
Flexible and Executable Hardware/Software Interface Modeling

For Multiprocessor SoC Design Using SystemC

Patrice Gerin Hao Shen Alexandre Chureau Aimen Bouchhima Ahmed Amine Jerraya

System-Level Synthesis Group

TIMA Laboratory
46, Av Félix Viallet, 38031 Grenoble, France

e-mail : {patrice.gerin, hao.shen, alexandre.chureau, aimen.bouchhima, ahmed.jerraya}@imag.fr

Abstract – At high abstraction level, Multi-Processor

System-On-Chip (SoC) designs are specified as assembling of

IP’s which can be Hardware or Software. The refinement of

communication between these different IP’s, known as

hardware/software interfaces, is widely seen as the design

bottleneck due to their complexity. In order to perform early

design validation and architecture exploration, flexible

executable models of these interfaces are needed at different

abstraction levels.

In this paper, we define a unified methodology to implement

executable models of the hardware/software interface based on

SystemC. The proposed formalism based on the concept of

services gives to this approach the flexibility needed for

architecture exploration and the ability to be used in automatic

generation tools. A case study of hardware/software interface

modeling at the Transaction Accurate level is presented.

Experimental results show that this method allows higher

simulation speed with early performance estimation.

I Introduction

 Multi-processor System-On-Chip architectures are made

of processing nodes, which can be software or hardware,

connected via a communication network. The hardware

architecture of a software node is made of one or more

identical processors and local processor specific subsystem
(memory, DMA, interrupt controller, network interface, etc.).

In this paper, the hardware/software interface refers to local

hardware architecture of a software node and the Hardware
Dependent Software (HDS). Fig. 1.b represents a low level

implementation of MPSoC architecture called Virtual
Prototype. At this level, the hardware/software interface is

fully detailed, allowing time accuracy simulation at the

expense of the simulation speed. At the opposite side, a

System Level specification (Fig. 1.a) allows very fast

simulation speed but with very low timing accuracy due to

implicit hardware/software interfaces.

HW/SW

interfaces

HW

HW interface

HW

HW interface

SW

CPU Sub-System

API

HDS

CPU

SW

CPU Sub-System

API

HDS

CPU
HW

HW interface

Communication Network

SW

CPU Sub-System

API

HDS

CPU

HW

HW interface

HW

HW interface

SW

CPU Sub-System

API

HDS

CPU

SW

CPU Sub-System

API

HDS

CPU
HW

HW interface

Communication Network

SW

CPU Sub-System

API

HDS

CPU

Software Sub-System

Software

Thread 1

Software

Thread 1
Software

Thread 2

Software

Thread 2

HardwareHardware

Software Sub-System

Software

Thread 1

Software

Thread 1
Software

Thread 2

Software

Thread 2

HardwareHardware

Software Sub-System

Software

Thread 1

Software

Thread 1
Software

Thread 2

Software

Thread 2

HardwareHardware

Software Sub-System

Software

Thread 1

Software

Thread 1
Software

Thread 2

Software

Thread 2

HardwareHardware

a) b)

Fig. 1 Hardware/Software interfaces a) in MPSoC design
specification b) in MPSoC Architecture

The gap in terms of abstraction level between these two

models makes architecture exploration and validation
ineffective. The solution to fill up the gap between these two

models is to provide flexible and executable abstract

hardware/software interface models which allow early

validation and effective architecture exploration. Difficulties

come from the heterogeneity of the target domain which

makes modeling of such interfaces very complex.

The major contribution of this paper is to provide a

unified semantic based on SystemC to describe executable

models of the hardware/software interface. The proposed

solution allows easy architecture exploration through fast

simulation speed with performance estimation and flexible
interface modeling.

The rest of the paper is organized as follows: We give a

review of the related work in section 2. Section 3 describes

concepts and details of our approach for hardware/software

interface modeling. Experimentation in Section 4 shows a

case study using the proposed solution and gives results

while section 5 concludes the paper.

II. Related Works

 Hardware/software interface design has been studied by

different communities, each focusing on different

components of the hardware/software interface. [1] and [2]

propose automatic generation of wrappers to connect

hardware components. In [3], a driver can be synthesized

from a formal specification of the target device for a

platform-independent virtual environment, and then the

virtual environment is mapped to a specific platform to

complete the driver implementation. CoWare presents an

approach to co design the CPU and its hardware adaptation

layer [4]. In Metropolis, designers can define communication

primitives and execution rules suitable for design exploration

of bus architectures and memory access during synthesis [5].

In [6], a component-based design approach generates an

application-specific operating system including device

drivers and network interface based on a fixed CPU

subsystem architecture. In COSY, the specification is a set of

tasks communicating through lossless blocking FIFOs, which

are implemented using pre-defined schemes [7]. [8] proposes

a service-based interface composition method as an

alternative to the conventional layered software architecture

of the OSI network protocol stack.

1-4244-0630-7/07/$20.00 ©2007 IEEE.

4B-2

390

As opposed to these approaches that focused separately

either on the hardware part or the software part, we propose,

in this paper, a unified flexible model that generalizes the

service-based component approach to encompass the entire

hardware/software interface.

III. Hardware/Software Interface Modeling

A. Hardware/Software interface concept

In order to allow concurrent hardware/software design,

we need abstract models of both software and hardware

components of the interface. An abstract model has to handle

two different interfaces: one at the software side using API1

and one at the hardware side using wires.

The hardware part abstracts the CPU subsystem, which

stands for processors and all its peripherals. Hardware

designers can rely on a hardware API2 as shown in Fig. 2.

The software part of the interface can depend of the

considered software level. Most significant layers are

Operating System (OS) and Hardware Abstraction Layer
(HAL). Fig. 2 shows a particular model of the interface in

which only the HAL layer is abstracted, upper software

layers are supposed to be part of the application. This model

is called Transaction Accurate Model of the

hardware/software interface and provides to software

designers a HAL API.

Software Nœud

Thread 1 Thread 2

Hardware

Specific HDS

HW/SW Interface

T.A. Level

HAL API

HW API

CPU

HAL

CPU

FIFO

IT Ctrl

MEM

HAL API

HW API

CPU

Fig. 2 Transaction Accurate HW/SW interface model

B. Service-based approach

A service-based approach for interface modeling allows

separating the implementation from declaration. This

separation is essential if a unified representation of hardware

and software is needed. A service stands for a functionality

which can be provided or required by an atomic unit called
Interface Element. A hardware/software interface is build by

assembling these elements as depict in Fig. 3.

- The software API of the interface is made of a set

of software services (1).

- Software services can be required or provided

through Software Elements (2).

- The hardware API of the interface is respectively

made of a set of hardware services (5).

1 Application Programming Interface.
2 API is also used for the hardware interface.

- Hardware services can be provided or required

through Hardware Elements (4).

Between these two types of elements, we need a third

type of element, able to provide or require the two kinds of

services. Thus, we introduce the notion of Hybrid Element

(3). The most typical hybrid element in a hardware/software

interface is the processor, which can support software

execution in one side and hardware interface in the other.

Software Sub-System

HardwareHardware

Software

Thread 1

Software

Thread 1
Software

Thread n

Software

Thread n

1

2

3

4

5 Hardware Interface

Hardware Elements

Hybride Elements

Software Elements

Software Interface

Service

Element

Software Sub-System

HardwareHardware

Software

Thread 1

Software

Thread 1
Software

Thread n

Software

Thread n

1

2

3

4

5 Hardware Interface

Hardware Elements

Hybride Elements

Software Elements

Software Interface

Service

Element

Fig. 3 HW/SW Interface model based on services and

elements

C. SystemC as unified model

SystemC [10] has become the preferred development
language for hardware/software designers to overcome the

design complexity problem. However, SystemC is still

hardware-oriented language and doesn’t provide by default

any construct method to implement and simulate sequential

execution and time accuracy of software. Nevertheless, since

SystemC is a C++ library, standard class methods can be

implemented inside modules and provide software services

using the SystemC interface mechanism. Our approach

consists in defining a semantic based on SystemC

“language” in order to formalize the implementation of the

three types of interface element previously presented.

IV. HW/SW Interface Executable Model in SystemC

 The following section will describe how SystemC can

be used to implement software, hardware and hybrid

elements of the hardware/software interface.

A. Software Modeling

In our approach, a pure Software element (Fig. 7.a) is a

SystemC module providing only software functions through

classical C++ methods. These methods are implemented

4B-2

391

using the sc_interface mechanism in SystemC. In this way,

the implementation of a function is totally independent of its

definition. This mechanism is mainly used in SystemC for

Transaction Level Modeling [10] of hardware and needs to

be restricted for our case in order to model the real software

sequential execution.

 Thus, we avoid all specific SystemC functions in the

implementation of a function, so we can define a software

element as:

- A software element is a SystemC module
(sc_module).

- This sc_module contains no SC_THREAD,

SC_CTHREAD or SC_METHOD.

- A software service is declared as a C++ class derived

from the SystemC interface class sc_interface.

- The prototype of the function that will implement this

service is a method of the service class.

- An element provides a service by deriving from the

declaration class and implementing the function. The

provided function is made available using sc_export.
- A software function can call other functions through

classical SystemC ports (sc_port).

In the source code detailed in Fig. 4, 2 functions f1 and f2

are declared and implemented by E1 and E2 respectively. f2
is called inside f1.

class F1 : public sc_interface
{
 virtual int f1(int arg) = 0;
};
class F2 : public sc_interface
{
 virtual int f2() = 0;
};
SC_MODULE(E1),
 public F1
{
 sc_export<F1> pE1;
 sc_port<F2> pE2;

 int f1(int arg)
 {
 return(pE2.f2)
 };

 SC_CTOR(E1)
 :
 pE1("pE1"),
 pE2("pE2")
 {
 pE1(*this);
 }
};

SC_MODULE(E2),
 public F2
{
 sc_export<F2> pE2;

 int f2(int arg)
 {
 return(0)
 };

 SC_CTOR(E2)
 :
 pE2("pE2")
 {
 pE2(*this);
 }
};

Fig. 4 Example of software elements implementation

Fig. 5 shows the sequential execution model of the

previous example. Note that the x-coordinate represents this
sequentiallity and not the simulation time which is null. The

simulation time used by a software function will be managed

by hybrid elements through annotations. This point is

described in section III.C.

f1 caller

f1

f2

Execution order

Fig. 5 Software execution model

B. Hardware modeling

 Hardware elements are implemented using the standard
SystemC methodology. In other words, a hardware element

is a SystemC module in which one or more SystemC

processes implement hardware services. The SystemC
representation of a hardware element is shown in Fig. 7.c. At

low abstraction level, a hardware service can be accessed

through a set of SystemC ports (sc_port). For example, a

hardware implementation of a Read FIFO service using a

full handshake protocol could be accessible trough Request,
Data and Acknowledge signals. As this kind of element

corresponds exactly to the standard SystemC

implementation style, no more details will be given for the

hardware elements implementation.

C. Hybrid modeling

Hybrid element is represented in Fig. 7.b. A hybrid

element can be seen as a mix of hardware and software

elements in the sense that it can implement both software

services as describe in section IV.A and hardware services

described in the previous section.

Thus, hybrid elements can be connected to pure software

elements in one side and pure hardware elements in the other.

Finally, it can be seen as the synchronization point between

software and hardware. The execution time of the entire

application can be advanced only by hardware or hybrid
elements since software elements should not call SystemC

wait function. This notion is similar to the “real world” were

the execution time of software is directly dependent on the

underlying hardware and especially the processor on which

it is executed.

In Fig. 6, the FIFO is a hybrid element providing the

WRITE software service for the software side and a set of

hardware ports implementing the READ service for the

hardware side. Data structures inside this FIFO are both

accessible from the function and the SystemC process. In

order to introduce more accuracy in the model, the software
function can call SystemC wait with appropriate value.

Consumer (HW)Producer (SW)

Write

Hybrid FIFO

ProcessProcesscomon

data

structure

Read Consumer (HW)Producer (SW)

Write

Hybrid FIFO

ProcessProcesscomon

data

structure

Read

Fig. 6 Example of hybrid element

4B-2

392

sc_export

Function call

Function

sc_exportsc_export

Function callFunction call

FunctionFunction sc_port

sc_signal

P Process

sc_portsc_port

sc_signalsc_signal

P ProcessP Process sc_modulesc_module

(a)(a)

P

(b)

PP

(b)

P0

Pn

(c)

P0

Pn

P0

Pn

(c)

Fig. 7 SystemC representation of a) software b) hybrid and

c) hardware elements

D. Flexible HW/SW interface modeling

Using this SystemC coding rules, several elements can

implement identical services. A hardware/software Interface

implementation relies on assembling these elements coming

from libraries. The choice between elements implementing

the same service can depend on several criteria like power

consumption, area, code size, used memory, speed, etc.

The flexibility of the interface modeling is naturally

provided by this approach and could be strengthen with

automatic generation tools.

V. Experiments

A. Transaction Accurate Model of the Hardware/Software
Interface

 In this section, we show how to apply the proposed

method to implement a Transaction Accurate model of the

hardware/software interface proposed in [9]. In this model,

the software API is based on the Hardware Abstraction

Layer (HAL). The previous implementation allows

validation of the entire application with early, fast and time

accurate simulation of the global design but suffers from a

lack of formalism and flexibility.

 Fig. 8 represents a simplified view of the
hardware/software abstract interface at the Transaction

Accurate level.

Access Unit

Execution Unit

PU PU

Data Unit

Synchronisation

Unit

Device DeviceDevice

Access Unit

Execution Unit

PU PU

Data Unit

Synchronisation

Unit

Device DeviceDeviceDevice DeviceDevice

Fig. 8 HAL level abstraction of the CPU subsystem

This model allows parallel computations inside the

Execution Unit. The Access Unit models communications

and the data transfers in the CPU subsystem. The Data Unit
encapsulates the model of physical devices that may hold

relevant information from a user point of view. Finally, the

Synchronization Unit modeled the interrupt controller and all

interruption management mechanism.

Table I lists the main software services provided and

required by the system programmers. In this list, 2 types of

services have to be highlighted:

• The OS_INIT service is not provided but rather
required by the software API and should be

implemented by the Operating System executed on

top of this model.

• The CONSUME service is provided for simulation

purpose only, to allow timing estimation of software

execution.
TABLE I

HAL API example
Services Description

CXT_INIT Void init_context(cxt_type,
task_h , …)
To initialize the context of a software task

CXT_SWITCH void switch_context(cxt_type
old, cxt_type new)
Switch context between tasks

OS_INIT void os_init(void * args)
This service is required by the software
interface, and must be provided by the
operating system

READ int read(unsigned int addess)
Direct read access to a specific address

WRITE void write(int data, unsigned
int addess)
Direct write access to a specific address

ATTACH_ISR Int attach_isr(int Id,ISR_h h,
void * args)
Register a interrupt sub routine into the
synchronization unit

CONSUME int consume(int cycles)
This service is not specific to HAL but
allow annotated code to be simulated with
time accuracy

B. Transaction Accurate model implementation

The implementation of the Transaction Accurate model

using the notion of service and elements is detailed in Fig.

10. The main part of the software API is implemented by the

Processing Unit hybrid element (PU). This can be explained

by the fact that we are implementing a low level API and the

element stands for a processor. Since the PU is a key
element in this model, the rest of this section will focus on

its implementation.

The role of the PU element is to allow the application and

the Operating System on top of the HAL API to be executed

sequentially taking into account the time aspect. To do this,

the PU is modeled as a hybrid element containing one

SystemC process. After design elaboration, this process will

be called by the SystemC scheduler and will be executed

until a call to the wait function. After low level initialization,

4B-2

393

the PU element calls the software OS_NIT service provided

by the Operation System which is the entry point of all

software. In order to simulate the execution time of the

software, this one has been annotated statically in the source

code by calling the CONSUME service provided by PU.

This consume will finally call the SystemC wait function.

Since the software call graph is executed in the PU process

context, all calls to SystemC wait are considered

sequentially. This correctly models the sequential timing

behavior of software execution.

This mechanism initially introduced in [9] allows
performing performance estimation with more or less

accuracy depending on the precision of the annotation (see

Fig. 9). Wait function can also be called indirectly by

software, for example during a READ or WRITE
communication access to account for bus latency. Even if

this wait is implemented in other elements, it will be

executed in the context of the PU process.

HAL init

PU

OS init

OS User

Appli

PU process

Call to the consume function

S
im

u
la

tio
n
 tim

e

HAL init

PU

OS init

OS User

Appli

PU process

Call to the consume function

S
im

u
la

tio
n
 tim

e
Fig. 9 Consume mechanism for software time estimation

SW

API
OS

INIT

OS

INIT

SMP

THIS

COUNT

SMP

THIS

COUNT

IO_ACCESS

READ

WRITE

IO_ACCESS

READ

WRITE

DIAGNOSTIC

CONSUME

DIAGNOSTIC

CONSUME

TTYTTYMEMMEM VCI_WRAPPERVCI_WRAPPER

FIFOFIFO

XBAR

CXT

INIT

SWITCH

CXT

INIT

SWITCH

SPIN

LOCK

UNLOCK

SPIN

LOCK

UNLOCK

CONTEXTCONTEXT

PUPU

HW

Interface HS_WRITE REQ ACK DATA

IT

MASK

UNMASK

IT

MASK

UNMASK

IT_CTRLIT_CTRL

INTERRUPTINTERRUPT

SPINSPIN

VCI_WRAPPERVCI_WRAPPER

TIMER

Software

hybrid

hardware

S

S

Required Service

Provided Service

Software

hybrid

hardware

Software

hybrid

hardware

SS

SS

Required Service

Provided Service

Fig. 10 Transaction Accurate level of the HW/SW interface mode

C. Application example

a. Overview : Application Specification

 Fig. 11 represents the SystemC specification, also

called System Level Model of the application used for the

experimentation. This example is composed of two software
threads and one hardware module communicating through

FIFO. At this level, the interfaces between hardware and

software are totally implicit and all modules are executed in

a concurrent way. This model offers high simulation

performance but suffers from a very low timing accuracy.

Software Sub-System

Software

Thread 1

Software

Thread 1
Software

Thread 2

Software

Thread 2

HardwareHardware

Software Sub-System

Software

Thread 1

Software

Thread 1
Software

Thread 2

Software

Thread 2

HardwareHardware

Fig. 11 Specification of the application example

4B-2

394

b. ISA/RTL model of the application

 At the opposite side, the Virtual Prototype using the

ISA/RTL level offers a full detailed hardware/software

interface description. In this model, software has been

cross-compiled for a specific processor (MIPS-R3000 in our

case) and is interpreted by an Instruction Set Simulator. This

software is composed of a multi-threaded application, a

POSIX compliant Operating System and a Hardware

Abstraction Layer. The Hardware part is implemented in

SystemC RTL.
 The aim of this experimentation is to replace the

hardware/software interface of the ISA/RTL model with the

abstract executable model described in the previous section.

As depicted in Fig. 12, the HAL software layer, the ISS and

the processor sub-system will be removed and replaced by

the model of the hardware/software interface at the

Transaction Accurate Level.

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Transaction Accurate

HW/SW interface

HAL API

HW interface

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Transaction Accurate

HW/SW interface

HAL API

HW interface

Fig. 12 Virtual Prototype and Transaction Accurate model of

the application

c. Results

In this experiment, we have run the simulation at three

abstraction levels (System Level, Transaction Accurate level

and Virtual Prototype). TABLE II gives results in term of

simulation speed and shows an interesting speed-up

compared to the Virtual Prototype model of the application.

Transaction Accurate model of the hardware/software

interface also provides interesting capabilities in terms of

validation facilities. These capabilities are related to both

hardware and software. Fig. 13, shows hardware waveforms

of communication port and software information of the

current executed thread ID.

TABLE II: speed up results
Abstraction level Simulation time Speed up

System Level 0.1 s x 15594

Transaction Accurate 5.65 s x 276

Virtual Prototype 1560.4 s x 1

Fig. 13 Simulation waveforms at Transaction Accurate level

These debug information are helpful for the validation of

the sensitive parts like Operating System and for

performance estimations. Elements of the hardware software

interface can easily be instrumented in order to highlight

information like bus contention, software thread

synchronization mechanisms, memory usage etc.

VII. Summary and Conclusions

In this paper we presented a unified model based on

SystemC to implement the overall hardware/software

interfaces. This approach has been used to implement an

abstract model of the interface proposed in a previous work.

This model has been applied to an application example.

Future work will consist to enrich the Transaction

accurate model to extract key information for architecture

exploration. Finally, next objectives are automatic

generation of the hardware/software interfaces from a library

of basic elements and to extend this approach to other

abstraction levels.

References

[1] Smith, J., De Micheli, G., Automated Composition of

Hardware Components, Proc. 35th Design Automation Conf.
(DAC’98), ACM Press, San Francisco, CA, 1998.

[2] Passerone, R., Rowson, J., Sangiovanni-Vincentelli, A.,
Automatic Synthesis of Interfaces between Incompatible
Protocols, Proc. 35th Design Automation Conf. (DAC 98),
ACM Press, San Francisco, CA, 1998.

[3] Wang, W., Malik, S., and Bergamaschi, R.A., Modeling and
Integration of Peripheral Devices in Embedded Systems,
Design, Automation and Test in Europe Conference and

Exhibition (DATE’03), Munich, Germany, 2003.
[4] Vercauteren, S., Lin, B., De Man,.H., Constructing

Application-Specific Heterogeneous Embedded Architectures
from Custom HW/SW Applications, Proc. 33rd Design
Automation Conf. (DAC’96), ACM Press, Las Vegas, NV,
1996.

[5] Balarin F., Watanabe Y., Hsieh H., et al., Metropolis: An
Integrated Electronic System Design Environment, IEEE

Computer, April 2003.
[6] Cesário, W., Baghdadi, A., Gauthier, L., et al., Component-

Based Design Approach for Multicore SoCs. . Proc. 39th
Design Automation Conference (DAC’02), ACM Press, New
Orleans, LA, 2002.

[7] Brunel, J-Y., Kruijtzer, W. M., Kenter, H. J. H. N., et al. COSY
Communication IP’s, Proc. 37th Design Automation Conf.
(DAC’00), ACM Press, New York, NY, 2000.

[8] Zitterbart, M., Stiller, B., Tantawy, A.N., A Model for Flexible
High-Performance Communication Subsystems, Selected
Areas in Communications, IEEE Journal on, vol. 11, no. 4,
May 1993

[9] A. Bouchhima, I. Bacivarov, W. Youssef, M. Bonacciu, A. A.
Jerraya, "Using Abstract CPU Subsystem Simulation Model
for High Level HW/SW Architecture Exploration", ASP-DAC
2005 proceedings,18-21 January 2005, Shanghai, China, 2005.

[10]SystemC, http://www.systemc.org.
[11]Adam Rose and Stuart Swan and John Pierce and Jean-Michel

Fernandez and Cadence Design Systems, « Transaction Level
Modeling in SystemC », Mentor Graphics; Cadence Design
Systems.

4B-2

395

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

