges 
simultaneously. The most popular solution includes 
several compression techniques used to reduce the 
data volume and the tester channel requirements. In 
such techniques, a compressed vector is loaded from 
the tester into the decompression circuitry, which 
expands the vector into a test pattern in the scan 
chains. The test response is also compressed into a 
smaller vector using the output compression circuitry. 
To name a few, [2], [3], [4] and [5] discuss such 
compression techniques. 

Illinois Scan Architecture (ISA) is another class 
of solutions that was introduced in [6] to reduce data 
volume and test application time by splitting the scan 
chain into multiple segments and broadcasting the 
data to all of them as long as the segments data are 
compatible. 

Very recently [7], we presented a new 
architecture and circuitry for significantly reducing 
test data volume, test application time, test power 
consumption and tester channel requirements. The 
new architecture, called segmented addressable scan 
(SAS), is based on ISA but it enables much more 
aggressive segmentation of the scan chains by 
enabling many different compatibility configurations 
among multiple segments. 

This paper presents Systematic Scan 
Reconfiguration (SSR). SSR is a compression 
solution that does not require any information about 
don’t care bits. Yet, it achieves 10x to 40x reduction 
in test data volume, test application time, and tester 
channel requirements. With the same minimal 
hardware overhead as SAS, SSR achieves this major 
cost reduction through modifying the ATPG process 
instead of utilizing the don’t care bits. 

Section 2 of this paper briefly presents 
segmented addressable scan. Section 3 explains 
systematic scan reconfiguration. Section 4 gives 
appropriate credit to previous work. Sections 5 shows 
initial experimental results and Sec. 6 concludes the 
paper. 
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II. Segmented Addressable Scan  
This section is a review for segmented 

addressable scan (SAS) architecture, which 
incorporates some of the basic concepts from Illinois 
scan [6] and from scan segment decoding [8] [9]. 
Combining these concepts with an efficient design of 
a multiple-hot decoder operating based on positional 
cube encoding [10], SAS addresses all challenges of 
digital core testing raised in the previous sections. 
The basic blocks of the SAS architecture are shown 
in Figure 1.
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Figure 1 Segmented Addressable Scan (SAS) 

A given address is loaded into the multiple-hot 
decoder (MHD) to refer to a single or multiple 
segments. A regular decoder scheme like the ones in 
[8] and [9] would take advantage of the compatibility 
for data volume reduction only. Because of the MHD 
used in the SAS architecture, test time can also be 
optimized based on this compatibility since the 
compatible classes will be loaded in parallel. 

For regular one-hot decoders, the input to the 
decoder is an address of the selected output. For the 
MHD, the address can include don’t care bits (d’s) 
allowing multiple outputs to be activated. 

As explained in [7], positional cube encoding 
scheme results in an implementation for the multiple-
hot decoder that requires the same hardware as a 
regular one-hot address decoder. In general, if we 
have S segments, we need S AND gates each with 
2 log2S  inputs for the multiple-hot decoder. For 
clock gating, we need S 2-input AND gates. 

As an example for SAS hardware overhead, the 
number of transistors needed for the additional 
hardware for 128 segments is less than 3000 
transistors i.e., less than 1000 gates. 

Using SAS, we reported an order of magnitude 
or more of reduction in test data volume, test 
application time, tester channel requirements and test 
power consumption. 

III. Systematic Scan Reconfiguration 
As it is obvious from the previous section, we 

need the information about the don’t care bits to 
generate the compatibility classes needed for SAS 
decoder address generation. We had two issues with 
this requirement: (1) Some ATPG vendors don’t 
provide don’t care bits information as they consider 
them confidential. (2) A fault can be detected by 
multiple patterns. With the ATPG unaware of the 
SAS architecture, the selection of which patterns to 
generate by the ATPG tool will not be driven by 
higher compatibility but rather by ease of generation. 

As a result of the above two issues, we were not 
only forced to come up with an algorithm that doesn’t 
require don’t care bits but we were also convinced 
that we could drive the ATPG tool to generate more 
highly compatible patterns that would require the 
fewer addresses or configurations with SAS. 

The SSR algorithm is based on the same SAS 
hardware presented in Sec. 2. It works by configuring 
the scan chains in the circuit such that they appear to 
be tied together to the ATPG tool with multiple 
configurations. The selection of which segments to 
tie together is done such that the number of addresses 
required to be loaded into the multiple-hot decoder is 
minimized. Basically, an address corresponds to a 
subset of the segments. For example, for a 2-to-4 
multiple-hot decoder, the address 00 corresponds to 
segment 0, and so on. Also, the address 0d (d = don’t 
care) corresponds to segments 0 and 1. Finally, the 
address dd corresponds to all 4 segments. Without the 
SAS architecture, we could choose a multiplicity of 
configurations and generate patterns with them tied 
together. However, this would require many 
multiplexers at the inputs and outputs of the scan 
segments to reconfigure them. It would also either 
cause problems with engineering changes or require 
these multiplexers to be highly reconfigurable which 
leads to high hardware overhead. The high flexibility 
and simplicity of the SAS architecture allows for a 
very large number of configurations ( , where 
S is the number of scan segments) with very simple 
hardware that doesn’t need to be changed with 
engineering changes. 

S2log3

Physically, all segments in the architecture are 
tied together. The decoder controls which segments 
to load together by activating a subset of the clocks to 
these segments based on the address loaded. 

Our SSR algorithm selects a set of 
configurations for combining scan segments together 
and then fakes to the ATPG tool that these segments 
are tied together to generate compatible patterns for 
them. It continues with such configurations until 
complete fault coverage is achieved.  
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1. Classify all detectable faults as undetected 
2. Start with the configuration dd…d
3. While (there are undetected faults) 
4.      Generate ATPG patterns 
5.      If the address care bit(s) are not the least significant 
6.         Move address care bits to lower significance 
7.      Else 
8.         Increase the number of care bits in address 
9.         Make the care bits the most significant 
10.     Endif 
11.Endwhile
12.End

Algorithm 1 Systematic Scan Reconfiguration Algorithm. 

The algorithm is best explained by an example. 
Take a SAS architecture with 8 segments (the 
addresses for the individual segments are 000 through 
111). First, we tie all segments together and we call 
this Category 0. There is only one configuration in 
this category, which corresponds to the address ddd.
We run the ATPG tool with this configuration to 
detect as many faults as it can. Notice that during test 
application, all we need to do is load the address ddd
in the decoder and then start loading the patterns in 
category 0. Also note that every pattern generated 
with this configuration is 1/8th (generally 1/S) of the 
size of the regular pattern (assuming segments are 
balanced). Most of the time, there will be undetected 
faults with this configuration. So, we switch to 
category 1. In category 1, only one of the address bits 
is specified and the remaining bits are all d’s. Notice 
that there are 3 possible configurations (generally 

 configurations) where only one bit is 
specified. We start with the configuration cdd, where 
c stands for a care bit. The care bit will take the 
values 0 and 1. This means that we use the addresses 
0dd and 1dd. These two addresses correspond to 
tying segments 0, 1, 2, and 3 together and segments 
4, 5, 6, and 7 together. We invoke the ATPG tool to 
generate patterns and load only the faults that were 
not detected with category 0 patterns. The next 
configuration within category 1 is dcd, which 
corresponds to segments 0, 1, 4, and 5 tied together 
and segments 2, 3, 6, and 7 tied together. We again 
invoke the ATPG tool with the undetected faults. 
After the last configuration in category 1, we go to 
category 2 where we have two care bits instead of 
one. The first configuration will be ccd, which 
corresponds to tying the segments in four groups (0 
with 1, 2 with 3, 4 with 5, and 6 with 7). We continue 
with these categories and configurations until all 
detectable faults are detected. The general algorithm 
for SSR is shown below in Algorithm 1. Experiments 
show that we normally don’t need to go beyond 
category 1. 

S2log

By going through the 
example above the reader 
will feel that the ATPG 
runtime will be very long 
and that’s true. However, 
there are multiple 
solutions that could be 
used for this problem. 
Here are some of them: 
(1) The first solution is 
not to try all 
configurations but to cut 
the process in the middle 
and jump to the 

configuration ccc. This configuration will detect all 
remaining detectable faults at any step. 
(2) Another solution is not to start with the 
configuration dd…d but rather with cd…d or ccd…d.
This will cut the runtime significantly because the 
first configuration is the hardest for the ATPG tool. 
(3) A third solution is to reduce the effort level with 
the first few configurations to the minimum such that 
the ATPG tool starts with the easily detectable faults. 

Not surprisingly, the price for all of the above 
solutions is reduction in the compression ratio. It’s 
well-known to the reader by now that the SSR ATPG 
runtime is a one time cost while the SSR compression 
ratio is a recurrent saving. 

Proper credit should be given to [11] in which 
the idea of using multiple configurations of Illinois 
Scan was presented. SSR has the following 
distinguishing features: (1) The architecture in [11] is 
based on mapping logic, multiplexers-based added 
hardware that combines multiple subsets together. 
The hardware is designed based on reducing the 
number of compatibilities required because more 
compatibilities will require more multiplexers and 
more scan inputs. In addition to the processing time 
required for these compatibilities, such information 
about which faults are detectable with which is only 
available to ATPG vendors. Our SSR hardware does 
not require any such information and does not need 
such extensive processing time. Furthermore, it 
allows  different configurations without any 
additional overhead. For example, an SSR 
configuration of 256 segments will automatically 
allow more than 6500 configurations. For such 
flexibility, the technique in [11] will require 256 
6500-input multiplexers. SSR will require 256 8-
input AND gates and 256 2-input AND gates. (2) For 
the same example above, the number of tester pins 
required for SSR is 17. For their technique to allow 
similar flexibility, the number of tester channels is 
more than 6500 tester pins. It can be argued that not 
all such configurations are needed to achieve an 

S2log3
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acceptable compression ratio. However, these 
configurations can be used to reduce runtime too (3) 
Any engineering change orders may alter the 
compatibilities based on which the hardware in [11] 
was synthesized. With SSR, all we need is to select a 
different set of compatibilities. No hardware changes 
are needed. (4) SSR inherently offers power 
reductions by selective activation. (5) The technique 
in [11] is heavily based on broadcasting mode, which 
as will be shown in the results section is very time-
consuming for the ATPG tool and it gets worse with 
more aggressive parallelization. Their results show 
up to 50x increase in ATPG runtime. As shown in the 
experimental results, we found that it is very helpful 
in terms of runtime to use configurations with fewer 
chains in broadcast mode. This is something that SSR 
automatically allows. 

IV. Related work 
Illinois Scan Architecture (ISA) was introduced 

to reduce data volume and test application time [6]. 
Since a majority of the bits in ATPG patterns are 
don’t care bits, there are chances that these segments 
will have compatible vectors. In this case, all 
segments of a given chain are configured in broadcast 
mode to read the same vector. In case if the segments 
within a given scan chain are incompatible, the test 
vector needs to be loaded serially. Several 
enhancements to the Illinois scan architecture have 
been proposed and discussed in the literature for 
multiple reasons. 

Lee et. al. presented a broadcasting scheme 
where ATPG patterns are broadcasted to multiple 
scan chains within a core or across multiple cores 
[12]. This scheme seems to have been concurrently 
developed with ISA. 

[13] introduced a token scan architecture to gate 
the clock to different scan segments while taking 
advantage of the regularity and periodicity of scan 
chains. Another scheme for selective triggering of 
scan segments was proposed in [14]. 

A novel scheme was presented in [15] to reduce 
test power consumption by freezing scan segments 
that don’t have care bits in the next test stimulus. By 
only loading the segments that have care bits, data 
volume, application time, and test power 
consumption are all reduced at once. 

[16] presented a scheme for resolving conflicts 
between care bits in different segments of an ISA 
architecture to improve the compression ratio. 

The X-pand scheme presented in [17] also 
presented a mapping scheme for an ISA based 
compression. The paper discussed compression using 
don’t care bits and using ATPG configurations. X-
pand, which was a major first step in the right 
direction for compression, differs from SSR in two 

major ways: (1) it doesn’t offer any power reduction. 
(2) it’s a combinational compactor, so shadow 
registers cannot be used for further reduction in tester 
channel requirements. 

A new scan architecture was proposed in [18] to 
order the scan cells and connect them based on their 
functional interaction. 

A circular scan scheme was presented in [8] to 
reduce test data volume. The basic concept is to use a 
decoder to address different scan chains at different 
times. This increases the number of possible scan 
chains (2N–1 for an N-input decoder). Also, the output 
of each scan chain is reconnected to its input. This 
enables reusing the contents of the response captured 
in the chain as a new test stimulus if they are 
compatible. 

The previous schemes are either limited in how 
much they can benefit from compatibility between 
some of the segments or don’t address the issue of 
power consumption during scan or both. 

Another attempt for using decoder-based 
segmentation is available in [9]. In this scheme the 
authors control the clocks to various segments 
through a regular decoder. The main advantage of the 
scheme is power reduction during scan and capture. 
The solution doesn’t address data volume, or test 
application time. 

SAS hardware enhances the benefit from all scan 
segmentation schemes by avoiding the limitation of 
having to have all segments compatible to benefit 
from the segmentation. In other words, any 
combination of segments can be compatible to lead to 
reduction in the test stimuli loaded. This is done with 
minimal overhead due to the multiple-hot decoder. 
The scheme simultaneously addresses data volume, 
test time, power, and tester channel requirement. 

Recently, a scan chain segmentation technique 
was presented in [19]. The technique is a BIST 
solution that selectively inserts inversions at some 
locations in the scan path based on the ATPG 
patterns to minimize the number of weights required 
for weighted random patterns. 

The technique in [20] is a recent attempt for test 
cost reduction through scan reconfiguration. The 
technique is based on finding the matches between 
the test response of pattern n and the bits of pattern 
n+1. This technique requires high routing overhead 
just like random access scan presented in [21] and 
enhanced in [22]. Although the titles are close to each 
other, these two recent solutions are in essence very 
different from SSR. 
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V. Experiments and Results 
SSR experiments were performed on the circuits 

in TABLE I, both of which are 180 nm designs. 

TABLE I
Circuit Characteristics. 

flip-
flops

Gate
count

Clock
domains

Test
Patterns

Ckt1 29K 350K 10 1.5K
Ckt2 35.5K 450K 26 3.4K

It has been evident to us from our experiments in 
[7] as well as these experiments that SSR achieves 
better results with bigger designs. 

TABLE II shows the compression ratio achieved 
by SSR for stuck patterns using different 
segmentations. 

TABLE II
Stuck-at Tests Data Volume Compression. 

Ckt1 
Total data volume 40 Mb Comp 

Ratio 
32 Segments 3.3 Mb 12x
64 Segments 2.4 Mb 16x
128 Segments 2.0 Mb 19x

SSR
data 
volume 

256 Segments 1.9 Mb 21x
Ckt2 

Total data volume 120 Mb Comp 
Ratio 

32 Segments 7.5 Mb 16x
64 Segments 5.8 Mb 20x
128 Segments 4.8 Mb 25x

SSR
data 
volume 

256 Segments 3.7 Mb 32x

Similar data for transition fault patterns is shown 
in TABLE III. The results are slightly better. It’s 
obvious that the compression ratio increases as the 
number of segments increases for both single-stuck 
and transition patterns. The price for increasing the 
segments is the runtime, which we will discuss. 

Similar reduction ratios are achieved for test 
time. Furthermore, the fact that the cost for additional 
scan chains is minimal (just a few gates per chain), 
promises for significant reduction in test time. With 
only 21 scan input pins, our technique can support 
1,024 scan chains. such parallelization considers 
parallel loading into the decoder without any shadow 
registers. Using shadow registers allows for more 
parallelization. 

To give an idea about how much fault coverage 
can be achieved while tying multiple segments 
together, we show the fault coverage progressive 
improvement of SSR together with the normal fault 
coverage achieved with basic ATPG. Figure 2 shows 

the fault coverage vs. the categories and 
configurations used for Ckt1 with 32 segments (the 
other segmentations behaved similarly). The figure 
delivers 2 significant messages: (1) The first category 
(all segments tied together) achieved more than 99% 
of the achievable coverage (achievable = 97.3, 
achieved = 96.3). (2) We don’t need more than the 
first two categories to achieve the achievable 
coverage. In fact, we even slightly exceeded it. Ckt2 
exhibited a similar behavior. 

TABLE III
Transition Data Volume Compression. 

Ckt1 
Total data volume 98 Mb Comp 

Ratio 
32 Segments 7.7 Mb 12x
64 Segments 5.3 Mb 18x
128 Segments 4.5 Mb 22x

SSR
data 
volume 

256 Segments 3.6 Mb 27x
Ckt2 

Total data volume 300 Mb Comp 
Ratio 

32 Segments 21.7Mb 14x
64 Segments 14.1Mb 21x
128 Segments 11.8Mb 25x

SSR
data 
volume 

256 Segments 7.7Mb 39x

Figure 3 shows similar results to those in Figure
2 but for transition test instead of the single-stuck 
test. The observations for transition patterns are 
consistent with those for single-stuck patterns. 
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Figure 2 Progressive SSR coverage with 2 categories of 
single-stuck patterns. 
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Figure 3 Progressive SSR coverage with 2 categories of 
transition patterns. 

VI. Conclusions 
“Necessity is the mother of invention”. We could 

not implement our previous test data compression 
solution due to the unavailability of the unspecified 
bits information. This paper presents our solution to 
this problem. The solution is a compression 
technique that satisfies the test data and test time 
reduction requirements of all of our designs without 
requiring any information about the unspecified bits. 
It also reduces tester pin requirements while requiring 
minimal hardware overhead. 
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