1-4244-0630-7/07/$20.00 ©2007 IEEE.

6A-2

An Efficient Computation of Statistically Critical
Sequential Paths Under Retiming

Mongkol Ekpanyapong, Xin Zhao, and Sung Kyu Lim
"Intel Corporation, Folsom, California, USA
Georgia Institute of Technology, Atlanta, Georgia, USA
mongkol.ekpanyapong @intel.com, xzhao @ece.gatech.edu, limsk@ece.gatech.edu

Abstract—In this paper we present the Statistical Retiming-
based Timing Analysis (SRTA) algorithm. The goal is to compute
the timing slack distribution for the nodes in the timing graph
and identify the statistically critical paths under retiming, which
are the paths with a high probability of becoming timing-
critical after retiming. SRTA enables the designers to perform
circuit optimization on these paths to reduce the probability of
them becoming timing bottleneck if the circuit is retimed as
a post-process. We provide a comparison among static timing
analysis (= STA), statistical timing analysis (= SSTA), retiming-
based timing analysis (= RTA), and our statistical retiming-based
timing analysis (SRTA). Our results show that the placement
optimization based on SRTA achieves the best performance
results.

I. INTRODUCTION

Statistical timing analysis has become crucial to characterize
signal transmission in the era of nano-scale device and inter-
connect. Compared to a large volume of works on statistical
timing analysis for combinational circuits, there exist few
works on how to deal with sequential circuits in the presence
of process variations [1], [2], [3]. In this paper we present the
Statistical Retiming-based Timing Analysis (SRTA) algorithm.
The goal is to compute the timing slack distribution for
the nodes in the timing graph and identify the statistically
critical paths under retiming, which are the paths with a
high probability of becoming timing-critical after retiming.
SRTA enables the designers to perform circuit optimization on
these paths to reduce the probability of them becoming timing
bottleneck if the circuit is retimed as a post-process. We show
that the final critical path delay distribution after retiming is
the statistical maximum among all primary outputs and all
feedback vertices. For this purpose, we introduce a new metric
called Minimum Feasible Clock Period Distribution (MFCPD)
to correctly capture the minimum possible delay distribution
the subsequent retiming can achieve under process variations.

We integrate the SRTA algorithm into our mincut-based
global placer to optimize statistical longest paths in sequential
circuits. We perform the SRTA algorithm to compute statistical
critical paths that consider retiming. Our mincut placer then
tries to place these paths into a single partition. We provide a
comparison among static timing analysis (= STA), statistical
timing analysis (= SSTA), retiming-based timing analysis
(= RTA), and our statistical retiming-based timing analysis
(SRTA). Our results show that the placement optimization
based on SRTA achieves the best performance results.

The remainder of the paper is organized as follows. Section
II reviews the related works. Section III presents our Statis-
tical Retiming-based Timing Analysis (SRTA) algorithm. We
present the experimental results in Section IV and conclude in
Section V.

II. PRELIMINARIES

This section presents an overview of two existing works
that our algorithm is based on, namely, Statistical Bellman-
Ford (SBF) algorithm [3] and Retiming-based Timing Analysis
(RTA) [4].

A. Statistical Bellman-Ford Algorithm

The Statistical Bellman-Ford (SBF) algorithm is recently
presented in [3] to compute the longest path distribution under
process variations. SBF closely approximates and efficiently
computes the statistical longest path length distribution if there
exists no positive cycles or detects one if the circuit is likely to
have a positive cycle. Unlike the deterministic Bellman-Ford
algorithm that iterates longest path length update until no more
update is possible, SBF performs exactly K iteration, where
K is the the maximum number of backward edges along any
cycle. The authors showed that in the presence of probability
distribution functions, K iterations is enough to consider al
simple paths in the timing graph and obtain highly accurate
longest path distribution.

In SBF, depth-first search (DFS) is first called to identify
all backward edges and to sort the nodes in a topological
order (when cycles are ignored). For each backward node,
we perform another DFS by setting this backward node as a
source node. DFS returns the maximum number of connected
backward nodes reachable by a simple path from the given
source. The maximum number of connected backward nodes
of the graph (= K) is the largest number obtained by the DFS
algorithm. Note that this reachability algorithm needs to be
performed only once. After the K is found, we initialize the
arrival times of all nodes. Next, the relaxation step is called.
In this case, the arrival time, node delay, and edge delay
values are random variables. Thus, the statistical min/max
and arithmetic operations are used to compute the new arrival
time distribution. Once the computation of delay distribution
is complete, we need to determine if the probability that a
positive cycle exists is above a given threshold. The problem of
detecting statistical positive cycles is complex since it involves

547

6A-2

24
cycle
weight =-0.1
24
(b)
2.6
«——25 _:®_>
{ ﬁ— 2.6 / :
i cycle
mean delay mean delay # weight = 0.1
ofs=24 oft=24 y
25
(c) (d)
Fig. 1. Tllustration of positive cycle formation due to process variation: (a)

example circuit, (b) its retiming graph with a negative cycle, when target
clock period ¢ = 5. RTA assigns —5 as the weight of edge that contains a
FF, (c) there exists a non-zero probability that the actual delay of gate s and
t is above their mean, (d) positive cycle formed due to the process variation.
Thus, the a[s] value will never stop updating and Bellman-Ford will never
converge.

the enumeration of all existing cycles. Thus, SBF uses a
heuristic proposed in [5]. This heuristic considers only the
cycles encountered during an initial run of DFS and uses them
to approximate the probability of positive cycle existence.

B. Deterministic Retiming-based Timing Analysis

The Retiming-based Timing Analysis (RTA) [4] is proposed
to calculate the timing slack after min-delay retiming. The
basic idea is to compute the arrival and required time assuming
that the FFs are optimally positioned in terms of performance,
i.e., min-delay retiming is performed. The benefit of RTA
is that this “retiming-based timing slack™ can be exploited
for more rigorous timing optimization during partitioning
and placement [4]. In addition, RTA generates retiming as a
byproduct via its Bellman-Ford approach, thereby eliminating
the need for the time/memory-intensive ILP approach [6].

In RTA, the sequential circuit is modeled by a retiming
graph [6], where FFs become the weights of directed edges
connecting two neighboring gates. Due to the feedback loops
involving FFs in the given sequential circuits, retiming graphs
are usually cyclic. In addition, RTA uses another edge weight
that combines FF-weight and a user-specified target clock
period ¢ to compute the timing information, which may be-
come positive or negative depending on ¢. Thus, Bellman-Ford
algorithm is used to compute longest paths (= arrival/required
time) for the cyclic graph with negative cycles. In case the
¢ causes positive cycles to form, RTA determines that ¢ is
not feasible. Finally, binary search is performed to compute
minimum feasible ¢ using RTA as a feasibility checker.

Figure 1 shows how RTA fails to compute correct ¢ under
process variation. RTA declares a target ¢ feasible if the
resulting retiming graph does not contain a positive cycle.
However, the probability of containing a positive cycle is still
non-zero if the gate delay values are random variable as shown
in Figure 1. Thus, a major challenge in the statistical extension
of RTA is to consider the probability distribution functions

(PDF) of the related delay values to accurately compute the
PDF of minimum feasible clock distribution.

IIT. STATISTICAL RETIMING-BASED TIMING ANALYSIS
A. Statistical Timing Model

We use retiming graph [6] for statistical retiming-based
timing analysis (SRTA). A retiming graph G = (V,E, W)
consists of a vertex set V' that represents gates, a directed edge
set I that represents signal directions in the given sequential
netlist, and edge weight set W that represents the number of
flip-flops (FFs) between the two end-vertices of each edge. G
contains a source vertex vg.. that connects to all PI vertices
and a sink node vg;,; that connects from all PO vertices. A
retiming is a labeling of the vertices r : V' — Z, where Z is the
set of integers. The weight of an edge e = (u, v) after retiming
is denoted by w” (e) and is given by w(e(u,v))+r(v) —r(u).
The retiming label r(v) for a vertex v € V represents the
number of FFs moved from its output towards its inputs. A
circuit is retimed to a delay ¢ by a retiming r if the following
conditions are satisfied; (i) w”(e) > 0, (ii) w"(p) > 1 for each
path p such that d(p) > ¢, where w”(p) = > . w"(e). In
this case, ¢ is called feasible target delay.

We use the following canonical first-order form to represent
gate delay, wire delay, arrival time, require time, and slack
distribution:

ecp

m+ZaiAXi + ant+1AR (D)

i=1

where m is the mean value. X; denotes the n variation sources
we consider, and AX; represents the variation from its mean
value caused by the variation source i. a; is the sensitivity to
the variation source i. AR is the variation of an independent
random variable R from its mean value, and a,, is the sen-
sitivity to R. We assume that the random variables X; and R
are Gaussian distribution N (0, 1). We consider the following
four sources of variation for the gate/wire delay distribution:
transistor length (L), transistor width (W), wire width (17/;),
and wire thickness (7}).! We follow the suggestion in [7]
to model the intra-die spatial correlation among the random
variables. We divide the die into an m X n tile and assume
perfect correlation among the devices and wires in the same
tile. In addition, the correlation is high among the devices and
wires from nearby tiles, and the correlation decreases as the
distance among the tiles increases. We assume that correlation
exists only among the same type of variation source. Lastly,
we perform principal component analysis (PCA) as suggested
in [7] to classify the coefficients into orthogonal terms so that
each coefficient term is uncorrelated. Reconvergent correlation
is also handled by PCA.
Our gate delay distribution is modeled as follows:

d(v) = dm(v) + alALg(v) + agAW;(v) 2)

Ut is straightforward to extend our formulation to consider other intra/inter-
die variation sources.

548

where d,,(v) is the mean delay of gate v. Assuming v is
located in tile ¢, AL} (v) and AW{(v) are the variation of
gate delay caused by the gate length and gate width variation
in tile ¢, respectively. a; and as are the sensitivity constants.
Our wire delay distribution is modeled as follows:

d(e) = dm(e) + Z (b1 AW/ (€) + b2 ATS (e)]
k€T (e)

3)

where T'(e) denotes the set of tiles that wire e traverses. b; and
by are the sensitivity constants.? d,,(e) is the mean delay of
wire e, AW} (e) and AT} (e) are the variation of wire delay
caused by the wire width and wire thickness variation in tile
k, respectively.

We define the statistical sequential arrival time (SSAT) of a
node v in the retiming graph as follows;

I(v) = max{l(u) — ¢ - w(e) + d(e) + d(v)|e(u,v) € E} (4)

w(e) denotes the number of FFs along the edge e, and ¢ is the
target clock period. d(v) and d(e) are the delay distribution
variables shown in Equation (2) and (3).? [(v) is computed via
statistical addition and maximum operations and expressed in
the canonical form shown in Equation (1). The intuition behind
SSAT is that it represents the arrival time distribution of a node
v assuming that the source-to-v path is optimally retimed to ¢.
In a similar way, we define the statistical sequential required
time (SSRT) of a node v in the retiming graph as follows;

q(v) = min{q(u) + ¢ - w(e) —d(e) = d(v)le(v,u) € E} (5)

The statistical sequential slack (SSSK) of v, denoted s(v), is
given by ¢(v) — {(v). The intuition behind SSSK is that it
represents the timing slack distribution of a node v assuming
that the input sequential circuit is optimally retimed to ¢.
We adopt the tightness probability calculation proposed in
[8] to perform Gaussian approximation after the statistical
maximum/minimum operation of two Gaussian distributions.

Once the SSSK values are computed, we define the “statisti-
cal e-network” as the subset of nodes in the retiming graph and
the edges connecting them, where the mean value of the SSSK
is smaller than e. Then, any path that shares the nodes and
edges with the statistical e-network is timing critical. Note that
a higher € value means more timing critical paths to consider
during circuit optimization.*

B. Statistical RTA Algorithm

Note that the retiming graph G introduced in Section III-A
is cyclic because of the FFs in the given sequential circuit.
In addition, the computation of SSAT and SSRT may involve
negative or positive weighted cycles depending on the random

2In this article, a1 = 0.099, az = —0.099, b; = 0.019, and by =
—0.133. These sensitivity values are computed based on the assumption that
each process parameter is varied by 10%.

3In case an edge contains FFs, i.e., w(e) > 0, we extend the edge delay
distribution Equation (3) to consider the FFs on the edge. In this case, the
delay change from the width and length variation of each FF is added to the
overall edge delay distribution.

4Our empirical choice of € is 5% of the maximum mean SSSK among all
nodes.

6A-2

Statistical Retiming-based Timing Analysis
input: retiming graph R, target delay ¢
output: [(v) pdfs, ¢(v) pdfs, and r(v) for all v € V

1. compute backward nodes and calculate K;

2. for (each vertex v € V)

3. Il(v) = —o0, q(v) = o0, r(v) = 0;

4. l(”src) =0, q(vsink) = (b;

5. fori=1to K +1)

6. for (each vertex v € V)

7. t, = statistical sequential arrival time of v;
8. t, = statistical sequential required time of v;
0. if (tq > 1(v))

10. l(v) = tg;

11. if (¢ < q(v))

12. q(v) = tr;

13. compute MFCPD;

14. P(cycle) « check_pos_cycle();
15. if (P(cycle) < P_acceptable)
16. return (FALSE);

17. return (TRUE);

Fig. 2. Description of statistical retiming-based timing analysis (SRTA)
algorithm that computes the statistical sequential arrival time distribution (v),
statistical sequential required time distribution ¢(v), and retiming r(v) for all
v € V. SRTA also determines the feasibility of the target delay ¢.

variables d(e) and d(v) as well as the constants w(e) and
¢ used in Equation (4) and (5). This calls for Bellman-Ford
approach to compute longest path distributions under negative
cycles. This calls for statistical Bellman-Ford (SBF) discussed
in Section II-A to handle randome variables. In the meantime,
SRTA performs min-delay retiming (= retiming G so that
the clock period becomes ¢) while performing the statistical
timing analysis. Lastly, our SRTA also determines if the target
clock period ¢ is feasible or not, i.e., whether G can be retimed
to ¢ with sufficiently high probability.

SSAT and statistical retiming are closely related. In fact, the
computation of SSAT and statistical retiming can be performed
at the same time. Consider a path p that starts from a PI « and
ends at vertex v. If we want to retime p to satisfy the time
constraint ¢, there must be at least [I(p)/¢]—1 FFs on p. Since
there exists w(p) FFs on p, we can set the retiming value 7 (v)
as [l(p)/é] — 1 —w(p). Thus, r(v) = [I(p)/¢] — 1 — w(p).
After rewriting, we get r(v) = [I(v)/¢]| — 1. Thus, our SRTA
uses a feasible target delay ¢ to compute SSAT, SSRT, and
retiming all at the same time. In SRTA, SSAT for all PIs are set
to zero while all others are set to —oo. SSRT for all POs are
set to ¢ while all others are set to co. Then, we can iteratively
update SSAT and SSRT until they converge to their maximum
and minimum values, respectively.

Figure 2 shows the description of our SRTA algorithm. We
first compute K, the maximum number of connected backward
nodes as discussed in Section II-A. The purpose is to perform
K + 1 iterations of SSAT and SSRT updates during SRTA
(line 5). Next, the initialization of SSAT [(v), SSRT ¢(v),
and retiming r(v) for each vertex is done (line 2-4). During

549

6A-2

0.03

0.025 -

0.01 |

0.005

-6 -4 -2 0 2 4 6

Random variable x

Fig. 3. Positive cycle

each iteration we visit each node and compute new SSAT
and SSRT (line 7-8) using statistical min/max and arithmetic
operations. If the new SSAT is larger than the existing SSAT,
we update the existing SSAT (line 9-10). We update SSRT in a
similar way (line 11-12). In addition, we update the Minimum
Feasible Clock Period Distribution (MFCPD) (to be discussed
in Section III-C) (line 13). The theoretical runtime of SRTA
algorithm is O(n?) since K = O(|V|) in the worst case. K,
however, is rarely close to |V| in VLSI circuits typically as
shown in Table II in Section IV, making the practical runtime
of SRTA to be linear.

In deterministic RTA, Bellman-Ford terminates immediately
when the sequential arrival time of the sink node exceeds the
target clock period. This condition is met when there exists
a positive cycle in the retiming graph. If so, RTA determines
that the given ¢ is not feasible. This termination condition
still holds in the statistical case that if the expectation of the
summation of gate and wire delay over the cycle is positive,
the arrival time of the sink can exceed the target clock period.
This condition can be used for the algorithm to terminate early.
However, one might have to be aware that if the expectation of
the summation of gate and wire delay over a cycle is negative,
it does not necessarily mean that there exists no positive cycle.
An illustration is shown in Figure 3. A cycle could be negative
in terms of the mean value, but there is still a high probability
that a positive cycle exists. Therefore, our SRTA performs K +
1 iterations regardless of the delay distribution changes along
the cycles to fully account for all simple paths as discussed in
Section II-A. The last step in SRTA (line 14-17) is to explicitly
detect positive cycles using the method discussed in Section
II-A.

C. Target Delay Distribution

The deterministic RTA is performed under a given target
clock period ¢. In case ¢ is feasible, the weight of all cycles in
the retiming graph G become negative, and thus the Bellman-
Ford based RTA terminates and computes the sequential timing
slack values successfully. In addition, the circuit is guaranteed
to be retimed to ¢, i.e., a subsequent retiming is guaranteed to

reduce the clock period to ¢. In case the min-delay retiming
is desired, RTA performs binary search to find the minimum
possible ¢. We note that the following relation holds:

¢ = max{maz_cycle, SAT (Vsink)} (0)

where max_cycle denotes the maximum delay among all
cycles in G, and SAT (vgnk) is the sequential arrival time
at the sink node. This means that the most critical path we
obtain after a subsequent retiming may include a cycle or
not depending on the circuit structure. This relation suggests
another way of computing the minimum ¢, where we compute
the maz_cycle and SAT (vsini) instead of performing binary
search. The computation of SAT (vsink) is straightforward
once mazx_cycle is known—a single run of RTA is enough
since we just use the ¢ from max_cycle. However, the
computation of max_cycle requires us to examine all cycles
in the circuit. In this case, the authors in [9] suggest that the
Howard’s algorithm [10] be used for this purpose. However,
the runtime overhead for the binary search-based approach
is minimal. In addition, we do not need a separate step to
compute max_cycle since the minimum ¢ and its SAT (vsink)
are directly computed.

A similar argument applies to the statistical case. We define
the following new random variable:

Definition 1: The Minimum Feasible Clock Period Distri-
bution (MFCPD) of a given sequential circuit is the mini-
mum possible delay distribution the subsequent retiming can
achieve, where the gate, FF, and interconnect delay values are
random variables.

Then, the following relation holds:

MFCPD = max{maz_cycle_pdf,l(Vsink) } @)

where max_cycle_pdf denotes the delay distribution of the
longest cycle, and [(vgink) is the SSAT of the sink node as
defined in Equation (4). It is important to note the difference
between MFCPD and ¢, where MFCPD is a random variable
and ¢ is a constant. In SRTA, we specify a constant target
clock period ¢ and compute its corresponding MFCPD. The
feasibility checking for ¢ is not done by comparing to I (vsink)
since SRTA performs K + 1 iteration regardless of the con-
vergence of the SSAT/SSRT values. Instead, a separate step
to detect positive cycle is performed as explained in Section
II-A.

D. Comparison Among Various Timing Analysis

Table I shows a comparison among static timing analysis
(STA), statistical static timing analysis (SSTA), retiming-
based timing analysis (RTA), and our statistical retiming-
based timing analysis (SRTA). STA has been widely used
during timing-driven optimization and validation mainly for its
simplicity and efficiency. The main goal is to identify timing-
critical nets by computing the timing slack values of the nodes
in an acyclic directed graph that represents a sequential circuit.
The timing graph is acyclic since the FFs are removed from
the circuit so that topological ordering is well defined. SSAT
is a statistical extension of STA, where the delay values of

550

COMPARISON AMONG STATIC TIMING ANALYSIS (STA), STATISTICAL STATIC TIMING ANALYSIS (SSTA), RETIMING-BASED TIMING ANALYSIS (RTA),

TABLE I

AND OUR STATISTICAL RETIMING-BASED TIMING ANALYSIS (SRTA).

STA

SSTA

RTA

SRTA

goal

computation of deterministic
timing slack values in com-
binational circuits

computation of statistical
timing slack distribution in
combinational circuits

computation of deterministic
timing slack values after re-
timing in sequential circuits

computation of statistical
timing slack distribution
after retiming in sequential
circuits

delay values

deterministic

statistical distribution

deterministic

statistical distribution

retiming

no

no

yes

yes

circuit graph

directed acyclic graph, FF re-
moved

directed acyclic graph, FF re-
moved

cyclic retiming graph, FF be-
comes edge weight

cyclic retiming graph, FF be-
comes edge weight

basic algorithm

topological sort

topological sort,
min/max and arithmetic op-
eration

statistical | Bellman-Ford Bellman-Ford, statistical
min/max and arithmetic
operation

approach visit nodes in forward | visit nodes in forward (back- | compute longest path for | compute ‘“statistical longest
(backward) topological order | ward) topological order to | cyclic graph with negative | path distribution” and “slack
to compute arrival (require) | compute and propagate sta- | edge weights to compute | distribution after retiming”
time. tistical arrival (require) time | timing slack after retiming. with statistical Bellman-Ford
distribution. algorithm
complexity O(n) O(n) O(n?), O(k - n) in practice | O(n?), O(k - n) in practice
advantage simple and fastest handle statistical analysis model FFs and predict delay | perform statistical retiming
after retiming and report delay distribution
after retiming
disadvantage can’t handle retiming nor sta- | slow and no retiming consid- | slow and can’t handle statis- | slow
tistical variations eration tical variations
TABLE I

the nodes and edges in the acyclic circuit graph are given as
probability distribution function (pdf). The goal is to compute
the timing slack pdfs for the nodes and identify “statistically
critical paths”, which are the paths with a high probability of
becoming timing-critical. A huge volume of works on SSTA
has been proposed recently, and its application on circuit
optimization is currently begin investigated as discussed in
Section I.

RTA has been proposed to compute the timing slack values
after retiming. Several works [11], [4] have demonstrated the
benefit of performing layout optimization using these “timing
slacks after retiming” compared to the traditional timing slack
values without any retiming. FFs are modeled as edge weights
as discussed in Section III-A and introduce cycles in the circuit
graph. Depending on the target clock period for retiming, the
cycles may become positive or negative weight, and Bellman-
Ford algorithm is used to test the feasibility of the given
target clock period and compute timing slack values. SRTA
is a statistical extension of RTA, where delay distributions
are computed using statistical Bellman-Ford algorithm. The
goal is to compute the timing slack pdfs for the nodes and
identify “statistically critical paths under retiming”, which are
the paths with a high probability of becoming timing-critical
after retiming. Circuit optimization on these paths will reduce
the probability of them becoming timing bottleneck if the
circuit is retimed as a post-process.

IV. EXPERIMENTAL RESULTS

Our algorithms are implemented in C++/STL, compiled
with gcc v3.2.2, and run on a Pentium IV 2.4 GHz machine.
The benchmark set consists of six big circuits from ISCAS89
[12] and five big circuits from ITC99 [13] suites. We do not
use the ISPD98 benchmark since it does not contain signal

BENCHMARK CIRCUIT CHARACTERISTICS. K + 1 DENOTES THE
MAXIMUM NUMBER OF BACKWARD NODES ALONG ANY CYCLE. B-NODES
DENOTES THE TOTAL NUMBER OF BACKWARD NODES.

ckt gate | PI | PO FF | K 41 | b-node
$5378 2828 | 36 | 49 | 163 76 95
$9234 5597 |36 | 39| 211 239 354
s13207 | 8027 | 31 | 121 | 669 510 637
s15850 | 9786 | 14 | 87 | 597 495 699
$38417 | 22397 | 28 | 106 | 1636 1444 1660
$38584 | 19407 | 12 | 278 | 1452 1860 2054
bldo 5401 | 32 | 299 | 245 451 616
bl50 7092 | 37 | 519 | 449 988 1408
b20o | 11979 | 32 | 512 | 490 1486 2197
b2lo | 12156 | 32 | 512 | 490 1511 2209
b220 | 17351 | 32 | 725 | 703 1870 2770

direction information. We assume 10% variations in each
process parameter terms as discussed in Section III-A. In this
paper, wire delay is computed based on Elmore delay model.
Since the actual wire distance is not known until routing, an
analytical model is used to estimate the wirelength [14].

Table II shows the characteristics of the benchmark circuits
we used. We report K + 1, the maximum number of backward
nodes along any cycle. This is also the number of the iterations
used in Statistical Bellman-Ford Algorithm (SBF) discussed in
Section II-A. We note that this value correlates with the size of
the circuits. Unlike the deterministic Bellman-Ford where the
number of iteration depends on whether there is any update on
the delay values begin computed, SBF enforces K +1 iteration
regardless of the changes on the delay value distribution. This
is intended to make sure all simple paths are considered during
the delay distribution updates as discussed in Section II-A.

Table III shows how the minimum feasible clock period
distribution (MFCPD) is computed for each circuit. The

551

6A-2

TABLE III
MINIMUM FEASIBLE CLOCK PERIOD DISTRIBUTION (MFCPD) RESULTS.
THE MAXIMUM BETWEEN MAX-CYCLE AND SINK-SSAT IS SHOWN IN

BOLD TYPE.

final max sink
ckt MFCPD | cycle | SSAT
s5378 199.00 | 62.75 | 199.00
$9234 257.03 | 225.08 | 257.03
s13207 344.87 | 281.36 | 344.87
s15850 410.53 | 276.76 | 410.53
s38417 214.23 | 214.23 | 152.89
s38584 494,73 | 394.07 | 494.73
bl4do 176.36 | 137.44 | 176.36
bl50 278.53 | 278.53 | 57.56
b20o 295.11 | 295.11 | 117.14
b2lo 295.70 | 295.70 | 275.72
b220 366.36 | 318.8 | 366.36

retime-delay column shows the deterministic delay value after
retiming. The max-cycle column shows the worst value (=
mean plus 3 sigma) of the delay distribution of the longest
cycle, and sink-SSAT is the worst value of the statistical
sequential arrival time distribution of the sink node. According
to Equation (7), MFCPD is the maximum between max-
cycle and sink-SSAT. We observe that cycles are involved
with the most critical paths in half the benchmarks (such as
s38417, bl50, b200, b210), whereas the other half contain
acyclic critical paths. Thus, we conclude that it is important
to look at both the cycle delay distribution and sink node delay
distribution to compute accurate MFCPD.

Table IV shows a comparison among STA, SSTA, RTA,
and SRT. We integrate STA/SSTA/RTA/SRTA into our mincut-
based global placer to optimize longest paths in sequential
circuits. Our placer performs multi-level bipartitioning re-
cursively until the desired number of partitions is obtained.
In this case, we perform STA/SSTA/RTA/SRTA to compute
the epstlon-network discussed in Section III-A to identify
the timing-critical paths. Our placer then tries to place these
paths into a single partition. The goal is to maximize the
performance based on the 8 X8 global placement results. Given
an 8 x 8 global placement result, we report the worst case
deterministic delay values for STA and RTA and the mean
plus 3 sigma values for SSTA and SRTA. First, we note that
retiming reduces the delay results significantly (about 30%
on average) in both deterministic and statistical cases. This
highlights the advantage of retiming-based timing analysis
algorithms (= RTA and SRTA). Second, we note that the
placement optimization base on statistical timers (SSTA and
SRTA) achieves consistently better results than deterministic
timers (STA and RTA).

V. CONCLUSIONS

We presented an efficient algorithm named Statistical
Retiming-based Timing Analysis (SRTA) to compute the sta-
tistically critical paths under retiming. The goal is to find
the paths with a high probability of becoming timing-critical
after retiming. SRTA uses Statistical Bellman-Ford algorithm
to check for the feasibility of a given target clock period

TABLE IV
TIMING ANALYSIS RESULTS FOR STATIC TIMING ANALYSIS (= STA),
STATISTICAL TIMING ANALYSIS (= SSTA), RETIMING-BASED TIMING
ANALYSIS (= RTA), AND OUR STATISTICAL RETIMING-BASED TIMING
ANALYSIS (SRTA).

without retiming with retiming

ckt STA SSTA RTA | SRTA
s5378 | 232.00 | 218.96 | 212.00 | 199.00
$9234 | 407.00 | 379.05 | 287.00 | 257.03
s13207 | 426.00 | 403.43 | 364.00 | 344.87
s15850 | 575.00 | 532.59 | 435.00 | 410.53
s38417 | 390.00 | 363.29 | 217.00 | 214.23
s38584 | 576.00 | 554.21 | 515.00 | 494.73
bl4o | 375.00 | 351.86 | 195.00 | 176.36
bl5o | 352.00 | 327.57 | 292.00 | 278.53
b20o | 516.00 | 484.09 | 318.00 | 295.11
b2lo | 518.00 | 479.66 | 320.00 | 295.70
b220 | 626.00 | 605.99 | 375.00 | 366.36
avg. 1.00 0.94 0.71 0.67

distribution under retiming. Our related experiments show that
the placement optimization based on SRTA achieves better
performance results compared to other well-known timing
analyzers.

REFERENCES

[1] L.Zhang, Y. Hu, and C. Chen, “Statistical Timing Analysis in Sequential
Circuit for On Chip Global Interconnect Pipelining,” in Proc. ACM
Design Automation Conf., 2004.

[2] P. M, C. Chu, and H. Zhou, “Timing yield estimation using statistical
static timing analysis,” in Proc. IEEE Int. Symp. on Circuits and Systems,
2005.

[3] M. Ekpanyapong, T. Watewai, and S. K. Lim, “Statistical Bellman-Ford
Algorithm With An Application to Statistical Retiming,” in Proc. Asia
and South Pacific Design Automation Conf., 2006.

[4] J. Cong and S. K. Lim, “Retiming-based timing analysis with an appli-
cation to mincut-based global placement,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 23, no. 12, pp.
1684-1692, 2004.

[51 R. Chen and H. Zhou, “Clock schedule verification under process
variations,” in Proc. IEEE Int. Conf. on Computer-Aided Design, 2004.

[6] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, pp. 5-35, 1991.

[71 H. Chang and S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single pert-like traversal,” in Proc. IEEE Int.
Conf. on Computer-Aided Design, 2003.

[8] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan,
“First-order incremental block-based statistical timing analysis,” in Proc.
ACM Design Automation Conf., 2004.

[9]1 A. P. Hurst, P. Chong, and A. Kuehlmann, “Physical placement driven
by sequential timing analysis,” in Proc. IEEE Int. Conf. on Computer-
Aided Design, 2004.

[10] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-
P. Quadrat, “Numerical computation of spectral elements in max-plus
algebra,” in in Proceedings of the IFAC Conference on System Structure
and Control, 1998.

[11] P.Pan, A. K. Karandikar, and C. L. Liu, “Optimal clock period clustering
for sequential circuits with retiming,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 17, no. 6, pp. 489498,
1998.

[12] ISCASS89, “The ISCAS 1989 benchmark suite.” [Online]. Available:
http://www.cbl.ncsu.edu

[13] ITC99, “The ITC 1999 benchmark
http://www.cad.polito.it/tools/9.html

[14] P. Zarkesh-Ha, J. A. Davis, and J. D. Meindl, “Prediction of Net-Length
Distribution for Global Interconnects in a Heterogeneous System-on-
a-Chip,” IEEE Trans. on VLSI Systems, vol. 8, no. 6, pp. 649-659,
December 2000.

suite.” [Online]. Available:

552

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

