
Improving XOR-Dominated Circuits by
Exploiting Dependencies between Operands

Ajay K. Verma
AjayKumar.Verma@epfl.ch

Paolo Ienne
Paolo.Ienne@epfl.ch

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland

ABSTRACT
Logic synthesis has made impressive progress in the last decade
and has pervaded digital design replacing almost universally man-
ual techniques. A remarkable exception is computer arithmetic and
datapath design, where designers still rely mostly on well studied
architectures; on datapaths, in most cases, logic synthesis plays at
most a minor role in the optimisation of netlists. A case in point is
multiple additions performed in carry-save form, such as those fun-
damentally constituting parallel multipliers: column compressors
are usually built exploiting the regularity of the circuit and, due to
the very large number of XOR operations, are hardly optimised fur-
ther by logic synthesisers. In fact, due to the shortcomings of alge-
braic factoring, XOR operations are usually left untouched by logic
synthesisers. In this paper we show a general technique to opti-
mise XOR dominated circuits and we demonstrate its effectiveness
on multiplier-like circuits. We show that it optimises significantly
the best parallel multipliers by exploiting complex dependencies
between the addenda which escape known manual optimisations.
Netlists corresponding to top arithmetic architectures can either be
synthesised directly or preprocessed through our technique before
standard logic synthesis: our preprocessing stage makes it possi-
ble to achieve some 20% speed improvement. To our best knowl-
edge, optimisations of the type we show for multiplier-like struc-
tures have never been reported—neither manually derived, in com-
puter arithmetic literature, nor automatically derived, in design au-
tomation literature.

1. MOTIVATION
The efficient addition of multiple addenda in hardware is an ex-

tremely important topic in datapath design: not only is it a common
problem in application specific datapaths for signal processing, but
it is also one of the key design issues in parallel multipliers. The
general approach in multipliers has been known for decades [18]
and consists in using a carry-save representation for the multiple
additions and then in employing a fast final adder to produce the
result. A compressor tree is used for the multiple additions which
takes n input integers x1, x2, . . . , xn and outputs two words C
and S, such that the sum of the two words is same as the sum of
input integers. The advantage of using this is that it uses carry-save
adders in its implementation, which reduce 3 integers to 2 integers
in the time taken by a full adder.

Some recent work has addressed the problem of inferring the use
of the carry-save representation and compressors beyond multipli-
ers [15, 6, 16, 17] while a large body of literature has been written
on the best ways to implement column compressors for multipli-
ers (e.g., [13, 14]). While we will discuss in more detail some of

a3 a2 a1 a0

b3 b2 b1 b0

a0 b0a0 b1a0 b2a0 b3

a1 b0a1 b1a1 b2a1 b3

a2 b0a2 b1a2 b2a2 b3

a3 b0a3 b1a3 b2a3 b3

a1 b0)(a0 b1)(a1 b1

p0p1p2p3p4p5p6p7

a1 b0)(a0 b1)(() a0 b2() a1 b1() a2 b0()() a1 b0)(a0 b1)(()()a2 b2

(a) Simple dependencies among partial product bits.

a3 a2 a1 a0

b3 b2 b1 b0

a0 b0a0 b1a0 b2a0 b3

a1 b0a1 b1a1 b2a1 b3

a2 b0a2 b1a2 b2a2 b3

a3 b0a3 b1a3 b2a3 b3

p0p1p2p3p4p5p6p7

a1 b0)(a0 b1)(() a0 b2() a1 b1() a2 b0()() a1 b2() a2 b1()()

a1 b0)(a0 b1)(() a0 b2() a1 b1() a2 b0()() a1 b2() a2 b1()()

a1 b0)(a0 b1)(() a0 b2() a1 b1() a2 b0()() a1 b2() a2 b1()()

(b) Complex dependencies among partial product bits.

Figure 1: An illustration of various kind of dependencies
among the partial product bits of a multiplier.

these contributions in a later section, we notice that all approaches
to design good or optimal compressors assume that the inputs of the
compressor tree are independent of each other. However, often this
is not the case and failure to exploit that leads to inferior results.

Consider for instance the multiplication of two integers A and
B: the partial products are generated as the product of all individ-
ual bits of A and B and accumulated using a compressor tree. As
shown in Fig. 1(a) the partial product bits are naturally dependent
on each other. For example, if the bits a0b1 and a1b0 are both 1,
then the bit a1b1 must also be 1. Using this information, the expres-
sion for the 3rd carry bit of the final adder can be simplified: The
expression for this carry bit is a0b1a1b0(a0b2⊕a1b1⊕a2b0). Since
XY = X(Y | X), where (Y | X) denotes the expression (Y
given X), the carry expression can be written as a0b1a1b0((a0b2⊕
a1b1 ⊕ a2b0) | a0b1a1b0). Using the implication above, the ex-

1-4244-0630-7/07/$20.00 ©2007 IEEE.

6C-1

601

pression can be reduced to a0b1a1b0

(
a2 ⊕ b2

)
. A much less evi-

dent example of dependencies among partial product bits is shown
in Fig. 1(b), where, exploiting the dependency among the bits, the
expression for the 4th sum bit can be simplified as shown in Fig. 7.

Arguably, exploiting such dependencies is not so much a prob-
lem of improving the design of the compressor trees but an issue
for the logic synthesiser which should implement them. In fact,
logic synthesisers are extremely good at exploiting the dependency
among the input bits of AND and OR gates; yet, they never exploit
any nontrivial dependency among the input bits of XOR gates. The
reason behind this is that most heuristics used for two-level and
multi-level optimisation assume that the input is given in the sum of
product form. Very few heuristics consider expressions containing
XORs (e.g., [1]); however, these heuristics are also very restrictive
in nature. One way to optimise XOR-dominated expressions would
be to express all XOR expressions in terms of AND and OR gates,
and then use normal heuristics. However, this approach both in-
creases the size of the input expression exponentially and the usual
heuristics produce much worse results on such expanded expres-
sions due to the limitations of algebraic factoring. For this reason,
logic synthesisers rewrite XOR gates in terms of ANDs and ORs
only when the operands of XOR gates are very small expressions.
Hence, usual synthesisers are unable to exploit nontrivial depen-
dencies among the input bits of XOR gates and, ultimately, do a
pretty lousy optimisation job on many arithmetic-relevant circuits
as shown in Section 7. Broadly speaking, this is the problem we
aim to fix.

In the next section, we introduce the central problem of selec-
tively rewriting XORs, whose solution is at the heart of our optimi-
sation goal. This makes it possible to give a more precise formu-
lation to the problem we tackle. In Section 3 we discuss previous
work in the area and outline relevant differences. Section 4 intro-
duces the estimator function which we use to estimate the delay and
area of the circuit corresponding to an expression. We then proceed
into the main material by explaining in Section 5 the basic strategy
to decide which XORs to rewrite. Finally, Section 6 summarises
our optimisation algorithm and Section 7 discusses some experi-
mental results using our optimisation technique. Section 8 contains
some concluding remarks on this work.

2. REWRITING EVERY XOR OR NOT?
Informally, we already indicated that one of the key shortcom-

ings of logic synthesis when dealing with XOR-dominated arith-
metic circuits is not managing to exploit the dependency between
operands of XOR gates. We mentioned that such a dependency
would be easily exploited by traditional synthesis heuristics if the
XORs were rewritten in terms of ANDs and ORs, but also observed
that rewriting XORs indiscriminately is a poor strategy. Hence, we
need to understand under what conditions rewriting XORs helps
logic synthesis. Two examples help us see clearer in this matter:

(1) P = a0b3a3b0 + a0b3a1b2 + a3b0a1b2,

Q = a2b1(a0b3 ⊕ a3b0 ⊕ a1b2), and

R = P ⊕ Q.

(2) P = a0a1 + a1a2 + a2a3 + a3a4,

Q = b0b1 + b1b2 + b2b3 + b3b4, and

R = P ⊕ Q.

The first is an intermediate expression in the implementation of
an 8 × 8 multiplier One can see that expression P corresponds

to the majority of the three bits a0b3, a3b0, a1b2, while Q is true
only when the parity of the three bits is odd (i.e., the expressions
are sufficiently correlated). If we use a logic synthesiser (such as
the Synopsys Design Compiler) to get the fastest implementation
of R, we get one which has a critical path delay of 0.37ns and a
standard-cell area of 138.2µm2 . However, if we expand the XOR
in (P⊕Q) in terms of AND and OR gates, the synthesiser produces
a circuit with a critical path delay of 0.26ns and a standard-cell area
of 146.9µm2 which is 30% faster at a small area cost.

Now consider the second example where P and Q do not share
any variables. Here the direct synthesis gives a circuit with a crit-
ical path delay of 0.22ns and a standard-cell area of 58.8µm2,
while, after expanding the final XOR in terms of AND and OR
gates, the logic synthesis results in a circuit with a critical path de-
lay of 0.27ns and a standard-cell area of 221.2µm2 . Not only does
the critical path now increase, but also the synthesiser is unable to
recover the area and the final result is almost four times larger.

The two examples show that sometimes rewriting XOR gates in
terms of AND and OR gates is useful and sometimes it is not. Our
goal is therefore to recognise the cases where expanding an XOR
is useful and separate them clearly from those where it is not. Our
problem is therefore the following:

PROBLEM 1. Given a circuit consisting of AND, OR, NOT, and
XOR gates, find the list of XOR gates which, if rewritten in terms
of AND and OR gates, result in a circuit with the smallest critical
path delay.

3. STATE OF THE ART
The most general approach to optimise XOR-dominated circuits

by exploiting inter operand dependencies is to implement optimisa-
tion heuristics better than those currently employed [5]. Not much
literature exists in this respect; a recent example [1] has already
been mentioned and consists a technique similar to espresso [3] but
which applies to 2-SPP expressions. These are expressions where
both inputs of an XOR must be literals, which is clearly not the
case in many circuits of interest, including compressors. Some
older work [11] has attempted to exploit Binary Decision Diagrams
(BDD), but BDDs for multiplication have been shown to have an
exponential number of nodes [4] and make such techniques hardly
applicable. This is true also of more recent attempts along similar
lines [19, 8].

Focusing on column compressors, a considerable body of work
has been accumulated while we tried to improve their speed [10].
Broadly, we can classify these works into two categories: The first
consists of works where the counter size inside the compressor tree
is increased (a full-adder is a 3-2 counter, that is, a device which
counts the ones on 3 inputs and produces a 2-bit binary count). For
some time the computer arithmetic community was animated by
the problem of identifying the perfect counter (e.g., see [13]). The
second consists of work where the counter size remains the same
but the scheduling of the counters is changed. The three-greedy
approach [14, 9] falls in this category. It has been proved experi-
mentally that the second approach is way more important than the
first one for large input counts. As mentioned previously, the major
problem of such work is in ignoring completely what we are most
interested in: the correlation across input bits of the compressors.

4. DELAY AND AREA MODEL
Before proceeding, let us introduce the delay and area model

which we use to estimate the critical path delay and hardware area
of the circuit corresponding to a Boolean expression.

6C-1

602

Given a Boolean expression, first we replace each of the XOR
subexpressions by a new variable and the new expression can be
realized in sum of product form. Next we use espresso-like [3]
heuristics to simplify the expression and finally factorize it using a
heuristic due to Brayton [2]. In the heuristic, the factorisation prob-
lem is formulated as a Rectangle-covering problem and a greedy
algorithm known as Ping-pong is used to solve the same. Al-
though slower than other factoring techniques such as Quick Fac-
toring (QFACTOR) [12], it gives much better results. Finally, we
replace the new variables by their original XOR expressions and
map the resulting expression using NOT gates and two-input AND,
OR, XOR gates. To estimate the critical path delay and hardware
area, any appropriate values of delay and area can be used for each
gate.

5. SELECTIVE EXPANSION OF XORS
As we have seen in Section 2, while expanding XORs some-

times makes the circuit worse in terms of both critical path delay
and hardware area, the penalty on hardware area is more severe.
The reason for this is that expansion of XOR gate introduces many
NOT gates and algebraic factoring does not recognise the comple-
ment of an expression as it ignores many Boolean properties. As
an example consider the following expression:

x = abc + abc + abc + abc,

factorize(x) → x = a(bc + bc) + a(bc + bc),

optimise(x) → y = bc + bc, x = ay + ay.

Since algebraic factorisation fails to recognise that the expressions
bc+bc and bc+bc are complements of each other, the new variable
y is never introduced as shown above. This is the main reason
why expanding XOR increases area severely. As far as critical path
delay is concerned, only if the used heuristic is good enough, it
might be restored to the original value.

Our problem is to decide whether expanding an XOR gate is use-
ful. As we have seen in the previous section, if the two operands of
an XOR gate are significantly correlated, then expanding the XOR
gate improves the circuit delay significantly. In the next section we
will see that sometimes it is beneficial to expand an XOR gate even
with non correlated operands due to extreme correlation between
the rest of the expression and the operands of the XOR gate. We
call the first kind of correlation local correlation and the second
global correlation. In the next two subsections we discuss how to
measure the local and global correlation corresponding to an XOR
gate.

5.1 Local Correlation
To measure the local correlation between the operands of an

XOR gate we consider the following expansion of XOR:

A ⊕ B = (AB)(A + B).

This expansion of XOR gate is interesting as it reveals when ex-
panding an XOR gate can be useful. For example, if A and B are
such that AB = 0, then A ⊕ B is equivalent to A + B. Similarly
if A and B are such that A + B = 1, then A ⊕ B is equivalent
to AB. More generally, we can say that if A and B are such that
either AB or A + B can be computed very quickly compared to A
and B, then expanding A ⊕ B in terms of AND and OR gates is
useful.

Let us see the results of this test on the examples of the previous
section. In the first example PQ = a0b0a1b1a2b2a3b3, which can
be computed very quickly compared to P and hence expanding
P ⊕ Q in terms of AND and OR gates should be useful, which

isExpansionUseful (Operand A, Operand B) {
X = gcd(A, B);
P = A / X;
Q = B / X;
(DP , ARP) = estimateDelayArea(P);
(DQ, ARQ) = estimateDelayArea(Q);
(DPQ, ARP Q) = estimateDelayArea(PQ);
(DP+Q, ARP+Q) = estimateDelayArea(P + Q);

ε = 1 - (min(DP Q, DP+Q) / max(DP , DQ));
δ = ((ARPQ + ARP+Q) / (ARP + ARQ)) - 1;
if (δ ≤ δthreshold and ε ≤ εthreshold and (δ / ε) ≤ κ)

return true;
return false;

}

Figure 2: Algorithm to decide when an XOR gate should be
expanded due to local correlation.

is actually true, as we have seen before. On the other hand, in the
second example both of the expressions PQ and P +Q have longer
critical path compared to P and Q. Hence, according to our test,
we should not expand P ⊕ Q in terms of AND and XOR gates.
This is reflected by the penalty of expanding XOR, shown in the
previous section.

The algorithm to decide whether expanding an XOR gate is ben-
eficial or not is shown in Fig. 2. Suppose the two operands of the
XOR gate are A and B: First we factor both the expressions and
take the common factor X out, and then the correlation between the
two quotients P and Q is checked. We estimate the delay and area
of the expressions P , Q, PQ, and P + Q using the estimator men-
tioned in section 4. Based on these values we compute ε and δ; the
first of the two values denotes the reduction in critical path delay of
PQ or P + Q (whichever is smaller) with respect to critical path
delay of P or Q (whichever is larger). The second value represents
the area overhead of the expressions PQ and P + Q with respect
to P and Q. Based on these values an expansion is allowed only if
the two operands have a significant correlation (ε ≥ εthreshold), the
area overhead of expansion is not huge (δ ≤ δthreshold), and the ratio
of the two values δ and ε is less than some constant κ (i.e., area
penalty per unit gain in critical path delay is small). In Section 7,
we show the effects of the constants εthreshold, δthreshold, and κ on the
performance of the resulting circuit.

5.2 Global Correlation
As we have discussed earlier, if the input operands of an XOR

gate are correlated enough, then expanding that XOR is advanta-
geous for performance improvement. However, we will see in the
next example that the correlation is not a necessary condition to
gain by expanding XORs. Consider the two different implemen-
tations of a section of a 16-bit adder shown in Fig. 3: It is easy
to verify that the two circuit descriptions correspond to equivalent
modules of a 16-bit adder. However Design Compiler is unable
to recognise this isomorphism and produces significantly different
circuits.

The basic difference between the two representations is the def-
inition of pi and ci. These two are expressed using XOR gates
in the first representation while, in the second, OR gates are used.
Now let us check whether our approach mentioned in the earlier
section is able to transform the first representation into a new one
equivalent to the second representation in terms of performance:
First consider the expression for ci. In the first representation ci is
written as gi ⊕ pici−1. The two operands of the XOR gate are gi

and pici−1. Since gi and pi correspond to aibi and ai ⊕ bi, they
can never be true simultaneously, i.e., gipici−1 = 0. According to
the approach of previous section, this implies a strong correlation

6C-1

603

p = a XOR bii

c = g XORi
 (p AND c)

i

Adder Equations

g = a AND bii

z = p XOR ci-1i

i

i

i

i

zi

XOR AND

XOR AND

XOR

ai bi

ci

ci-1

i-1

Delay = 0.60 ns
Hardware Area = 2526.3 sq. micron

zi

OR AND

XOR AND

OR

ai bi

ci

ci-1

 (p AND c)

p = a OR bii

c = g ORi i

Adder Equations

g = a AND bii

z = p XOR ci-1i

i

i

i

i

i-1

Delay = 0.56 ns
Hardware Area = 1866.2 sq. micron

Figure 3: Implementation of a section of a 16-bit ripple carry adder without and with XOR gates.

betwen the operands. Hence we will expand the XOR gate in terms
of AND and OR gates resulting in ci = gi + pici−1, which is the
same as the definition of ci in the second representation:

ci = gi ⊕ pici−1,

ci = (gipici−1)(gi + pici−1),

ci = gi + pici−1 (because gipici−1 = 0).

Now let us consider the definition of pi in the first example, i.e.,
ai ⊕ bi. Since the inputs of the XOR gate are not correlated at
all, according to our approach we should not expand this XOR.
However, it can be noted that if we expand the XOR gate of pi using
AND and OR gates, the corresponding definition of ci will look
like aibi +aibi(ai + bi)ci−1. Any logic synthesiser will be able to
understand that this expression is the same as aibi +(ai + bi)ci−1,
which is exactly the definition of ci in the second representation:

ci = aibi + (ai ⊕ bi)ci−1,

ci = aibi + (aibi)(ai + bi)ci−1,

ci = aibi + (ai + bi)ci−1.

This example shows that sometimes expanding an XOR gate is use-
ful because there is a strong correlation between the operands of
the XOR gate and the rest of the expression. This is what we have
called global correlation. In order to measure this kind of correla-
tion, we consider the following expansions of an XOR gate inside
expression:

(A ⊕ B) + C = (AB → C)(A + B + C),

(A ⊕ B) + C = (A B → C)(AB + C).

Using these rules of rewriting XOR, one can transform the sec-
ond representation of adder into the first one as shown below:

ci = aibi + (ai ⊕ bi)ci−1,

ci = (aibici−1 → aibi)(aibi + (ai + bi)ci−1),

ci = aibi + (ai + bi)ci−1.

Note that the expression (X → Y) is the same as (X + Y).
This expansion is advantageous when one of the two expressions
(AB → C) and (AB → C) is almost a tautology (i.e., is true for
all but a very sparse set of assignments of Boolean variables). This
is because in those cases (AB → C) or (AB → C) can be com-
puted very quickly and the critical path delay of the whole expres-
sions will be almost same as that of the expressions (A+B+C) or
(AB + C). Using this kind of expansion in the above case imme-
diately transforms the second representation into the original ripple
carry adder as shown above.

A similar illustration of the application of global correlation can
be seen in a more complex circuit known as comparator function.
A comparator takes two integers A and B as inputs, and outputs 1
if A > B and 0 otherwise. One way to implement the comparator
function is to compare the most significant bits of two integers and
if they are different then output 1 or 0 depending on which bit is 1.
However if the two bits are equal then one should compare the sec-
ond most significant bit and so on. In other words the comparator
function c(A,B) can be written like this:

c(A,B) = (an ⊕ bn)an + (an ⊕ bn)c(A′,B′),

c(A,B) = anbn + (an ⊕ bn)an−1bn−1 + · · · ,

c(A,B) = anbn + (an ⊕ bn)an−1bn−1 + · · · .

A more efficient way to implement comparator function is to
subtract B from A and output the sign bit (i.e., the most signif-
icant bit) of the result. In other words, the comparator function
corresponds to the carry output of A − B (the subtraction being
A + NOT (B) + 1). Since the expression for the carry output can
be written using propagate (p) and generate (g) functions, the ex-
pression for comparator will look like this:

c(A,B) = gn + pngn−1 + · · · + pnpn−1 · · · p1,

where

(gn, pn) = (anbn, an + bn).

Therefore

c(A,B) = anbn + (an + bn)an−1bn−1 + · · · .

Once again, the difference between the two implementation is that
the first implementation uses XORs, while the second one uses
ORs. It is easy to see that using global correlation the first im-
plementation can be converted into the second one.

c(A,B) = anbn + (an ⊕ bn)an−1bn−1 + · · · ,

c(A,B) = (anbnan−1bn−1 → anbn)

(anbn + (anbn)an−1bn−1) + · · · ,

c(A,B) = anbn + (an + bn)an−1bn−1 + · · · .

In order to ensure that the resulting circuit does not have too
much area overhead, we use the parameters εthreshold, δthreshold, and
κ here also. In other words, an expansion is allowed only if it
improves the delay at least by εthreshold, does not increase area more
than δthreshold, and the ratio of area overhead and delay gain is less
than κ.

6C-1

604

getScheduling (List L, function f()) {
if (size(L) = 1) {

return top(L);
}
(x1, x2) = findMinPair(L, f);
// find x1, x2 ∈ L such that
// f(x1, x2) is minimum.
z = x1 ⊕ x2;
L = (L ∪ {z}) - {x1, x2};
return getScheduling(L);

}

Figure 4: A greedy heuristic to compute the XOR of n expres-
sions where the latency of an XOR gate depends on its inputs.

5.3 Merging Local Correlation and Schedul-
ing Algorithm

It is easy to note that the order in which XOR gates are expanded
is also important and affects the final result. This is because the
reduction system corresponding to expanding XORs is not persis-
tent and the expansion of an XOR gate might make the expansion
of another one disdvantageous. In some cases even locally useful
expansions may worsen the overall performance of the circuit. As
an example consider the Boolean expression (A ⊕ B ⊕ C), where
the input arrival times of A, B and C are 1, 1, and 2. Assume that
the latency of an XOR gate is 0.13 ns and among all XOR gates
only (B ⊕ C) is beneficial to expand and results in a reduction of
0.08 ns. In other words the direct implementation of (B ⊕ C) will
have a delay of 2.13 ns; however, after expanding the XOR the cor-
responding expression will have a delay of 2.05 ns. Now consider
two different ways of computing (A ⊕ B ⊕ C):

(A ⊕ B) ⊕ C

delay = 0.13 + max(0.13 + max(1, 1), 2) = 2.13,

A ⊕ (B ⊕ C)

delay = 0.13 + max(1,2.05) = 2.18.

Note that the second implementation, where XOR gate in (B ⊕
C) is expanded, has a longer critical path compared to the first
implementation where no XOR gate was expanded. This is because
the second circuit is more lopsided than the first one. This indicates
that we also need to consider the input arrival times of the operands
of an XOR while deciding whether its expansion is useful. In other
words, the problem is to find a scheduling and then expanding those
XORs which have correlated inputs, the resulting expression has
the least critical path delay. More formally we can formulate the
problem as follows.

PROBLEM 2. Given a list of n expressions X1, X2, · · · , Xn,
and a function f(.) which takes two expressions and returns the
time when their XOR can be computed, find an optimal scheduling
to compute the XORs of the n expressions.

Note that if no expansion of XOR gates is allowed then the func-
tion f(.) will be a trivial function and can be written like f(x, y) =
DXOR +max(tx, ty), where tx, ty are the arrival times of expres-
sions x and y. In this case the problem can be solved optimally
using a two-greedy strategy: The algorithm takes a list of expres-
sions and chooses the two expressions from the list which have the
least arrival time; it then removes them from the list and inserts a
new variable corresponding to their XOR. This process is repeated
till the size of the list is reduced to one.

However, when XOR-expansion is allowed, the function f(.) de-
notes the time by which XOR of two expressions can be computed

(either by using an XOR gate or by rewriting the XOR using AND
and OR gates—whichever is better in terms of delay). This means
that the behaviour of f(.) is largely unknown. The only restriction
is that f(x, y) ≤ DXOR+max(tx, ty). In order to solve the prob-
lem with general f(.), we use a slight variation of the two-greedy
strategy as shown in Fig. 4. The only difference is that in each it-
eration, instead of choosing the two variables with shortest arrival
times, we choose the pair whose XOR can be computed earliest
among all pairs.

Although this heuristic will not always produce optimal results,
practically it improves the performance of a circuit significantly.
Also, it can be proved that this heuristic will never worsen a circuit,
i.e., the circuit produced by the heuristic will have a critical path no
longer than the critical path in optimal scheduling of the circuit
without expanding any XOR gate. More formally:

THEOREM 1. If the XOR of n expressions X1, X2, · · · , Xn can
be computed in time T without expanding any XOR gate, then the
above mentioned greedy heuristic of Fig. 4 will result in a circuit
with critical path delay T ′ ≤ T .

PROOF. Instead of proving the above theorem we will prove the
following more general statement. Assume two lists of n expres-
sions X1, X2, · · · , Xn and Y1, Y2, · · · , Yn, with arrival times tx1,
tx2, · · · , txn and ty1, ty2, · · · , tyn respectively, and tyi ≤ txi for
all i. If the XOR of X1, X2, · · · , Xn is computed without ex-
panding any XOR in Tx time and the XOR of Y1, Y2, · · · , Yn is
computed using the above mentioned greedy heuristic in Ty time,
then Ty ≤ Tx. It is easy to note that proving this statment suffices
to prove the theorem.

The proof is by induction on n. The base case corresponds to
n = 1, which is trivial. Assume that the statement is true for (n−1)
expressions and that the latency of XOR gate is t. Without loss of
generality, we can also assume that the arrival times of expressions
X1, X2, · · · , Xn as well as the arrival times of expressions Y1, Y2,
· · · , Yn are in non-decreasing order.

We have mentioned before that if the expansion of XOR is not
allowed, then the two greedy strategy is optimal; hence, in the first
step to compute the XORs of X1, X2, · · · , Xn, the optimal strat-
egy computes the XOR of X1 and X2. After this step, the list
of operands will look like Xnew , X3, · · · , Xn, with arrival times
t + tX2, tX3, · · · , tXn. On the other hand, in the first step to com-
pute XORs of Y1, Y2, · · · , Yn, the greedy strategy will compute the
XOR of Yi and Yj , where (Yi, Yj) is the pair whose XOR can be
computed earliest among all possible pairs. After this step, the list
of operands will be Ynew, Y1, · · · , Yi−1, Yi+1, · · · , Yj−1, Yj+1,
· · · Yn, with arrival times tnew, tY 1, · · · , tY n. According to the
definition of greedy heuristic, we can see that

∀α, β(tnew ≤ f(Yα, Yβ))

⇒ ∀α, β(tnew ≤ t + max(tY α, tY β))

⇒ tnew ≤ t + max(tY 1, tY 2)

⇒ tnew ≤ t + max(tX1, tX2)

⇒ tnew ≤ t + tX2.

Also note that tY 1 ≤ tX1 ≤ tXi and tY 2 ≤ tX2 ≤ tXj . This
means that after one step also the arrival times of expressions sat-
isfy the property tY k ≤ tXk. But after one step we have (n − 1)
expressions, and now we can say by the induction hypothesis that
the XOR of the Xi’s can not be computed any sooner than the XOR
of Yi’s. This completes the proof.

6C-1

605

get XOR Delay (X, Y) {
P = gcd(X, Y);
(DX, ARX) = estimateDelayArea(X);
(DY , ARY) = estimateDelayArea(Y);
(Dnew, ARnew) =

estimateDelayArea(P((X/P)(Y/P))(X/P + Y/P));

if ((isExpansionUseful(X, Y))
return Dnew;

else
return (tXOR + max(DX, DY));

}
optimizeUsingLocalCorrelation (tree T) {

forall children Ti of T do
optimizebyExpanding(Ti);

if (op(root(T)) = XOR)
return (tree)(getScheduling(
{(expr)T1, · · · , (expr)Tn}, get XOR Delay()));
// return the tree corresponding to the
// scheduling of XORs.

}
optimizeUsingGlobalCorrelation (tree T) {

forall nodes n of T in reverse topological order do
// i.e., traverse the tree from leaves to root

if (op(n) = OR and (op(n.leftChild) = XOR or
op(n.rightChild) = XOR))

rewriteUsingGlobalCorrelation(subtree(n));
// Check for the subtree rooted at n if the
// expansion based on global correlation has
// lower critical path delay, if so replace
// the subtree by the expansion based on
// global correlation.

}
optimizeTree (tree T) {

while (improvement in performance) {
collapseTree(T);
// collapse the tree using the associativity
// of the operators, so that the successor of a
// node must be of different type than this node.

optimizeUsingLocalCorrelation(T);
optimizeUsingGlobalCorrelation(T);

}
}

Figure 5: Algorithm for computing the optimised expression by
selective expansion of XOR gates.

6. ALGORITHM AND COMPUTATIONAL
COMPLEXITY

The complete algorithm is shown in Fig. 5. The algorithm takes
the input expression in the form of a tree where each node cor-
responds to a Boolean operator and the edges correspond to data
dependencies. First, this input tree is collapsed by merging adja-
cent nodes of same type into a single multi-input node (e.g., multi-
input AND etc.). After that, the tree is optimised using local and
global correlations. The optimisation using local correlation con-
sists of traversing the tree in topological order from leaves to root
and optimise the subtrees rooted at XOR nodes using the greedy
heuristic mentioned in the earlier section. Then, we check whether
any XOR gate can be expanded using the global correlation crite-
ria to improve the performance of the circuit and, if so, rewrite the
corresponding subexpression using the expansion based on global
correlation. The above two steps are repeated till we have an im-
provement in the delay of the circuit.

In order to analyse the time complexity of the algorithm we
need to find out how many times we are calling the function es-
timateDelayArea() because that is the most expensive function.
It is easy to see that in the function optimizeUsingGlobalCor-
relation() we call the estimator function O(n) times, where n is
the number of nodes in the tree. However, in the function opti-

ADPCM Decoder
Unoptimised 6556.0µm2 1.06ns
Selective Expansion 6933.8µm2 0.90ns
8 × 8-bit Multiplier
DesignWare 4487.6µm2 1.60ns
Three Greedy Approach 5995.9µm2 1.28ns
Selective Expansion (TGA as input) 7261.8µm2 1.02ns
Constant Multiplication (A × 7)
A × 7 2586.8µm2 0.85ns
A + 2A + 4A 3155.3µm2 0.72ns
8A − A 1940.5µm2 0.56ns
Selective Expansion (A + 2A + 4A as input) 3018.4µm2 0.50ns
Selective Expansion (8A − A as input) 2822.1µm2 0.52ns
15-bit Comparator
Unoptimised 514.9µm2 0.40ns
Selective Expansion 466.2µm2 0.33ns
15-bit Adder
Unoptimised 1318.5µm2 0.56ns
Selective Expansion 1318.5µm2 0.56ns

Table 1: Optimisation results for all our benchmarks.

εthreshold δthreshold κ Delay (ns) Hardware Area (µm2)
0.1 0.2 2 1.02 7261.8
0.05 0.1 1 1.07 7337.6
0.05 0.1 3 1.04 7123.4
0.05 0.4 1 1.03 8127.3
0.05 0.4 3 1.00 10123.4
0.2 0.1 1 1.10 6668.5
0.2 0.1 3 1.08 7487.4
0.2 0.4 1 1.07 7786.0
0.2 0.4 3 1.04 9123.8

Table 2: Illustration of the moderate effects of various parame-
ters on the final result output by Selective Expansion for 8× 8-
bit multiplier.

mizeUsingLocalCorrelation() there are O(n2) calls to the esti-
mator function. To see this, first let us find the time complexity
of the getScheduling() function. In the getScheduling() func-
tion, the size of the input list decreases by one in each iteration
(i.e., if the initial size is m, then there will be (m − 1) iterations).
Also, in each iteration, we need to find the pair whose XOR can be
computed earliest among all pairs. Note that in the first iteration
we need to compute the effective XOR latency of all pairs. How-
ever, in subsequent iterations, only O(k) new pairs are generated,
where k is the list size at the begining of that iteration, i.e., the
estimator function is called only O(m2) times. Since we call the
getScheduling() function at each XOR node, the total number of
calls to the estimator function will be O(n2). Also, we observed
empirically that we need to iterate the functions optimizeUsing-
GlobalCorrelation() and optimizeUsingLocalCorrelation() only
a constant number of times. Hence the overall complexity of the
algorithm is O(n2Testimator), where Testimator is the time complexity
to estimate the delay and area of an expression.

7. EXPERIMENTS
We implemented our algorithm using Maple 10, which is used

as a front-end to Synopsys Design Compiler. We synthesise the in-
put circuit twice: once directly and a second time after optimising
using our algorithm, which we call as Selective Expansion. All the
circuits are synthesised using a common standard-cell library for
UMC 0.13µm CMOS technology. Table 1 shows the results of our
implementations. There are qualitatively five different arithmetic
circuits on which we ran our algorithm: The first circuit is the ker-
nel of adpcmdecode [7]. Here the input is the already optimised
circuit using the techniques mentioned in [17]. As we can see, our
algorithm improves the delay by 15% with a marginal penalty of

6C-1

606

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16

D
e
l
a
y

(
n
s
)

Bit Position

Three Greedy Approach
Designware

Full Expansion
Selective Expansion

Figure 6: Comparison of bitwise delays of the multiplier gen-
erated by DesignWare, Three Greedy Approach, Selective Ex-
pansion and Full Expansion.

5% in terms of hardware area.
The second benchmark consists of an 8 × 8-bit parallel multi-

plier. Here we compare the results of Selective Expansion with
the DesignWare implementation and the Three Greedy Approach
(TGA) [14]. The results show that the Three Greedy approach,
which is already much better than the DesignWare implementa-
tion, is outperformed by Selective Expansion and an improvement
of 20% in delay is achieved. In Fig 6, we compare the delay values
of individual product bit expressions. Note that Selective Expan-
sion always produces better results compared to DesignWare and
TGA. Compared with Full Expansion (where all XOR gates are ex-
panded), Selective Expansion performs better for all but the three
most significant bit expressions; however, the area penalty in Full
Expansion is huge (almost 20 times the area incurred by Selective
Expansion). Table 2 shows the effect of various parameters on the
output results for the 8 × 8-bit multiplier generated by Selective
Expansion algorithm. Notice that the delay values for all parame-
ters are pretty close to each other. For other benchmarks we use the
combination εthreshold = 0.1, δthreshold = 0.2, and κ = 2.

The third benchmark is a constant multiplier where a 16-bit in-
teger A is multiplied by the constant 7. Note that (A × 7) can
be implemented in various ways: One possibility can be to use the
multiplication provided by Design Compiler, while another is to
rewrite (A× 7) as (A+2A+4A) and then use a carry save adder
to add the three values. An even better way is to rewrite (A× 7) as
(8A − A) and use a single adder to add them. As we can see the,
results of the three implementations are very different from each
other. We ran Selective Expansion algorithm on both forms of in-
puts (A+2A+4A) and (8A−A). Note that the resulting circuits
for the two inputs are almost same in terms of critical path delay.

The fourth benchmark is the comparator function mentioned in
section 5.2. One can see that in this benchmark we not only reduce
critical path delay but also optimise the circuit in terms of hardware
area. The last arithmetic circuit corresponds to the 15-bit adder.
Although it is an XOR-dominated circuit, the XOR operands are
independent of each other and hence Selective Expansion does not
expand any of them. This means that the adder circuit will remain
unchanged by the Selective Expansion, which is in fact reflected by
the results.

A partial execution of our algorithm to optimise the expression
for the 4th bit of the output of an 8 × 8-bit multiplier is shown in
Fig. 7. Note that the expression optimised by our algorithm is very
similar to the manually optimised expression.

z3 = a1b2 ⊕ a2b1 ⊕ a0b0a1b1(a0b2 ⊕ a1b1 ⊕ a2b0) ⊕
(a0b2a2b0 + (a0b2 + a2b0) a1b1);

// After simple optimisations based on simple
// dependencies among partial product bits.
z3 = a1b2 ⊕ a2b1 ⊕ a0b0a1b1(a2 ⊕ b2) ⊕

(a0b2a2b0 + (a0b2 + a2b0) a1b1);

// Using the dependency between XOR operands
// (a1b2 ⊕ a2b1) (a0b0a1b1(a2 ⊕ b2)) = 0.
z3 = ((a1b2 ⊕ a2b1) + a0b0a1b1(a2 ⊕ b2)) ⊕

(a0b2a2b0 + (a0b2 + a2b0) a1b1);

// (PQR → S) ⇒ P (Q ⊕ R) + S = P (Q + R) + S
// Here P = a0b0a1b1, Q = a2, R = b2, S = a1b2 ⊕ a2b1
z3 = ((a1b2 ⊕ a2b1) + a0b0a1b1(a2 + b2)) ⊕

(a0b2a2b0 + (a0b2 + a2b0) a1b1);

// Manually optimised expression
z3 = ((a1b2 ⊕ a2b1) + a0b0a1b1) ⊕

(a0b2a2b0 + (a0b2 + a2b0) a1b1);

Figure 7: A partial execution of our algorithm to optimise the
4th output bit of 8 × 8-bit multiplier.

8. CONCLUSIONS
Although logic synthesis has made enormous progress and has

supplanted manual design in the great majority of digital design
tasks, computer arithmetics is possibly the last area where people
still manually or semi manually optimise circuits. Many practi-
cal arithmetic circuits, both standard and application specific, are
dominated by additions; equivalently, at the Boolean level, they
contain a large number of nested XORs. We have shown how clas-
sic limitations of logic synthesis heuristics can be circumvented
by selectively rewriting only some XOR operations in terms of
ANDs and ORs. While synthesisers seldom rewrite XOR oper-
ations, our heuristic tries to do that in all cases where one can
observe some specific form of dependency between the two XOR
operands: when this is the case, such rewriting will likely let clas-
sic synthesis heuristics achieve better results. In our experiments
we have used state-of-the-art logic descriptions of the benchmarks,
where all classic architectural optimisations have been applied al-
ready, and we have measured up to more than a fifth reduction in
critical path for a small area cost. This improvement on already op-
timised components would hardly be believable, were it not for the
qualitative realization that the solutions found by our algorithm on
a parallel multiplier, for instance, correspond to a type of optimi-
sation that we have never found described in computer arithmetic
literature—probably due to their irregularity and the complexity of
implementing them manually.

Our results illustrate that it is high time for design automation to
conquer arithmetic territories, so far largely left to manual and ar-
chitectural optimisations. With the increasing number of software-
oriented designers implementing complex signal and media pro-
cessing algorithms on FPGAs or ASICs, automatically achieving
implementations of arithmetic components which are at least equal
to manual implementations becomes a must. And, as we show,
better-than-manual designs are a concrete possibility.

9. REFERENCES
[1] A. Bernasconi, V. Ciriani, R. Drechsler, and T. Villa.

Efficient minimization of fully testable 2-SPP networks. In
Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, Munich, Mar. 2006.

[2] R. K. Brayton. Factoring logic functions. IBM Journal of
Research and Development, 31(2):187–98, Mar. 1987.

[3] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L.

6C-1

607

Sangiovanni Vincentelli. Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic, Boston, Mass., 1984.

[4] R. E. Bryant. The complexity of VLSI implementations and
graph representations of Boolean functions with application
to integer multiplication. IEEE Transactions on Computers,
40(2):205–13, Feb. 1991.

[5] G. De Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, New York, 1994.

[6] T. Kim, W. Jao, and S. Tjiang. Circuit optimization using
carry-save-adder cells. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
CAD-17(10):974–84, Oct. 1998.

[7] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A tool for evaluating and synthesizing
multimedia and communicatons systems. In Proceedings of
the 30th Annual International Symposium on
Microarchitecture, pages 330–35, Research Triangle Park,
N.C., Dec. 1997.

[8] A. Mishchenko and M. Perkowski. Fast heuristic
minimization of exclusive-sums-of-product. In Proceedings
of the 5th International Reed-Muller Workshop, Los
Angeles, Calif., Aug. 2001.

[9] V. G. Oklobdzija, D. Villeger, and S. S. Liu. A method for
speed optimized partial product reduction and generation of
fast parallel multipliers using an algorithmic approach. IEEE
Transactions on Computers, C-45(3):294–306, Mar. 1996.

[10] A. R. Omondi. Computer Arithmetic Systems. Prentice Hall,
New York, 1994.

[11] T. Sasao. An exact minimization of AND-EXOR expressions
using BDD’s. In Proccedings of IFIP WG 10.5 Workshop on
Applications of the Reed-Muller Expansion in Circuit
Design, 1993.

[12] E. Sentovich, K. Singh, L. Lavagno, M. C., R. Murgai,
A. Saldanha, S. H., S. P., R. Brayton, and
A. Sangiovanni Vincentelli. SIS: A system for sequential
circuit synthesis. Technical report, University of California,
Berkeley, Calif., 1992.

[13] P. Song and G. De Micheli. Circuit and architecture
trade-offs for high speed multiplication. IEEE Journal of
Solid-State Circuits, 26(9), Sept. 1991.

[14] P. F. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi.
Optimal circuits for parallel multipliers. IEEE Transactions
on Computers, C-47(3):273–85, Mar. 1998.

[15] Synopsys. Creating High-Speed Data-Path
Components—Application Note, Aug. 2001. Version
2001.08.

[16] J. Um and T. Kim. An optimal allocation of
carry-save-adders in arithmetic circuits. IEEE Transactions
on Computers, C-50(3):215–33, Mar. 2001.

[17] A. K. Verma and P. Ienne. Improved use of the carry-save
representation for the synthesis of complex arithmetic
circuits. In Proceedings of the International Conference on
Computer Aided Design, pages 791–98, San Jose, Calif.,
Nov. 2004.

[18] C. S. Wallace. A suggestion for a fast multiplier. IEEE
Transactions on Electronic Computers, C-13(2):14–17, Feb.
1964.

[19] C. Yang, M. J. Ciesielski, and V. Singhal. A BDD-based
logic optimization system. In Proceedings of the 37th Design
Automation Conference, pages 92–97, Los Angeles, Calif.,
June 2000.

6C-1

608

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

