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Abstract— Network-on-Chip (NoC) architectures with opti-
mized topologies have been shown to be superior to regular
architectures (such as mesh) for application specific multi-
processor System-on-Chip (MPSoC) devices. The application spe-
cific NoC design problem takes as input the system-level floorplan
of the computation architecture, characterized library of NoC
components, and the communication performance requirements.
The objective is to generate an optimized NoC topology, and
routes for the communication traces on the architecture such
that the performance requirements are satisfied and power
consumption is minimized. The paper discusses a two stage
automated approach consisting of i) core to router mapping,
and ii) topology and route generation for design of custom NoC
architectures. In particular it presents an optimal technique for
core to router mapping (stage i), and a factor 2 approximation
algorithm for custom topology generation (stage ii). The superior
quality of the techniques is established by experimentation with
benchmark applications, and comparisons with integer linear
programming (ILP) formulations, and heuristic techniques.

I. INTRODUCTION

Network-on-Chip (NoC) has been proposed by academia

and industry as a solution for the on-chip communication

challenges for the future MPSoC architectures. A NoC is

composed of routers that are inter-connected by physical links.

Each computation or storage core interacts with the NoC

through a resource to network interface. The NoC supports

packet switching based asynchronous communication. NoC is

inherently scalable and supports high bandwidth by enabling

concurrent communication.

Application specific MPSoC architectures that are aimed at

a narrow domain such as multimedia set-top boxes integrate

numerous heterogeneous computing and storage cores. Each

core implements a limited set of application functionality.

Consequently, inter-core communication depicts well defined

patterns as determined by the specific domain. For such

designs, the application specific custom NoC architecture has

been demonstrated to be superior to regular topologies in terms

of power consumption and NoC resources [1] [2].

The paper focuses on automated design of application

specific custom NoC architectures. The overall MPSoC design

flow can be divided into two stages focusing on computation

architecture, and NoC architecture, respectively. The output

of the computation architecture design stage is a collection of

processing and storage cores, and inter-core communication

performance requirements for NoC. The objective of NoC

design stage is to construct an optimized interconnection archi-

tecture such that the communication performance requirements
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Fig. 1. Custom NoC design flow
are satisfied and the power consumption is minimized.

It has been shown that the percentage of power consumption

in NoC physical links increases from about 20% in 160

nm technology [3] to upward of 30% in 65 nm technology

[2]. The power consumption in the physical links is directly

dependent upon the length of the link and bandwidth of traffic

flowing through the link. The length of the physical link is in

turn governed by the system-level layout. The designer also

specifies a maximum inter-router link length (Dmax) for single

clock cycle data transfer. Therefore, in order to account for link

power consumption and to ensure that the link lengths are less

than Dmax, the design of the NoC architecture must consider

the system-level layout. System-level floorplanning is a well

researched topic, and existing techniques [4] can be utilized to

generate the floorplans. Our automated NoC design techniques

operate upon the system-level floorplan of the computation

architecture.

A. Custom NoC design flow

Figure 1 depicts the application specific NoC design flow.

The inputs to the custom NoC design problem are: i) the

system-level floorplan of the computation architecture, ii)

communication bandwidth requirements, and iii) character-

ized component library of interconnection elements (namely,

routers and physical links).

The NoC performance constraints are specified by a com-

munication trace graph (CTG), where the nodes represent the
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processing cores or memory elements, and the edges represent

the communication traces between the cores. Each node in

the CTG is specified by its physical dimensions, and each

edge is specified by its bandwidth requirement. The cores in

application specific MPSoC architectures for multimedia and

network processing domains demonstrate well defined periodic

inter-core communication characteristics and hence, can be

easily modeled in the trace graph.

The output of the custom NoC design flow is a specification

of the interconnection network topology, a mapping of com-

putation architecture cores to the NoC routers, and routing

of CTG traces on the topology such that the communication

bandwidth requirements are satisfied, and power consumption

is minimized.

In this paper, we address the NoC design problem by

dividing it into two stages namely, core to router mapping,

and routing and topology generation. We present a polynomial

time optimal algorithm for mapping of cores to routers such

that the power consumption is minimized. We also present a

linear programming based approximation algorithm for routing

and topology generation that minimizes the number of router

resources in the topology subject to low power constraints.

Our algorithm runs in polynomial time and guarantees that

the number of routers in the topology is at most twice the

optimal solution, and the power consumption is minimized.

B. Definition of the NoC design problem

The NoC design problem was formally defined in [2]. We

restate the problem for the sake of completeness.

“ Given:

• A directed communication trace graph G(V, E), where

each vi ∈ V denotes either a processing element or a

memory unit (henceforth called a core), and the directed

edge ek = (vi, vj) ∈ E denotes a communication trace

from vi to vj .

• For every ek = {vi, vj} ∈ E, ω(ek) denotes the

bandwidth requirement in bits per cycle.

• A router architecture characterized by:

– a parameterizable value η, which denotes the number

of ports of a router,

– a value ηmax that denotes the maximum number of

available ports in a router,

– Ω denotes the peak input and output bandwidth that

the router can support on any one port,

– Ψi that denotes the power consumed per unit band-

width of traffic flowing in the input direction for any

port of the router, and

– Ψo which denotes the power consumed per unit

bandwidth of traffic flowing in the output direction

for any port of the router.

• A physical link power model where Ψl denotes the power

consumed per unit bandwidth of traffic flowing through

the link per unit length of the link.

• A system-level floorplan of the cores.

• A maximum inter-router distance Dmax.

The objective of the custom NoC design problem is to

construct:

• a NoC architecture J(R, L, C), where R denotes the

set of routers utilized in the synthesized architecture, L
represents the set of links between two routers, and a

many to one mapping function C : V → R that denotes

the mapping of a core to a router,

• a set B of ordered tuples of routers, where each bi〈ri, rj ,
. . . , rk〉 ∈ B, ri, . . . , rk ∈ R denotes a route for a trace

e(vi, vk) ∈ E (C(vi) = ri, C(vk) = rk), and

such that the NoC power consumption is minimized. ”

II. PREVIOUS WORK

Benini et al. [5] presented a survey of design techniques

for application specific NoC architectures. Pinto et al. [6]

proposed a technique for synthesis of point to point links that

utilize at most two routers between source and sink. Thus,

their problem formulation does not address routing. Jalabert et

al. [1] proposed a custom NoC instantiation framework based

on designer specified inputs. It does not synthesize the custom

topology. Ogras et al. [7] proposed graph decomposition based

heuristic techniques for application specific NoC architectures.

Ogras et al. [8] also proposed heuristic incremental techniques

that modified mesh based topologies via long link insertion.

All papers cited above assume a constant predetermined link

length, and hence do not incorporate system-level floorplan-

ning to estimate their actual lengths. Srinivasan et al. [2] ob-

served that the physical links are expected to consume upward

of 30% of the NoC power consumption. They proposed integer

linear programming (ILP) based techniques that incorporated

system-level floorplanning to account for physical link power

consumption. This paper accounts for link power consumption

by taking the system-level floorplanning of the cores as input

to the NoC design flow. To the best of our knowledge, this

is the first attempt at designing approximation algorithms for

NoC design The quality of the solutions produced by our

technique is demonstrated by experimenting with several mul-

timedia and network processing benchmarks, and comparisons

with existing techniques.

The paper is organized as follows. In Section III we describe

our technique for mapping of cores to the routers of the NoC.

In Section IV, we present our technique that generates static

routes for the traces, and generates the NoC topology. Section

V presents the results, and finally, Section VI concludes the

paper.

III. CORE TO ROUTER MAPPING

Given a system-level floorplan, our technique assigns pos-

sible router locations to be the corners of the cores in the

floorplan. Once the possible router locations are determined,

our technique connects each core in the computation architec-

ture to a unique router in the layout. Note that while several

cores can be mapped to the same router, each core is uniquely

mapped to a particular router. We assume that a core can be

mapped to one of the four routers located at its corner. Thus,

if (x, y) denotes the lower left hand side corner of a node
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Fig. 2. Core alignments and flow graphs

v, the core is mapped to one of the routers located at (x, y),
(x +Wv, y), (x, y +Hv) or (x +Wv, y +Hv), where Wv is

the width of the core, and Hv is its height.

The objective of the core to router mapping is to minimize

the power consumption. As the topology of the NoC is not

defined at this stage, we abstract the power consumption as

the power consumed by point to point physical links between

two routers. For each core i, let Ri denote the set of routers

located at its four corners. Core i is mapped to one of the

routers in Ri. Let Xi,j denote a (0,1) integer variable that is

set to 1 if node i is mapped to router j ∈ Ri, else 0. Let

Xi,j,k,l denote a (0,1) integer variable that is set to 1 if node i
is mapped to router j, and node k is mapped to router l, else 0.

We define these variables only when (i, k) ∈ E or (k, i) ∈ E.

The objective is to minimize the power consumption expressed

as:

Minimize Z =
∑

(i,k)∈E

∑
j∈Ri

∑
l∈Rk

ω(i, k)·ψl ·dist(j, l)·Xi,j,k,l

(1)

where dist(j, l) is the Manhattan distance between the two

routers j and l. In this section we prove that the core to router

mapping problem is equivalent to max-flow min-cut problem,

and therefore can be solved optimally in polynomial time.

A. Equivalence to max-flow min-cut problem

The minimization goal can be split as the sum of two terms:

Z =
∑

(i,k),j,l

σ(i, k)·x(j, l)·Xi,j,k,l+
∑

(i,k),j,l

σ(i, k)·y(j, l)·Xi,j,k,l

(2)

where σ(i, k) = ω(i, k) · ψl, x(j, l) is the x-offset between

the two routers, and y(j, l) is the y-offset between the two

routers. We can consider the overall problem as a composition

of two sub-problems that determine the x and y co-ordinate,

respectively of the router to which the core is mapped.

Without loss of generality we first consider the sub-problem

that determines the x co-ordinates of the routers for all the

cores. Thus, we wish to determine if the core should be

mapped to a router in the x− (left hand of the core) or

x+ (right hand side of the core) location. Based on the

relative locations of two communicating cores vi and vk on the

floorplan we have three cases as shown in top row of Figure 2.

For each case we construct a flow graph as shown in the lower

row of the figure. In each graph we introduce two nodes x−

and x+ in addition to vi and vk. We also add edges between

the various nodes and annotate them with weights. The weight

of an edge is derived from the various distances as specified

in top row of the figure. A cut of each of the graphs that

assigns x− and x+ to different partitions denotes the mapping

of the cores to the routers. The weight of the cut given by the

summation of weights of edges that are cut denotes the x-offset

between the routers to which the cores have been mapped. For

example in Case I, the cut C1 denotes that vk is mapped to x−

and vi is mapped to x+. The weight of C1 given by a denotes

the x-offset between the x− router of vk and x+ router of vi.

Similarly, the cut C2 denotes that vk and vi are both mapped

to their respective x+ router, the x-offset is a + W(k). The

cut weight multiplied by the bandwidth of traffic between the

two cores (ω(i, k)) and link power model (ψl) denotes x-offset

component of the power consumption due to the mapping (first

term of equation 2). For a pair of communicating cores (i, k)
we can find the lowest power consumption router mapping by

generating the minimum cost cut in the flow graph.

We now generalize the above construction to the entire

CTG. We construct a flow graph G(W,F ) with W = V ∪
x+∪x− where x+ and x− are additional nodes that represent

the routers. For every trace (i, k) ∈ CTG(V,E) we classify

the trace in to one of the three categories based on the

core locations, and introduce edges in flow graphs. The edge

weights are given by the product of the communication band-

width (σ(i, k)), link power model (ψl) and distance weights

as described in the previous paragraph.

Theorem 1: A cut in Graph G(W,F ) that assigns x− and

x+ to different partitions represents a solution to the x co-

ordinate sub-problem.

Proof: Consider a core vi. A cut either intersects the

edge from x− to vi, or the edge from x+ to vi, but not both.

Moreover, a cut must intersect one of the two edges. If the

edge from i to x− is cut, it represents that core vi is mapped

to router at x− off-set (and vice versa). The weight of the

cut represents the power consumption contribution due to the

mapping of the routers to the respective x+ or x− routers.

Thus, the cut captures both the mapping of the cores to the

routers, as well as the power consumption incurred due to the

assignments. Therefore, the cut represents a solution to the x
co-ordinate sub-problem.

From Theorem 1, it follows that if we could generate a

cut of minimum cost, we have an optimal solution to the x
co-ordinate sub-problem. This is a polynomial time solvable

max-flow-min-cut problem and we solve it by invoking the

Push-Relabel algorithm [9] that has a complexity of O(n3)
in the number of nodes of the graph. We can similarly solve

the y co-ordinate sub-problem, the utilize the two solutions to

determine the unique router for mapping each core.

IV. ROUTING AND TOPOLOGY GENERATION

The output of the first stage of our custom NoC design

technique is a system-level layout with cores and routers,
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and an assignment of the cores to specific routers (see left

hand side of Figure 3). Thus, the source and sink routers for

each trace are known. Our routing and topology generation

technique addresses two problems namely, minimization of

power consumption, and minimization of number of router

resources in the network. We present our technique by first

discussing a base case that minimizes the number of routers

in the NoC, and build upon the base case to incorporate low

power requirements.

A. Topology generation with least number of routers

In this section, we present our technique to solve the prob-

lem of NoC topology generation such that the total number

routers utilized in the topology is minimized. This problem

is a node weighted generalized steiner forest problem, and is

known to be NP hard [10]. We formulate the problem as an

ILP. As mentioned before, it is known that integer relaxation

of ILP formulations can be solved in polynomial time [9].

We prove that by utilizing iterative rounding on the integer

relaxation of the ILP we can establish a 2-approximation

on the quality of the solution in polynomial time. In other

words the number of routers in the topology generated by our

solution will be at most twice that of the optimal solution.

In the following paragraphs, we first present a cut based

ILP formulation for our problem. The cut based ILP has

exponential constraints, and hence, is not suitable for practical

applications. Therefore, we also present a equivalent flow

based LP with polynomial number of constraints. We prove

our 2-approximation bound by utilizing the LP of the cut

based ILP, and iteratively solve the equivalent flow based LP

to obtain the solution in polynomial time.

1) Cut based ILP for minimizing routers: Given the set of

routers and core to router mappings, our technique initially

determines the available paths from the source to the sink

of each trace. This is done as follows. We construct a graph

Gr(Vr, Er) called the routing graph, where Vr is the set

of available routers, and there exists an edge e = {ri, rj}
whenever the Manhattan distance between ri and rj is less

than Dmax. Figure 3 depicts a core to router mapping and the

corresponding routing graph. In the figure, the black squares

that denote the routers, are the nodes of the routing graph. The

edges of the routing graph denote the possible physical links

in the final NoC.

Let C denote a cut that divides the nodes of the routing

graph Gr into two subsets S and S′. In Figure 3, the curve

X−X ′ represents a cut. For the cut, let δ(S) denote the set of

edges that cross the cut. The edges intersected by cut X −X ′

form the set of edges of δ. For each cut C that divides the

routers into sets S and S′, we define a function called F (S)

that is set to 1 if there exists a trace such that its source lies

in S and sink lies in S′, or vice versa. Otherwise it is set to

0. Let Xr denote a (0,1) variable that is set to 1 if router r of

the CTG is utilized in the NoC topology. Now, the LP can be

formulated as follows:

Minimize Z =
∑

r

Xr S.T

∀C
∑

∀e(r,s)∈δ(S)

Xr ≥ F (S)

The above constraint states that for a cut C that partitions

the routers into sets S and S′ such that F (S) = 1, at least

one router which is adjacent to the cut must be utilized in

the final topology. Applying this constraint on all the cuts

in the graph ensures that a route exists for all traces. Since

the number of cuts in a graph is exponential, the cut based

formulation defines a polytope with exponential constraints.

We can reduce the number of constraints by utilizing an

alternative flow based formulation. It is a well known fact

that the cut based formulation and the flow based formulation

are equivalent [11].

2) Flow based ILP for minimizing routers: The objective

of the flow based formulation is same as that of the cut based

formulation. Let Yr,s,k denote a (0,1) variable that is set to 1

if trace k passes through the physical link (r, s) ∈ L. For each

core m in V , let mMr denote the relation that m is mapped

to router r. We have the following constraints :
• Any router that maps a core must be present in the

network. Therefore, we have the following constraint.

∀r,∃m ∈ V : mMr,Xr = 1
• A trace in the CTG always passes through the source

and sink routers. For trace t = (m, n), let q denote the

router that maps m, and r denote the router that maps

n. Since the trace is routed through the two routers, one

physical link connected to the respective routers must be

present in the topology. Hence, the following equalities

must hold. ∑
q:(q,s)∈L

Yq,s,t = 1
∑

q:(s,q)∈L

Ys,q,t = 0

The first constraint ensures that there is exactly one link

through which the trace t leaves router q. The second

constraint ensures that the trace does not enter router q
from any other router. Therefore, the constraint ensures

that there are no cycles in the traffic routes.

Similar constraints for the router mapping the sink are as

follows. ∑
r:(s,r)∈L

Ys,r,t = 1
∑

r:(r,s)∈L

Yr,s,t = 0

• For each trace, the flow due to the trace must be con-

served in all routers except the routers that map the source

and sink.

∀t ∈ E
∑

q:qr∈Gr

Yq,r,t =
∑

r:rs∈Gr

Yr,s,t
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• If there exists a flow through a router, that router is

utilized in the topology.

∀r,∀k, Xr ≥
∑

s:qr∈L

Yq,r,k

The flow-based ILP only has O(|E||L|) constraints. There-

fore, the integer relaxation of the flow based ILP is suitable

for direct solution by solvers.

3) Algorithm and proof of 2-approximation: In this section,

we present our technique for obtaining integer solution from

the LP relaxation, and prove that our technique utilizes at most

twice the number of routers compared to the optimal solution.

Definition 1: A function F : 2R → Z is said to be weakly

supermodular [10] if F (R) = 0, and at least one of the

following conditions is true for any two sets A,B ∈ R :

• F (A) + F (B) ≤ F (A − B) + F (B − A)
• F (A) + F (B) ≤ F (A ∩ B) + F (B ∪ A)
Lemma 1: The function F defined in the cut based ILP is

weakly supermodular.

Proof: As all traces are contained in the Gr, F (R) = 0.

In order to prove the second part of the theorem, we enumerate

all cases, and show that the supermodularity condition holds.

The different cases are shown in Figure 4. The ovals A, B

denote the two sets, the black circles denote two cores which

may either lie inside or outside the sets, and the line joining

the cores denotes the communication trace. Each case in the

figure is annotated with one of the inequalities that satisfies

the supermodularity conditions.

Fact 1: For any weakly supermodular function F , any

extreme point solution x to the LP must pick some router

to the extent of at least a half. In other words, Xr ≥ 1
2 for at

least one router r [10].

Our algorithm exploits Lemma 1 and Fact 1, and utilizes an

iterative rounding procedure on the integer relaxation solutions

of the flow based ILP to generate the topology. The algorithm

is presented below.

Begin algorithm LP round
Initialize H ← φ : F ′ ← F
While F ′ �= 0 do

Solve LP to obtain solution X.

For each variable x ∈ X do

If (x ≥ 1
2 ) then

round x to 1

H = H ∪ x
end-If

End for

Update ∀S ⊆ V, F ′(S) = F (S) − |δH(S)|
End While

Output H

End algorithm LP round
Theorem 2: Algorithm LP round achieves an approxima-

tion ratio of 2 for the routing problem.

Proof: Jain [10] gave an LP formulation for the edge

weighted steiner tree problem, and utilized an iterative round-

ing procedure that results in factor 2 approximation for the

problem. Our problem is an instance of the node weighted

steiner tree. Consider an optimal solution (X, Y ) to our LP.

First, note that Y alone is feasible for the LP of Jain, because

the constraints that do not involve X variables in our LP

are the same as the ones of Jain’s LP: they require that a

certain flow be supported (or that certain cuts be crossed)

by the selected edges. Thus Jain’s result implies that in an

optimal solution to the LP there exists a triple (p, q, t) such that

Yp,q,t ≥ 1/2. Now for this particular p, we have the constraint

Xp ≥ ∑
∀q,∀t Yp,q,t +

∑
∀o,∀t Yo,p,t, and so Xp ≥ 1/2. That

is, in any optimal solution to our LP, there exists an p with

Xp ≥ 1/2, and so in the for loop that the algorithm exercises

in each iterative rounding phase, at least one more variable is

fixed to 1. By Lemma 1, and Fact 1, our LP in the next phase

satisfies all the requirements for Jain’s theorem, and so the

algorithm proceeds until a feasible integral solution is found.

Now we note that every time any variable Xp was fixed to 1,

this was either as part of an optimal LP solution, or because its

fractional value was at least 1/2. To prove the approximation

bound, we use induction on the number of iterations (phases).

In the base case, the algorithm only rounds up edges with

fractional value at least 1/2 and so the cost of the integral

solution is at most twice the LP cost which is no more than

the optimum. Suppose now for the induction step that X is

the LP solution found in the first iteration. Let W be the set

of vertices (routers) picked by rounding in the first iteration.

By Fact 1, W is nonempty. Let X ′ be the vector we get from

X when we set all its components that are less than 1/2 to

zero. Since the rounding was applied only to the variables with

values at least 1/2, cost(W ) ≤ 2cost(X ′).
Let W ′ be the set of vertices picked in the later phases to

satisfy the remaining requirements. The crucial observation is

that cost(W ′) ≤ 2cost(X−X ′). This follows because X−X ′

satisfies all the constraints that are not satisfied by W , and

so is a feasible solution to the residual LP instance. By the

induction hypothesis, the cost of the set of vertices picked

in subsequent phases is at most twice the optimal residual LP

solution OPT ′, that is, cost(W ′) ≤ 2OPT ′ ≤ 2cost(X−X ′).
Now since W + W ′ satisfies all the original constraints, we

have cost(W + W ′) ≤ cost(W )+cost(W ′) ≤ 2cost(X ′) +
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2cost(X − X ′) ≤ 2cost(X). Comparing the leftmost side to

the rightmost, we see that the total cost of vertices selected

by the algorithm is at most twice the LP relaxation cost, and

so at most twice the optimum.

B. NoC topologies with minimum power consumption

For a trace tr, we define a shortest path route to be one

that consumes minimum power. The total power consumption

for the route is given by the power consumption due to the

routers as well as the physical links. The technique presented

in the previous section does not ensure shortest path routes for

the traces. Therefore, some traces may be routed by longer

paths, resulting in higher power consumption. For example,

consider the route for trace tr in Figure 5. In the figure,

the darkened circles represent routers that are already present

in the topology, and the empty circles are not present in

the topology. A traffic route for tr that consumes minimum

number of routers is shown by heavy lines in the figure.

Clearly, this is not the shortest path for the trace. The shortest

path shown by dashed lines in the figure, consumes two

extra routers. If the design objective is to minimize power

consumption, the shortest path should be chosen at the expense

of extra routers.

1) Determination of shortest paths: In order to determine

the shortest paths, we again consider the routing graph. We

associate a weight with each edge, which intuitively gives us

the power consumption if the physical link corresponding to

the edge is utilized in the final topology. For each edge e =
{ri, rj}, ρe denotes its edge weight, and is given by

ρe = ψi + ψo + le × ψl

where le denotes the Manhattan distance between ri and rj .

The edge weights are assigned such that they capture the link

as well as the router power consumption.

Now, for each trace, we invoke Dijkstra’s shortest path

algorithm to determine the available shortest paths. Note that

there can be multiple shortest paths from a source to a

sink. The output of the call to the algorithm is a collection

of subgraphs, each subgraph denoting the shortest paths for

a particular trace. Consider the routing graph Gr depicted

in Figure 6(A). In the example, we are required to route

three traces, (src1, snk1), (src2, snk2), and (src3, snk3). The

corresponding shortest path graphs are depicted in part (B) of

the figure. Each node has a unique ID expressed as a double

(r, tr) where r denotes the router in Vr, and tr denotes the

trace to which the node belongs. For example, router (2, 1)
denotes router with ID 2 in Vr, and belonging to the graph

corresponding to trace 1. We denote this graph by shortest
path graph or SPG.

We define I(r, tr) = 1 if node (r, tr) is present in the solu-

tion obtained by invoking our routing and topology generation

technique on the SPG. Otherwise, I(r, tr) = 0. We now define

a mapping function, I(r × tr) → Xr as follows.

Xr =
{

1, if ∀tr ∈ E, ∃I(r, tr) = 1
0, otherwise

Xr is set to 1 if any of the traces utilizes router r. Therefore,

Xr denotes the number of routers in the topology. We obtain

our topology with minimum routers and shortest paths by

invoking our linear programming based technique on the SPG,

with an objective of minimizing the the sum of Xr. The cut

based formulation is formulated as

Minimize
∑

r

Xr S.T

∀C
∑

∀e((r,tr),(s,tr))∈δ(S)

Xr ≥ F (S)

As before, we formulate an equivalent flow based formulation

for the problem, and solve it in polynomial time with a 2-

approximation guarantee.

C. Post processing steps

At the end of the mapping and routing stages, the architec-

ture may have routers that are placed very close to each other.

In order to eliminate redundant routers, we merge pairs of

routers that are less than distance Dmax apart. Our merging

technique checks all pairs of available routers. Two routers

are candidates for merging if the distance between them is

less than Dmax, merging the two routers does not violate the

Dmax constraint for any other router in the topology, and the

overall power consumption as a result of merging does not

increase. The merging step is continued as long as there are

pairs of routers that satisfy the above criteria.

Finally, our technique invokes post processing steps for

bandwidth satisfaction, and deadlock avoidance. The width

and number of physical links between two routers are in-

creased such that they can support the required bandwidth.

Potential deadlocks can be detected at design time by con-

structing the (virtual) channel dependency graph (CDG) and

checking for cycles [12]. The cycles in the CDG can be

removed by introducing additional virtual channels at selective

router locations.

V. RESULTS

In this section, we present the results obtained by exe-

cution of our technique on several multimedia and network

processing benchmark applications. We compare the results

generated our technique (henceforth called guaranteed quality

algorithms (GQA)) with an optimal ILP based technique [2],

and a recursive partitioning based heuristic [13] called ANOC

that addresses the same problem. The benchmarks included
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Graph Graph ID Nodes Edges

JPEG Encoder G1 8 21

MPEG-4 decoder G2 12 13

MWD G3 12 13

VOPD G4 12 13

Set-top Box G5 25 27

AH Auth-IPv4 G6 9 8

Diffserv-IPv4 G7 11 10

NP1 G8 15 22

NP2 G9 17 24

NP3 G10 24 42

Fig. 7. Benchmarks 0
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Fig. 8. Power and router comparisons for Case-1
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Fig. 9. Power and router comparisons for Case-2

5 multimedia applications (benchmarks G1 through G5) and

5 network processing applications (benchmarks G6 through

G10). The sizes of the benchmarks ranged from 8 nodes and

21 edges to 24 nodes and 42 edges. The benchmarks were

obtained from the work presented by Hu et al. [14], Pasricha

et al. [15], and Ramamurthi et al. [16].

We present results for two cases: 1) NoC design subject

to a maximum link length (Dmax) constraint of 6mm hence-

forth called Case-1, and 2) NoC design without link length

constraints, henceforth called Case-2. In accordance with the

proof in Section III, the core to router mapping stage produced

optimal solutions. The solutions generated by the routing and

topology generation stage also converged to optimal solutions.

Figures 8 and 9 present the comparisons of power and router

resource consumption between our technique and the existing

techniques. The bars in the figures are normalized to the

optimal solution generated by the ILP based technique. In

the figures, the first bar denotes the power consumption of

our technique, the second bar denotes the power consump-

tion of ANOC, the third bar denotes the router resource

consumption of our technique, and the fourth bar denotes

the router resource consumption of ANOC. Since the ILP

based technique optimizes power consumption in isolation,

our technique consumed less routers than the ILP for some

benchmarks.

For Case-1 (Case-2), our technique consumed 1.04(1.04)

times the power consumption of the optimal ILP based

technique, and 0.93(0.9) times the power consumption of

the heuristic technique. The corresponding values for router

comparison were 1.12(1.21) and 1.21(1.31) respectively. The

higher router consumption is due to the imposition of low

power requirements that trades of the number of routers for

lower power. While our technique generated results in less

than a second, the ILP based technique took several hours to

converge to the optimal solution. However, due to its lower

complexity, the heuristic generated solutions in less than a

second as well.

VI. CONCLUSION

In this paper, we presented approximation algorithms for

the design of custom NoC architectures. We presented poly-

nomial time optimal and factor-2 approximation algorithm for

the core to router mapping, and topology generation stages,

respectively. We also presented graph transformations and

heuristic techniques such that the NoC consumes minimum

power, minimum router resources, and satisfies the architecture

specific port and bandwidth constraints on the routers. We

demonstrated the superior quality of the solutions generated

by our technique by experimenting with an optimal ILP

formulation, and an existing heuristic called ANOC.
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