
Optimization of Robust Asynchronous Circuits by
Local Input Completeness Relaxation

Cheoljoo Jeong Steven M. Nowick
Department of Computer Science, Columbia University

New York, NY, 10027, USA
Email: cjeong, nowick @cs.columbia.edu

Abstract— As process, temperature and voltage variations
become significant in deep submicron design, timing closure
becomes a critical challenge using synchronous CAD flows. One
attractive alternative is to use robust asynchronous circuits which
gracefully accommodate timing discrepancies. However, these
asynchronous circuits typically suffer from high area and latency
overhead. In this paper, an optimization algorithm is presented
which reduces the area and delay of these circuits by relaxing
their overly-restrictive style. The algorithm was implemented
and experiments performed on a subset of MCNC circuits. On
average, 49.2% of the gates could be implemented in a relaxed
manner, 34.9% area improvement was achieved, and 16.1% delay
improvement was achieved using a simple heuristic for targeting
the critical path in the circuit. This is the first proposed approach
that systematically optimizes asynchronous circuits based on
the notion of local relaxation while still preserving the circuit’s
overall timing-robustness.

I. INTRODUCTION

As process, temperature and voltage variations become significant
in deep submicron design, timing closure becomes a critical challenge
using synchronous CAD flows [3]. One attractive alternative is to use
robust asynchronous circuits which gracefully accommodate timing
discrepancies. Several classes of asynchronous circuits are highly-
robust to delay variations, and only require small localized timing
constraints to be satisfied. Asynchronous design has been the focus
of renewed interest and research activity because of the potential
benefits of low power consumption, low electromagnetic interference,
robustness to parameter variations, and modularity of designs [20].
As an example, Theseus Logic developed an asynchronous version of
the Motorola CPU08 microcontroller as part of the MCORE project
and reported 40% less power and 10dB less peak EMI noise than
Motorola’s synchronous version [13], [16]. Also, in recent work at
Seiko/Epson, Karaki [9] demonstrated that asynchronous design is an
effective approach for dealing with high variability of delays, when
building flexible LTPS (Low Temperature Poly Silicon) TFT (Thin
Film Transistor) displays. However, little CAD support and high area
overhead in such design styles are among the major obstacles in
adopting these robust methodologies.

In this paper, a class of highly-robust asynchronous circuits is
targeted: dual-rail threshold networks. Basic design styles for this
class of circuits have been proposed by several researchers: DIMS
(Delay-Insensitive Minterm Synthesis) [15], [18], [4] and NCL (Null
Convention Logic) [6]. The DIMS style is a simple approach to
designing robust dual-rail asynchronous circuits from Boolean netlists
in a template-based manner. NCL [6], [11] is a more recent approach
to designing these circuits, and has been incorporated into a com-
mercial CAD tool flow at Theseus Logic Inc. and applied to several
industrial circuits. The NCL design style has been used to develop an
asynchronous version of the Motorola MCORE processor [13]. Also,
more than 18 other chips were designed and fabricated using the
NCL flow with the largest having 660,000 transistors [11]. Currently,
the NCL flow is used in a DARPA CLASS project, led by Boeing,
which is a major new initiative to develop commercially viable
asynchronous CAD flow.

This work was partially supported by a subcontract to the DARPA CLASS
program (under contract to Boeing) and by NSF ITR Award No. NSF-CCR-
0086036.

Compared to other asynchronous circuit styles such as those based
on single-rail data encoding [22], these asynchronous circuits require
few timing requirements: arbitrary gate and wire delays are allowed
as long as weak timing constraints are satisfied at wire fanout points
(details are provided in Section 2). However, although both DIMS
and NCL approaches result in highly-robust asynchronous circuits,
they suffer from large area and latency overhead.

In this work, an optimization algorithm for this class of asyn-
chronous circuits is presented. The algorithm can target both DIMS-
style and NCL asynchronous circuits. The method optimizes area and
delay of these circuits by relaxing their overly-restrictive style without
sacrificing the robustness property of the circuits. In particular, given
an original Boolean netlist, previous approaches replace each Boolean
gate in the netlist by an equivalent robust dual-rail asynchronous
block. However, these approaches are overly conservative in that
not every Boolean gate needs to be replaced by a robust block
to get a robust circuit. The goal of the paper is to identify a
minimal set of Boolean gates, under different cost functions, which
need to be replaced by robust asynchronous blocks to ensure the
overall robustness of the entire circuit. Such an approach allows
other Boolean gates to be replaced by more efficient, relaxed (i.e.
non-robust) asynchronous blocks while still preserving the overall
robustness of the circuit.

Problem formulation. The technique we focus on, in this paper,
exploits the notion of “input completeness”. A gate or a circuit is
called input complete if its output changes only after all of its inputs
have changed. Our goal is to selectively relax the input completeness
requirement when mapping the original Boolean netlist into a dual-
rail asynchronous circuit. In particular, the input completeness of a
gate or circuit is said to be relaxed if its output may change before all
inputs have changed. A relaxed gate or circuit is also said to perform
eager evaluation. This optimization problem can be formulated as
follows.

Problem 1 (Input Completeness Relaxation) Given a Boolean
logic network , which is to be implemented as a dual-rail
asynchronous circuit, find a set of gates in the original circuit such
that 1) the relaxed dual-rail expansion of these gates still ensures
that the resulting dual-rail circuit is timing-robust, and 2) the given
cost function is minimized.

In this paper, a theorem and a corollary that formalize a necessary
and sufficient condition for legal relaxation are presented. This allows
global optimization of circuits by a series of local relaxation of input
completeness. A relaxation algorithm that targets three cost functions
was proposed using the unate covering framework and the algorithm
was implemented and experiments were performed with ten circuits
randomly chosen from a set of larger MCNC benchmark circuits. The
cost functions considered in the paper are as follows: a) the number
of fully-expanded (i.e. robust) gates, b) area after dual-rail expansion,
and c) the critical path delay. On average, 49.2% of the gates
could be implemented in a relaxed manner and, as a result, 34.9%
area improvement was achieved, and 16.1% delay improvement was
achieved using a simple heuristic for targeting the critical path in
the circuit. The average runtime of the algorithm was 6.13 seconds.
This is the first proposed approach that systematically optimizes
asynchronous circuits based on the notion of local relaxation while
still preserving the overall circuit robustness.
Related work. To overcome area overhead of DIMS and NCL
circuits, several optimization techniques have been proposed. One

1-4244-0630-7/07/$20.00 ©2007 IEEE.

6C-4

622

approach, which is the focus of this paper, is to allow early evaluation
in gates in the circuit. Two strategies have been proposed: (i)
optimizing every gate, but adding local completion detectors [1], [4],
[10], and (ii) optimizing only some of the gates, with no added local
completion detectors [16]. In the first strategy, all gates are relaxed to
speed up computation, but local detectors are used to ensure robust
completion. However, this approach may degrade system performance
and significantly increases area. A second approach, closer to our
work, was first proposed by Smith et al., who illustrated a few
examples where input completeness can be relaxed on a selected
set of nodes without using local completion detectors. However,
they did not provide general conditions for legal relaxation or
general algorithms with a notion of global optimality. In contrast,
our approach provides a general relaxation algorithm without using
local completion detectors. Also, their circuits were relaxed only in
set phases while the circuits could further be relaxed also in reset
phases (as is proposed in this paper).

A recent paper by Zhou et al. [23] developed a similar approach to
ours, and was proposed concurrently. However, while their approach
only targets area, ours targets three cost functions: number of relaxed
nodes, area, and critical path delay. On the other hand, their approach
introduces an extension to allow partial relaxation, where nodes
can be relaxed with respect to a subset of inputs, while ours do
not. Finally, while their algorithm is based on a SAT (Satisfiability)
framework, ours is based on a unate covering framework.

Beyond ‘eager evaluation’, there have also been research efforts
to optimize dual-rail circuits along the line of traditional logic
synthesis. Theseus Logic developed a simple template-based opti-
mization method for NCL circuits using localized cell merger [7],
and recent approaches has also been developed for robust technology
mapping [8]. However, these approaches work on already dual-rail
expanded circuits and do not exploit the notion of relaxation.

II. BACKGROUND

A. Boolean logic network
Let . A Boolean function with inputs and

outputs is defined as a mapping . A logic network is
a directed acyclic graph, , with partitioned into three
subsets called primary inputs, primary outputs, and internal vertices.
Such a network is a common model used by logic synthesis and
mapping algorithms (see [5]). A local function is associated with each
internal vertex in the logic network, and there is a set of assignments
of primary outputs to internal vertices denoting which variables are
directly observable from outside of the network.

B. NCL logic
NCL is a circuit implementation style for asynchronous threshold

networks [6]. In this section, background on NCL design flow and
details on its implementation style and robustness properties are
presented, as well as a review of unate covering.
NCL design flow. The current NCL commercial design flow
starts by specifying the circuit in 3NCL logic style in a VHDL
program [10]. Effectively, the netlist appears similar to a standard
unoptimized Boolean netlist (but with some extended enumerated
data types). By only considering the set functions of the 3NCL gates
in the netlist, existing synchronous optimization tools can be initially
applied. In the current flow, the Synopsys Design Compiler is used.
The result is an optimized netlist of 3NCL gates. Figure 1(a) shows
a 3NCL OR gate example.

C

C

C

C

(a) a 3NCL OR gate (b) 2NCL dual-rail expansion
Fig. 1. 2NCL logic example

Next, the optimized 3NCL logic is transformed into a 2NCL logic
style, where each 3NCL gate is macro-expanded either into a DIMS-
style dual-rail 2NCL block or into an NCL-style dual-rail 2NCL
block. As an example, Figure 1(b) shows a DIMS-style 2NCL dual-
rail equivalent circuit of the 3NCL OR gate in Figure 1(a) (see below

for more details). 1 After dual-rail expansion, the logic is mapped to
a pre-defined library of NCL threshold gates.

3NCL circuits. 3NCL is a three-valued logic with values
. This representation allows a single bit of data to be

captured with a single symbolic variable or wire. Of these values,
and represent valid DATA and represents NULL.
A 3NCL gate alternates between two phases. Initially, the input

wires and the output wire of a 3NCL gate are initialized to . When
all the inputs have valid DATA value (or), the output finally
changes monotonically to a correct DATA value. For example , the
output of a 3NCL OR gate changes to a DATA value only after all
the inputs have changed to DATA value (or). Next, in the reset
phase, the output maintains the DATA value until all the inputs are
reset to . When all the inputs change to , the output changes to

, completing the robust reset phase.
2NCL circuits. A 3NCL circuit built using 3NCL gates is
theoretically delay-insensitive, but eventually this circuit should be
implemented using a binary-valued Boolean circuit. NCL logic
implements a single 3NCL gate using the DIMS-style dual-rail
expansion [18], where each single variable (or bit) is mapped to
a dual-rail Boolean equivalent. A DIMS-style logic implements a
Boolean function as a network of complex robust minterms (C-
elements [12]) feeding into OR-gates for 0 and 1 outputs (two OR-
gates). The resulting circuit is timing-robust, as discussed later in this
section.

Figure 1 shows an example of how a 3NCL gate is dual-rail
expanded into a network of 2NCL gates in DIMS-style. In the
example, a two-input 3NCL OR gate, with inputs and and one
output , is transformed into a network with four inputs, ,
and two outputs, . Here, the wires represent the 0-rails
of and the wires represent the 1-rails of . Four
2NCL “AND” gates, which are C-elements,2 are used to distinguish
each of the four unique input combinations of and , and one or
zero 2NCL OR gate is used for each of the output rails.

To transform 3NCL inverters into 2NCL logic, connecting input
1-rail and output 0-rail and connecting input 0-rail and output 1-rail
in 2NCL expansion achieves inversion. As a result, 2NCL circuits
are inherently monotonic and do not have any inversion, ensuring
hazard-freedom in each set phase. Similarly, and symmetrically, since
C-elements are used to implement the 2NCL AND functions, the reset
is also monotonic and hazard-free.

To obtain a 2NCL circuit from a 3NCL circuit, each gate of
the 3NCL circuit is visited in topological order in the circuit, from
primary inputs to primary outputs, and is in turn expanded to a
corresponding network of 2NCL gates.

NCL threshold gates with hysteresis. A 2NCL circuit is
eventually mapped using NCL threshold gates with hysteresis, which
are defined in the NCL cell library. An NCL threshold gate with
hysteresis [17] is a gate whose set and reset functions are not
combinational, but rather are sequential. Once the gate is set, the
output does not change until the reset condition occurs, and once it
is reset, the output does not change until the set condition occurs. As
an example, a two-input C-element, with inputs and , has a set
function . The reset function is , indicating that
both inputs must be reset before the output can be reset.

C. Orphans
A key challenge in designing and optimizing asynchronous thresh-

old circuits is to ensure hazard-free implementations. An orphan can
arise, when a signal transition on either a wire or a gate in the circuit
is unobservable, and may cause a circuit malfunction if the transition
is too slow [6]. Before presenting some examples, a few definitions
are required.

Suppose that an NCL circuit is in a reset state where all the wires
have 0’s. Once all the inputs arrive and all the circuit outputs are
computed, there must be at least one path from primary input to
primary output where all the signal transitions are . The events

1Alternatively, In the NCL-style 2NCL expansion, a single (complex)
threshold gate is used instead, for each rail (i.e. only two gates are used
in the NCL-style dual-rail implementation of the 3NCL OR gate).

2A C-element copies its input value to its output only when both inputs
change to the same value. Otherwise, the output does not change.

6C-4

623

on each such path are said to form a signal transition sequence. A
signal transition is said to acknowledge a signal transition if

always precedes in any possible signal transition sequence in
a set phase of the circuit. A signal transition is unacknowledged if it
is not acknowledged by any signal transition on a primary output.

Definition 1 (Orphans) A circuit is said to have an orphan if, for
some input transition, there is a signal transition sequence which
is not acknowledged by a signal transition on any primary output.
The circuit has a wire orphan if a signal transition on a wire is not
acknowledged, and the circuit has a gate orphan if a signal transition
sequence on a path through one or more gates is not acknowledged,
by a signal transition on any primary output.

Intuitively, a circuit has a wire orphan if a wire transition may be
unobservable at the circuit outputs, and a circuit has a gate orphan if
a transition on a path through one or more gates may be unobservable
at the circuit outputs.

C

C

C

C

(a) wire orphan

C

C

C

C

(b) simulation of (a)

C

C

(c) gate orphan
Fig. 2. Wire and gate orphan examples [19]

As a wire orphan example, consider the circuit in Figure 2(a).
When in a set phase, the gate

and fires. The thick lines indicate the wires where signal
transition takes place. The dotted ones represent wire orphans whose
signals do not further propagate through the gates, which are therefore
unacknowledged. Now, suppose that the lower wire orphan on the
input of is extremely slow, and the transition does not reach
by the time the next set phase begins. Note that in the intervening
reset phase both output rails and can correctly settle to ’s
regardless of this wire orphan. In the second set phase, let

(Figure 2(b)). The thick solid lines
indicate signal transitions in the second set phase. Because of the
wire orphan, now a spurious signal transition may appear at firing

. Now, both output rails and fire, which obviously is illegal
in delay-insensitive encoding.

As a gate orphan example, consider a circuit in Figure 2(c), where
orphans span over gates. Under an input transition,

, in a set phase, unobservable transitions can arise
on a path through gate , which starts at the input wire (or

) and ends at the output wire of . In the figure, the thick lines
indicate observable signal transitions and the dotted lines indicate
unobservable signal transitions, which form a path through gate .
Therefore, the circuit in Figure 2(c) is said to have a gate orphan.
For more examples on gate orphans, refer to [6].

Note that, when converting an irredundant 3NCL circuit to 2NCL,
using DIMS-style, gate-orphan-freedom is guaranteed by construc-
tion. However, since this paper is concerned with optimization, a
key goal is to ensure that no new gate orphans are introduced by
the proposed optimization techniques. As illustrated in Figure 1, a
DIMS-style 2NCL network equivalent for any 3NCL gate has the
property that, during the set phase, exactly one of the C-elements
(i.e. left column of gates) will be activated for each DATA input
combination, which then feeds exactly one OR-gate, to assert one of
the two dual-rail outputs. The result is that only one gate path will be
activated, and no other gates will change value. A similar property
holds during the reset phase. Hence, the mapping from 3NCL to
2NCL networks always preserves robustness.

In the NCL synthesis flow, wire orphans are not considered
serious and, in practice, timing constraints are easily enforced during
physical design to ensure proper timing. Effectively, they occur at
fanout points, where an unobservable wire fanout delay (i.e. wire
orphan) must always be faster than a significant observable path delay.
Thus, the timing requirements are on specialized non-isochronic (i.e.
skewed) fork delays. The NCL commercial tool flow is aimed at
eliminating problems due to wire orphans at the physical design
level [11].

However, gate orphans are more serious since they involve series of
gates, and can more easily cause trouble with the circuit functioning.

Therefore, in this paper, the problem of ensuring freedom from gate
orphans is addressed, and will be guaranteed as an invariant by the
proposed algorithm.

Note that a circuit with wire orphans can be considered correct
according to the isochronic fork assumption [12], while a circuit with
gate orphans can be considered correct under the extended isochronic
fork assumption [21].
Input completeness. A circuit is said to be input complete if
the circuit outputs change only after all inputs change. Similarly, a
gate is input complete if the gate output changes only after all inputs
change. As seen in Section II, 3NCL gates are input complete. When
a 3NCL circuit is expanded into a dual-rail circuit, it is useful to
enforce this input completeness property for the dual-rail block of
each original 3NCL gate, since such a construction ensures that the
final dual-rail circuit will be gate-orphan-free.

Definition 2 A dual-rail implementation of a 3NCL gate is input-
complete with respect to its inputs if an output makes a transition
only after all the inputs have made transitions.

As an example, the dual-rail circuit Figure 1(b) is input complete
with respect to its input signals, and .

The notion of input completeness of a dual-rail block can be de-
fined separately for set and reset phases. In a dual-rail implementation
of a 3NCL gate, if an output goes up only after all inputs go up, then
the implementation is said to be input complete in the set phase. Also
for reset phases, if an output goes down only after all inputs go down,
then the implementation is said to be input complete in the reset
phase. If an output of a dual-rail implementation can go up before
all inputs go up, it is said to be early evaluating. For reset phase, if
an output can go down before all inputs go up, the implementation
is said to be early resetting.

In this paper, if a dual-rail implementation of a 3NCL gate is input
complete with respect to a signal (in set and reset phases), the
implementation will be said to cover signal , or provide robustness
to signal .

D. Unate covering
The unate covering problem (UCP) occurs in many contexts

including the two-level logic minimization problem [14]. In this
paper, the proposed problems will be solved using the framework
of the unate covering problem.

Problem 2 (Unate covering problem) Given a finite set of ele-
ments and a collection of subsets of , find a minimum-
cardinality subset which covers , i.e. .

Unate covering problem can be extended with a weight function
which assigns a weight to each subset of in .

For the weighted unate covering problem, the goal is to find a subset
such that is the minimum. In this paper,

a UCP instance will be denoted by and a weighted UCP
instance will be denoted by .

III. MOTIVATIONAL EXAMPLES

In this section, examples are presented to show key points of the
proposed relaxation approach. The first small example shows in detail
how a 3NCL circuit can be translated to a 2NCL circuit in a more
relaxed manner without affecting the overall robustness of the circuit.
The second example is larger and shows how there are different
choices of which 3NCL gates to relax.
Relaxed dual-rail circuit example. In Figure 3(a), a 3NCL
circuit that computes exclusive-or (XOR) of two inputs and is
given. A straightforward dual-rail implementation of the given 3NCL
circuit, consisting of three dual-rail blocks, and , is shown in
Figure 4. The dual-rail blocks , and correspond to the gates

, and of Figure 3(a).

(a) initial netlist (b) relaxed gates marked

Fig. 3. 3NCL circuit example

6C-4

624

C

C

C

C

C

C

C

C

C

C

C

C

Fig. 4. Robust 2NCL circuit equivalent to Fig. 3(a)

Suppose that, initially, the dual-rail circuit is in a reset state,
having all wires initialized to 0. The two dual-rail blocks, and

, ensure that the gate output signals and 3 make transitions
only after signals and have arrived. The dual-rail block on the
right ensures that primary output signal makes transition only after
internal signals and makes transitions. Also in the reset phase
which starts after the primary outputs are settled to completion, the
same property holds due to the hysteresis property of 2NCL gates.

However, this 2NCL implementation is overly restrictive. Consider
again the 3NCL circuit in Figure 3(a). Signals and are each
acknowledged on two distinct paths: through gate and through
gate . Similarly, in Figure 4, the dual-rail inputs and are each
acknowledged through two input complete blocks and . If the
bottom AND gate in the 3NCL circuit is flagged as relaxed as shown
in Figure 3(b), the dual-rail block can be re-implemented using
an input incomplete block as shown in Figure 5. The resulting
dual-rail implementation will still be robust (i.e. gate-orphan-free).

C

C

C

C
C

C

C

C

Fig. 5. Relaxed 2NCL circuit equivalent to Fig. 3(b)

Note that dual-rail block is not input complete since the signal
may make transition before all input signals arrive. The block

both early evaluates in a set phase and early resets in a reset phase.
However, for 3NCL signals and , block ensures robustness and
the primary output can change after both input signals and
change. For a single primary input or a gate output signal, its input
completeness need to be ensured only once in an entire dual-rail
circuit.

Table I shows how 3NCL gates can be transformed into corre-
sponding 2NCL (i.e. dual-rail) blocks. The rows of the table includes
3NCL gates and their possible transformations. The columns indicate
two choices of transformations: traditional robust transformation is
shown in the middle column and our new relaxed transformation is
shown in the right column.

Choices in relaxation. Next, a larger example that illustrates
how there are different choices of which 3NCL gates to relax is
presented. There may exist many possible choices in picking which
gates to relax (or which gates to fully-expand), which will result in
different area and delay.

Figure 6 shows two 3NCL circuits with different choices of gates
to relax, where the relaxed gates are marked with bullets. In the
circuit on the left, one gate, , is relaxed. In the circuit on the right,
two gates, and , are relaxed. This difference stems from which
gates are used to ensure robustness to the input signals and . In the
left circuit, gates and are fully-expanded and ensure robustness
to signals and . In the right circuit, the gate is fully-expanded
and covers signals and . Therefore, the overall cost in the final
dual-rail implementation depends on which gates are chosen to relax
(or to fully-expand).

3Based on the context, a 3NCL signal name may refer to its dual-rail
encoded signals.

(a) relaxing one gate (b) relaxing two gates

Fig. 6. Choices in relaxation

IV. THEOREMS ON INPUT COMPLETENESS

A theorem and a corollary are now presented, which formalize
the precise conditions for “legal relaxation”. The theorem describes
a necessary and sufficient condition for a gate-orphan-freedom of a
netlist in terms of observability of each internal signal in the netlist.
For this purpose, a few definitions are presented first.

Definition 3 A 3NCL circuit is gate-orphan-free when, for any
primary input and gate output signals, there exists at least one
acknowledgment path to a primary output over all possible input
transitions.

Definition 4 Given a 3NCL gate, a 3NCL-to-2NCL transformation
of the gate is legal when (a) it has equivalent functionality to the
3NCL gate,4 and (b) it is locally gate-orphan-free for all possible
input transitions in the set and reset phases.

Theorem 1 (Input Completeness Relaxation) Let a 3NCL circuit
be given. Then a 2NCL implementation of is gate-orphan-free

if and only if (a) is free of gate orphans and (b) the 3NCL-to-2NCL
transformation of each 3NCL gate is legal.

Proof: First, the IF part is proved. Since the given 3NCL circuit
is gate-orphan-free, for each gate output signal, there exists at least
one acknowledgment path to a primary output. Then, after 2NCL
instantiation of 3NCL gates in , each 2NCL block’s output signal
for a 3NCL gate also has an acknowledgment path to a primary
output. Since each 2NCL block is a legal 2NCL instantiation of 3NCL
gates in , for each input to a block, each internal gate of a 2NCL
block is acknowledged by the block output. Therefore, combining the
above two arguments, it can be concluded that each gate in 2NCL
circuit is acknowledged and therefore is gate-orphan-free.

The proof of the ONLY IF part is by contradiction and is trivial.
Suppose that either (a) or (b) does not hold. If (a) does not hold,
there exists a signal (gate output or primary input) that is not
acknowledged in the 3NCL netlist. Then, the dual-rail outputs of

in the corresponding 2NCL block will also not be acknowledged.
Alternatively, if (b) does not hold for , the 2NCL block is either
functionality-inequivalent to the 3NCL gate or contains gate orphans
by definition of legality. In each case, the 2NCL circuit has gate
orphans.

4More precisely, the functionality is equivalent after considering dual-rail
encoding of the original gate.

3NCL gate full expansion (no relaxation) relaxation

C

C

C

C

C

C

C

C

C

C

C

C

TABLE I. 3NCL-TO-2NCL TRANSFORMATION TABLE

6C-4

625

From the above theorem, a key corollary can be derived which
states a local condition which needs to be satisfied for each gate
output signal to make a dual-rail implementation free of gate orphans.

Corollary 1 (Local Relaxation) Let a 3NCL circuit be given.
Then a 2NCL implementation of is gate-orphan-free if and only
if, (a) at least one of the fanout gates of the signal ensures input
completeness (i.e. is fully-expanded) for each primary input and gate
output signal of , and (b) 3NCL-to-2NCL transformation of each
3NCL gate is legal.

Proof: The Corollary follows directly from Theorem 1, since the
condition (a) of the Theorem holds if and only if at least one fanout
gate of each signal in ensures input completeness (condition (a)
of the Corollary).

V. RELAXATION ALGORITHM

A. An input completeness relaxation algorithm
A relaxation algorithm is now proposed, which finds a dual-rail

implementation of the given 3NCL circuit without fully expanding all
3NCL gates. The algorithm can target three different cost functions.
First, the algorithm minimizes the number of fully-expanded gates
exactly and hence maximizes the number of relaxed 3NCL gates.
The second cost function is to minimize the area the relaxed 2NCL
(i.e. dual-rail) implementation. Finally, the algorithm heuristically
targets the single worst-case critical path delay of the dual-rail
implementation. In each case, the algorithm first flags which 3NCL
gates must be mapped robustly and which can be mapped in a relaxed
manner. Finally, the corresponding mapping is performed, from the
initial 3NCL circuit to obtain the optimized 2NCL circuit.

Sketch of the relaxation algorithm. The proposed algorithm
uses the unate covering framework and can target different cost
functions through different weight assignments. Base on the corollary
presented in the previous section, a uniform framework for solving
the relaxation problem is presented.

The Local Relaxation Corollary suggests that the relaxation prob-
lem is essentially a unate covering problem, where each gate output
and primary input signal must be “covered” (i.e. robustly acknowl-
edged) by at least one of its fanout gates. That is, for each signal
in the 3NCL netlist, at least one of its fanout gates must be fully-
expanded, i.e. its 2NCL expansion cannot be relaxed.

More formally, the relaxation problem is reduced to the unate
covering problem using the following transformation. A set of
covered elements is defined to be the set of all 3NCL primary input
and gate output signals. Also, a 3NCL gate covers a signal

in exactly when the given signal is an input to . Therefore,
the collection of covering objects is formed as:

and covers , where a gate is defined to
cover exactly when the gate output of is fed as an input to gate

.
Figure 7 shows a general outline of the relaxation algorithm. The

algorithm takes an initial 3NCL netlist as an input
and returns a subset of 3NCL gates which need to be
fully-expanded to guarantee gate-orphan-freedom. The unate covering
problem solver, UCPSolver, gives a solution that minimizes the
weighted sum of gates in . In the algorithm, by changing the weight
assignment scheme in Line 7, different cost functions can be targeted.
After the set of gates is produced by Algorithm Relax, the final
relaxed dual-rail implementation can be obtained by expanding each
3NCL gate into a dual-rail network.

Relax
1 // create a UCP instance; initially,
2 for (each)
3 do the set of signals fed into
4
5 // assign weights to gates
6 for (each)
7 do weight
8 // solve UCP instance to get a solution
9 UCPSolver

Fig. 7. Outline of the relaxation algorithm

B. Maximization of number of relaxed gates
First, the relaxation algorithm is configured to maximize the

number of relaxed gates. Though this cost function does not directly
address optimal area or delay after dual-rail expansion, it is a good
first-cut cost measure since, in most cases, more relaxed gates means
less area and shorter delay. For this, the weight function is defined
as the constant value for each 3NCL gate . Since every 3NCL
gate has the same weight, the unate covering problem is aimed at
minimizing the number of picked (i.e. fully-expanded) 3NCL gates,
or maximizing the number of unpicked (i.e. relaxed) gates.

C. Area optimization
Even if area and delay of dual-rail circuits can be optimized by

maximizing the number of relaxed gates, it is not necessarily area-
optimal since this cost function regards the expansion costs of each
3NCL gate to be identical. For example, while the area required for
expansion of a 2-input OR 3NCL gate and the area for expansion
of a 3-input 3NCL OR gate can differ significantly, the previous
cost function cannot distinguish this difference. More realistically,
a relaxation that targets minimization of the area after dual-rail
expansion is more desirable. If the area of each 2NCL gate used
in dual-rail implementations is known in advance, a weight function
can be devised so that the area of the resulting relaxed dual-rail
implementation is minimized.

To solve this optimization problem, a weight function can be
defined for each 3NCL gate such that the weight of a 3NCL gate
conveys information on area that the gate will require after it is fully
expanded. The weight function used in the algorithm is: weight
full area relaxed area , where full area is the area of the
dual-rail implementation of the 3NCL gate without relaxation and
relaxed area is the area of the relaxed dual-rail implementation.
Intuitively, the weight of a gate is the area penalty that should be
paid by making its dual-rail implementation robust. The relaxation
algorithm with the given weight function is provably optimum in
terms of area after dual-rail expansion.

D. Critical path delay optimization
The relaxation algorithm can also target delay optimization using a

simple heuristic. This scheme focuses on the single worst-case critical
path delay, and weights are assigned such that relaxation of gates is
biased towards the gates in this critical path. While this approach is
somewhat limited, since exactly one path is targeted, generalizations
to handle more global delay reduction on multiple critical paths are
expected to be straightforward.

For this cost function, the algorithm starts by finding the critical
path in the fully-expanded (i.e. non-relaxed) dual-rail implementation
of 3NCL netlist. When the critical path of the dual-rail netlist is
found, the gates of original 3NCL netlist which corresponds to the
critical path nodes of dual-rail netlist are back-annotated. Higher
weights are assigned to critical 3NCL gates in the hope that non-
critical gates will be more likely to be picked for full expansion.

VI. EXPERIMENTAL RESULTS

The proposed relaxation algorithm was implemented and exper-
iments were performed to evaluate its effectiveness. A CAD tool
was written in C++ and experiments were conducted on a 800Mhz
Celeron machine with 256MB RAM running Redhat Linux 7.3. The
tool takes a logic network in the structural VHDL format and a
technology library in the Synopsys Liberty format and outputs the
optimized dual-rail circuit in the VHDL format. Unate covering
problems were solved using the MINCOV program in ESPRESSO
[14]. For computation of weight functions in the relaxation algorithm,
an NCL cell library was used which is fully characterized for area
and delay.

The CAD tool was applied to ten MCNC benchmark circuits,
which were randomly chosen from a set of larger circuits. The circuits
were preprocessed as follows. First, multi-level optimization was
performed using script rugged and then the resulting circuit
was mapped using map into a Boolean netlist in SIS, which is
then considered as a 3NCL netlist. During mapping, the library only
contained gates with up to three inputs, since it is prohibitively
expensive to dual-rail expand gates with more than 3 inputs.

6C-4

626

original circuit DIMS expansion minimize # full blocks minimize area optimize delay

name #i/#o/#g # full area delay # full area delay # full area delay # full area delay
C1908 33/25/462 343 94352 30.0 180 59822 26.6 181 58618 27.9 184 60196 25.9
C3540 50/22/1147 911 281918 46.0 476 190470 39.3 477 189612 39.7 477 190996 38.7
C5315 178/123/1659 1259 335801 32.7 727 237273 29.8 730 235391 29.9 728 237453 28.5
C6288 32/32/3201 2385 567010 133.6 1246 361644 107.4 1247 361478 107.4 1246 361990 106.1
C7552 207/108/2155 1677 427101 44.8 1042 306573 43.4 1044 305203 43.4 1045 307113 43.4

dalu 75/16/756 633 201912 20.0 346 147830 14.6 359 144288 15.6 346 147830 14.8
des 256/245/2762 2329 712145 23.2 1157 466635 19.9 1159 462165 19.5 1162 469175 19.5
k2 45/43/684 597 222326 18.9 289 139898 14.4 300 131498 15.7 294 141490 14.0

t481 16/1/510 476 154466 20.8 211 101922 17.5 213 99514 18.1 211 101576 17.5
vda 17/39/383 309 121947 17.7 137 74033 15.0 143 69231 15.7 140 75957 15.7

average percentage (51.8%) (66.6%) (84.0%) (52.5%) (65.1%) (86.9%) (52.7%) (65.8%) (83.9%)

TABLE II. EXPERIMENTAL RESULTS: COMPARISON WITH DIMS EXPANSION

original circuit NCL expansion minimize # full blocks minimize area optimize delay

name #i/#o/#g # full area delay # full area delay # full area delay # full area delay
C1908 33/25/462 343 55490 33.3 180 39756 29.2 181 37917 30.8 182 39389 28.3
C3540 50/22/1147 911 189970 51.0 476 148941 43.4 477 147575 43.8 480 148680 42.8
C5315 178/123/1659 1259 189370 36.4 727 157390 32.9 730 154238 33.1 727 156917 31.0
C6288 32/32/3201 2385 264750 151.1 1246 203910 119.5 1247 203490 119.5 1247 203963 123.0
C7552 207/108/2155 1677 224790 48.8 1042 182621 47.2 1044 180362 47.2 1042 182621 46.9

dalu 75/16/756 633 140190 21.7 346 121668 15.3 361 113949 16.3 348 121774 15.5
des 256/245/2762 2329 364812 24.8 1157 364812 21.4 1161 358692 20.9 1160 366472 20.9
k2 45/43/684 597 175590 20.2 289 122372 14.9 300 108765 16.4 301 119697 14.8

t481 16/1/510 476 109000 22.1 211 88333 17.8 213 84655 18.9 216 86706 17.7
vda 17/39/383 309 100230 19.0 137 67937 15.8 143 60214 16.6 138 68463 15.7

average percentage (51.8%) (77.4%) (83.8%) (52.5%) (74.1%) (85.9%) (52.4%) (77.0%) (82.3%)

TABLE III. EXPERIMENTAL RESULTS: COMPARISON WITH NCL EXPANSION

Two experiments were performed. In the first experiment (Ta-
ble II), the relaxed dual-rail circuits were compared with DIMS-
style dual-rail circuits. In the second experiment (Table III), the
relaxed circuits were compared with NCL-style dual-rail circuits
which already use a simple Theseus-specific optimization (called ‘cell
merger’ [7]). In Table II and Table III, the first two columns show the
name of the MCNC circuit and the number of inputs, outputs, and
gates. The tables include four column categories for straightforward
dual-rail circuits, relaxed circuits with the minimum number of fully-
expanded blocks, area-optimized relaxed circuits, and relaxed circuits
with optimized critical path delay. For each of the categories, three
sub-columns are included: the number of fully-expanded blocks, the
area after dual-rail expansion, and the critical path delay after dual-
rail expansion. For Table III, NCL expansion includes NCL-specific
optimization where, for a given 3NCL gate, logic for each rail is
implemented using a single complex cell rather than using multiple
cells, as discussed in Section II.

Table II shows experimental results which compares the relaxed
circuits with DIMS-style asynchronous circuits. The algorithm could
relax 49.2% (for “minimize # full blocks”) of the 3NCL gates on
average. Also, on average, they achieved 34.9% improvement (for
“minimize area”) in area and 16.1% improvement (for “optimize
delay”) in critical path delay.

Table III shows experimental results which compare the relaxed
circuits with NCL-style asynchronous circuits. The proposed algo-
rithm could relax 49.2% (for “minimize # full blocks”) of the 3NCL
gates and it achieved 25.9% improvement (for “minimize area”) in
area with 17.7% improvement (for “optimize delay”) in critical path
delay, on average. The area results were not as good as the results
obtained from the DIMS comparison. The reason is that the benefit of
relaxation was overshadowed by the NCL-specific area optimization
technique which is discussed in Section II-B.

The average runtime of the algorithm was only 6.13 seconds per
each benchmark. The algorithm ran in a few seconds for most of the
circuits, with the worst case of 61.54 seconds (des). Though the unate
covering problem is NP-hard, due to the local nature of relaxation,
the covering problem instances consisted of many small independent
sub-problems and, in practice, were solved efficiently.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, an optimization algorithm for a class of highly-
robust asynchronous circuits is presented. Though the circuits are
robust to timing variations, they suffer from high area and latency
overhead inherent in their style. The proposed algorithm optimizes
area and delay of these circuits by relaxing their overly-restrictive
style without sacrificing the overall robustness property of the circuits.

The proposed algorithm was implemented and experiments were
performed on MCNC circuits. On average, 49.2% of the gates
could be implemented in a relaxed manner and, as a result, 34.9%
area improvement and 16.1% critical path delay improvement were
achieved.

As future work, we plan to extend the approach to relax the set
and reset phases independently. Also, we plan to develop a more
sophisticated scheme for critical path delay improvement, to target
reduction of multiple critical paths with appropriate weights. Finally,
the proposed techniques, with modification, should be applicable to
other classes of less robust asynchronous circuits.

REFERENCES
[1] C. F. Brej. Early Output Logic and Anti-Tokens. PhD thesis, University of

Manchester, 2005.
[2] S. M. Burns. General conditions for the decomposition of state holding elements.

In Proc. ASYNC’96, 1996.
[3] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE Micro,

23(4), 2003.
[4] I. David, R. Ginosar, and M. Yoeli. An efficient implementation of boolean

functions as self-timed circuits. IEEE Trans. Computers, 41(1), 1992.
[5] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw Hill,

1994.
[6] K. M. Fant. Logically Determined Design. John Wiley & Sons, 2005.
[7] M. Hagedorn. private communication, 2005.
[8] C. Jeong and S. M. Nowick. Optimal technology mapping and cell merger for

asynchronous threshold circuits. In Proc. ASYNC’06, 2006.
[9] N. Karaki. Asynchronous design: An enabler for flexible microelectronics.

ASYNC’06 Invited Talk, 2006.
[10] A. Kondratyev and K. Lwin. Design of asynchronous circuits using synchronous

cad tools. IEEE Design & Test of Computers, 19(4), 2002.
[11] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev. Asynchronous

design using commercial HDL synthesis tools. In Proc. ASYNC’00, 2000.
[12] A. Martin. Compiling communicating processes into delay-insensitive VLSI

circuits. Distributed Computing, 1(4), 1986.
[13] J. McCardle and D. Chester. Measuring an asynchronous processor’s power and

noise. In Proc. Synopsys User Group Conference, 2001.
[14] R. L. Rudell. Logic Synthesis for VLSI Design. PhD thesis, UCB/ERL M89/49.

University of California at Berkeley, 1989.
[15] N. P. Singh. A design methodology for self-timed systems. Technical Report

MIT/LCS/TR-258, Laboratory for Computer Science, MIT, 1981.
[16] S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb. Optimization

of NULL convention self-timed circuits. Integration, the VLSI Journal, 37, 2004.
[17] G. E. Sobelman and K. Fant. CMOS circuit design of threshold gate with

hysteresis. In Proc. ISCAS’98, 1998.
[18] J. Spars , J. Staunstrup, and M. Dantzer-S renson. Design of delay insensitive

circuits using multi-ring structures. In Proc. EuroDAC’92, 1992.
[19] Theseus Logic. Introduction to NCL Logic: Training material, 2002.
[20] C. H. van Berkel, M. B. Josephs, and S. M. Nowick. Scanning the technology:

Applications of asynchronous circuits. Proc. IEEE, 87(2), 1999.
[21] K. van Berkel, F. Huberts, and A. M. G. Peeters. Stretching quasi delay

insensitivity by means of extended isochronic forks. In Proc. ASYNC’95, 1995.
[22] K. van Berkel and M. Rem. VLSI programming of asynchronous circuits for low

power. In Asynchronous Digital Circuit Design, Springer Verlag, 1995.
[23] Y. Zhou, D. Sokolov, and A. Yakovlev. Cost-aware synthesis of asynchronous

circuits based on partial acknowledgement. In Proc. ICCAD’06, 2006.

6C-4

627

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

