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Abstract— In a realistic design flow, circuit and system optimizations

must interact with physical aspects of the design. For example, improve-
ments in timing and power may require replacing large modules with
variants that have different power/delay trade-off, shape and connectiv-
ity. New logic may be added late in the design flow, subject to intercon-
nect optimization. To support such flexibility in design flows we develop
a robust system for performing Engineering Change Orders (ECOs). In
contrast with existing stand-alone tools that offer poor interfaces to the
design flow and cannot handle a full range of modern VLSI layouts, our
ECO-system reliably handles fixed objects and movable macros in in-
stances with widely varying amounts of whitespace. It detects geometric
regions and sections of the netlist that require modification and applies
an adequate amount of change in each case. Given a reasonable initial
placement, it applies minimal changes, but is capable of re-placing large
regions to handle pathological cases. ECO-system can be used in the range
from high-level synthesis, to physical synthesis and detail placement.

I. INTRODUCTION

In his keynote speech at ISPD 2006, Cadence CTO Ted Vucure-
vich expressed the need for “re-entrant, heterogeneous, incremental,
and hierarchical” tools for EDA to handle the challenges of next-
generation designs [17]. However, the importance of this problem
has been realized much earlier, as Cong and Sarrafzadeh surveyed
the state-of-the-art in incremental physical design techniques in 2000
and found these techniques to be largely “unfocused and incom-
plete” [11]. Kahng and Mantik also found disconnects between the
relative strengths of incremental optimizers and perturbation tech-
niques [21]. They conclude that CAD tools of the time “may not be
correctly designed for ECO-dominated design processes” [21]. Con-
siderable progress has been made since 2000, e.g., in incremental
placement [2,4,6,13,18,19,23–27,31], but there is no common agree-
ment on the main tasks solved by incremental tools and how these
tasks should be solved. While incremental physical design is not new,
it remains a difficult, high-value goal.

We focus on incremental placement legalization and improvement
in large-scale layout. The need for such legalization typically arises in
two contexts. The first is the separation of placement into global and
detail, where rough placements are produced first and incrementally
improved to avoid overlaps and fit into cell sites. This is common for
analytical placers (APlace [22], mPL [8]) that approximate site con-
straints, while partitioning-driven tools (Capo [32], PolarBear [12])
and annealing-based tools (mPG [9], Parquet [3]) adopt correct-by-
construction frameworks and require little post-processing.

However, the second context for legalization appears entirely un-
avoidable. During physical synthesis, timing-critical gates may be
powered up and other gates may be powered down. These changes
affect gate size and typically create overlaps [24]. Buffer insertion
often leads to similar area violations, which must be resolved by le-
galization. The success of such legalization depends on how much
the areas have changed, in what patterns, and the strength of a given
legalizer. In particular, the legalization of mixed-size and block-based
designs with obstacles remains very challenging [29].

Our work is focused on the design of a powerful and robust ECO
tool that applies adequate amounts of replacement, in the right lo-
cations, to accommodate necessary design changes. To be useful in

high-level and physical synthesis, such a tool must be able to entirely
replace sections of the netlist, e.g., logic added to the design.

While practical considerations call for an interaction between
global placers and legalizers, traditional work on ECO and detail
placement focuses on stand-alone tools incapable of global place-
ment. An attractive, but yet unexplored solution would be to extend
an existing global placer to an incremental mode where it would auto-
matically identify layout regions and sections of the netlist that need
repair, but preserve satisfactory regions. In this work, we propose
such an extension, identify and develop new components that allow a
global placer to act like a powerful ECO tool, and develop a competi-
tive implementation based on the open-source Capo tool.

As this tool can always resort to calling global placement on the
entire design, it robustly handles a full range of modern designs, in-
cluding those with obstacles and movable macros. Time-consuming
global placement is not used when the initial placement is good.

We formulate the basic requirements for ECO placement and offer
relevant algorithms. Our tool, ECO-system, is many times faster than
a global placer and increases wirelength only slightly. ECO-system
outperforms APlace’s native legalizer on APlace global placements
by over 1% in HPWL while running 3x faster. ECO-system supports
extensive cell resizing producing legal results that mirror the origi-
nal with virtually the same HPWL. Unlike WSA [23, 24], we handle
obstacles and displace cells an order of magnitude less.

The rest of the paper is structured as follows. In Section II we
review previous work. Key requirements and a likely interface are
discussed in Section III. We present ECO-system in Section IV. Sup-
port for high-level and physical synthesis is discussed in Section V.
In Section VI we show empirical results and conclude in Section VII.

II. PREVIOUS WORK

Below we describe existing work on incremental techniques and
discuss relevant aspects of global placement.

Incremental techniques. Previous work on legalization, incre-
mental placement and detail placement can be broken into three fairly
distinct stages: i) cell spreading, ii) legalization through simple end-
case techniques, and iii) refinement of the legalized placement. For
the first stage, several algorithmic paradigms have been applied in
the literature such as network flows [6, 13, 14, 25], linear program-
ming [13], top-down whitespace injection [23, 24] and diffusion gra-
dients [31]. For end-case legalization, generally placers use greedy
movement of cells such as in Capo [32], the Tetris legalizer [18] in
FengShui [5], and greedy packing in DOMINO [14]. Lastly, place-
ment refinement is done in sliding windows of one or more rows using
optimal end-case placers based on branch-and-bound [7] or dynamic
programming [19], as well as cell swapping such as in FastPlace [30].

One major theme in much of the literature is minimizing the total
movement of cells in the design during legalization [6]. While our le-
galizer achieves remarkably small total/average movement, we point
out that in general this does not always lead to minimal increase in
interconnect parameters as shown in [1]. A legalization with min-
imal total cell displacement may cause a few cells to move a great
distance. Better timing may be achieved by legalization with greater
average movement, and even if the average movement is the same,
there can be many alternative replacements.
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Cell spreading. DOMINO [14] legalizes by splitting cells into
pieces of identical sizes, solving a flow formulation to minimize
movement, and finally reassembling the cell pieces. This limits the ef-
fectiveness of DOMINO to cells of similar sizes. Existing implemen-
tations of DOMINO do not account for obstacles and shift all cells
to the left, limiting their applicability to modern placement instances,
such as those from the ISPD05 contest [28]. Flow-based legalization
methods such as those used in [6,25] divide the core area into regions
and redistribute cells between neighboring regions until no region has
more cell area than available site area. These techniques can handle
movable macros by fixing them early in the legalization process.

In [23, 24] cells are incrementally placed by injecting whitespace
in a top-down fashion. The placement region is divided into a grid
with bisection steps (based only on the size and shape of the region,
not taking into account the cells, macros or fixed obstacles therein),
and whitespace is injected based on some particular objective (routing
congestion in [23], gate sizing and buffer insertion in [24]). Whites-
pace injection is done by shifting the geometric cut-lines to change
the whitespace balance in regions. When cut-lines are shifted, the
positions of the cells in the affected regions are scaled. Whitespace
injection can cause significant overlap due to scaling, especially in
the presence of fixed obstacles or movable macros as in the ISPD
2005 Contest benchmarks [28]. To remove these overlaps, a standard
legalization step must be applied followed by window-based detail
placement to recover HPWL. It is unclear how well this technique
may work on difficult block-packing instances [29]. The technique
may also fail in cases of extreme overlap, such as global placement
by analytical placers, as large areas of the placement will be essen-
tially random. The authors of [24] report an average displacement of
2.1% of the core area per cell, whereas the displacements observed
with our technique are an order of magnitude smaller.

The diffusion technique of [31] legalizes by dividing the core area
into a regular grid. Cells move from areas of high congestion to lower
congestion (moving around fixed obstacles) and their directions and
speeds are determined by solving equations similar to those in the
process of chemical diffusion [31]. New placements are generated
at each time step of the diffusion and the first solution which satisfies
area constraints is taken to minimize runtime and cell movement [31].
End-case legalizers work within the grid regions to produce a final
legal placement, but this may be impaired by difficult block-packing
instances [29]. The work in [26] improves that in [31], but does not
measure its impact on wirelength, congestion or timing.

The XDP technique [13] uses a combination of constraint graphs,
network flows, linear programming and greedy cell movement for le-
galization of mixed-size designs. Overlaps between macros are legal-
ized first by building constraint graphs until all macros can legally fit
into the core. After the constraint graph is finalized, a linear program-
ming instance is built and solved to remove macro overlap and move
macros minimally. Standard cells are legalized with a greedy heuris-
tic similar to that of FengShui [5], with the addition of flow-based
methods [6,25] as necessary. After legalization, window-based detail
placement techniques are used to improve HPWL.

Macro legalization. It was shown that a fixed-outline floorplan-
ner based on Simulated Annealing with sequence pairs could be used
to remove overlap [2]. Techniques in [36] improve on [2] and show
how to legalize with minimal perturbation. Removal of overlap be-
tween macros can be especially difficult given hard instances of block-
packing [29]. To handle such instances, the authors of [29] modify
B*-trees to account for obstacles. Recently, FLOORIST [27] has been
proposed which uses constraint satisfaction to remove macro overlap.

Greedy legalization. FengShui [5] uses a simple packing algo-
rithm by Hill [18] that is reminiscent of the Tetris game. Such le-
galization fares poorly in designs with large amounts of whitespace,
as shown by the results of the ISPD 2005 Placement Contest. Capo
uses two greedy legalizers for its global placements: one for macros
and another for standard cells [32]. The macro overlap legalizer tries
to move macros as little as possible so as not to affect neighboring

standard cells. If space is available, standard cells are legalized via
shifting. Otherwise cells are swapped between rows greedily until no
row is overfull. Fixed obstacles are handled implicitly as they fracture
rows [32].

Min-cut placement. ECO-system uses the top-down min-cut
placement framework [5, 12, 29, 32–34]. Recent techniques for min-
cut placement [10, 35] have produced some of the best placements
in the ISPD 2006 contest [20] and the most routable placements on
IBMv2 netlists [33]. In traditional min-cut algorithms, a placement is
viewed as a series of placement bins, the first of which encompasses
the core area and contains all movable cells. Based on number of cells
in a placement bin, the placer either bisects the bin or places the bin’s
cells with an end-case placer.

When bisecting a bin, a min-cut placer proceeds by selecting a
temporary cut-line for the bin based on the size and shape of the bin.
Based on the amount of cell and site area in the bin, the placer de-
termines partitioning tolerances. Given the tolerance, the placer uses
a balanced min-cut partitioner to determine how to divide the cells
between its child bins. Using the partitioning solution, the placer de-
termines a final cut-line based on whitespace allocation techniques
and divides the bin into child bins for further processing.

III. REQUIREMENTS OF INCREMENTAL PLACEMENT

Design optimizations that require incremental placement can alter
a design in many ways [15] such as (see also Section V):

• Changing cell dimensions or net weights/criticalities
• Adding/Removing various constraints, such as density

(to promote routability), regions (to address timing), etc.
• Inserting cells (with or w/o initial locations), nets or macros
• Adding obstacles (memories, IP blocks, RTL macros, etc.)
Generally these transformations create illegality in localized re-

gions of a design and/or create opportunities for improving an ex-
isting placement. All of these transformations can be dealt with by
performing placement from scratch, but this is undesirable: i) replace-
ment can be slow, ii) the transformations may assume that they are
applied to the current layout, and placement from scratch may inval-
idate them, and iii) the current layout may include intangibles such
as designer intent, or be optimized for novel objectives not accounted
for by the placement tool. Cong and Sarrafzadeh point out that incre-
mental placers need to be able to trade off potentially several design
objectives when operating on a placement [11].

In addition to preserving the original placement, a legalizer must
also be able to completely replace sections of the placement that are
deemed too suboptimal after design alterations. For example, if all of
the cells are moved on top of one another at the center of the place-
ment area, the legalizer should have the ability to replace all of the
cells as the initial placement gives little useful information about a
legal placement of the design. While this example is not typical of
legalization as a whole, it is quite possibly the case for small sections
of an illegal placement. This pathological case is not considered by
most legalization techniques (such as those described in Section II).

Take for example the case when new cells are added to a design. If
the new cells are added to isolated regions of the design, such as dur-
ing buffer insertion, traditional techniques that perturb the design only
slightly are most likely appropriate. Yet, timing optimization may call
for pipelining of a multiplier or changing an adder to a different type.
Adding a significant amount of new logic to an already placed and
optimized design will require the functionality of a full-blown placer
rather than just cell spreading to avoid degrading the design’s wire-
length and timing characteristics.

IV. TOP-DOWN LEGALIZATION

To develop a strong ECO tool, we build upon an existing global
placement framework and must choose between analytical and top-
down. The main considerations include robustness, the handling of
movable macros and fixed obstacles, as well as consistent routabil-
ity of placements and the handling of density constraints. Based on
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Variables: queue of placement bins

Initialize queue with top-level placement bin

1 While(queue not empty)

2 Dequeue a bin

3 If(bin not marked to place from scratch)
4 If(bin overfull)
5 Mark bin to place from scratch, break
6 Quickly choose the cut-line which has

the smallest net-cut considering
cell area balance constraints

7 If(cut-line causes overfull child bin)
8 Mark bin to place from scratch, break
9 Induce partitioning of bin’s cells from cut-line
10 Improve net-cut of partitioning with

single pass of Fiduccia-Mattheyses
11 If(% of improvement > threshold)
12 Mark bin to place from scratch, break
13 Create child bins using cut-line and partitioning
14 Enqueue each child bin
15 If(bin marked to place from scratch)
16 If(bin small enough)

17 Process end case

18 Else

19 Bi-partition the bin into child bins

20 Mark child bins to place from scratch
21 Enqueue each child bin

Fig. 1. Our ECO algorithm. Lines 3-15 and 20 are different from traditional min-cut.

recent empirical evidence [29, 33, 34], the top-down framework ap-
pears a somewhat better choice. Indeed the 2 out of 9 contestants
in the ISPD 2006 Competition that satisfied density constraints were
top-down placers. However, analytical algorithms can also be inte-
grated into our ECO-system when particularly extensive changes are
required. We base ECO-system on the open-source min-cut placer
Capo [32] and plan to distribute it with Capo as well.

General framework. The goal of ECO-system is to reconstruct
the internal state of a min-cut placer that could have produced a given
placement without the expense of global placement. Given this
state, we can choose to accept or reject previous decisions based on
our own criteria and build a new placement for the design. If many of
the decisions of the placer were good, we can achieve a considerable
runtime savings. If many of the decisions are determined to be bad,
we can do no worse in terms of solution quality than placement from
scratch. An overview of the application of ECO-system to an illegal
placement is depicted in Figure 2. See the algorithm in Figure 1.

To rebuild the state of a min-cut placer, we must reconstruct a series
of cut-lines and partitioning solutions efficiently. To extract a cut-line
and partitioning solution from a given placement bin, we examine all
possible cut-lines as well as the partitions they induce. We start at one
edge of the placement bin (left edge for a vertical cut and bottom edge
for a horizontal cut) and move towards the opposite edge. For each
potential cut-line encountered, we maintain the cell area on either side
of the cut-line, the partition induced by the cut-line and the net cut.

Fast cut-line selection. For simplicity, assume that we are making
a vertical cut and are moving the cut-line from the left to the right
edge of the placement bin (the techniques necessary for a horizontal
cut are analogous). Pseudo-code for choosing the cut-line is shown in
Figure 3. To find the net cut for each possible cut-line efficiently, we

Fig. 2. Fast legalization by ECO-system. The image on the left illustrates choosing a
vertical cut-line from an existing placement. Nets are illustrated as red lines. Cells are
individually numbered and take 2 or 3 sites each. Cut-lines are evaluated by a
left-to-right sweep (net cuts are shown above each line). A cut-line that satisfies
partitioning tolerances and minimizes cut is found (thick green line). Cells are assigned
to “left” and “right” according to the center locations. On the right, placement bins are
subdivided using derived cut-lines until i) a bin contains no overlap and is ignored for the
remainder of the legalization process or, ii) the placement in the bin is considered too
poor to be kept and is replaced from scratch using min-cut or analytical techniques.

Input: placement bin, balance constraint

Output: x-coordinate of best cut-line

1 numCutlines = 1 + �(rightBinEdgeX − leftBinEdgeX)/cellSpacing�
2 Create three arrays of size numCutlines: LEFT, RIGHT, AREA

3 Initialize all elements of LEFT, RIGHT, and AREA to 0

4 Foreach net

5 Calculate x-coordinate of leftmost and rightmost pins

6 leftCutlineIndex = max(0,�(leftmostPinX − leftBinEdgeX)/cellSpacing�)
7 rightCutlineIndex = max(0,�(rightmostPinX − leftBinEdgeX)/cellSpacing�)
8 if(leftCutlineIndex < numCutlines) LEFT[leftCutlineIndex] + = 1

9 if(rightCutlineIndex < numCutlines) RIGHT[rightCutlineIndex] + = 1

10 Foreach cell

11 Calculate x-coordinate of the center of the cell

12 cutlineIndex = max(0,�(cellCenterX − leftBinEdgeX)/cellSpacing�)
13 if(cutlineIndex < numCutlines) AREA[cutlineIndex] + = cellArea

14 Set X = leftBinEdge, CURCUT = 0, BESTCUT = ∞, BESTX = ∞, LEFTPARTAREA = 0

15 For(I = 0; I < numCutlines; I + = 1, X + = cellSpacing)

16 CURCUT + = LEFT[I]

17 CURCUT − = RIGHT[I]

18 LEFTPARTAREA + = AREA[I]

19 If(CURCUT < BESTCUT and LEFTPARTAREA satisfies balance constraint)

20 BESTCUT = CURCUT

21 BESTX = X

22 Return BESTX

Fig. 3. Algorithm for finding the best vertical cut-line from a placement bin. Finding
the best horizontal cut-line is largely the same process. Note that the runtime of the
algorithm is linear in the number of nets, cells and cut-lines incident to the bin.

first calculate the bounding box of each net contained in the placement
bin from the original placement. We create two lists with the left and
right x-coordinates of the bounding boxes of the nets and sort them in
increasing x-order. While sliding the cut-line from left to right (in the
direction of increasing x-coordinates), we incrementally update the
net-cut and amortize the amount of time used to a constant number
of operations per net over the entire bin. We do the same with the
centers of the cells in the bin to incrementally update the cell areas on
either side of the cut-line as well as the induced partitioning. While
processing each cut-line, we save the cut-line with smallest cut that is
legal given partitioning tolerances. An example of finding the cut-line
for a partitioning bin is shown in Figure 2.

Once a partitioning has been chosen, we accept or reject it based
on how much it can be improved by a single pass of a Fiduccia-
Mattheyses partitioner with early termination (which takes only
several seconds even on the largest ISPD05 circuit). The intuition
is that if the constructed partitioning is not worthy of reuse, a single
Fiduccia-Mattheyses pass could improve its cut non-trivially.1 If the
Fiduccia-Mattheyses pass improves the cut beyond a certain thresh-
old, we discard the solution and bisect the entire bin from scratch. If
this test passes, we check legality: if a child bin is overfull, we discard
the cut-line and bisect from scratch.

Scalability. Pseudo-code for the cut-line location process used by
ECO-system is shown in Figure 3. The runtime of the algorithm is lin-
ear in the number of pins incident to the bin, cells incident contained
in the bin, and possible cut-lines for the bin. Since a single Fiduccia-
Mattheyses pass takes also takes linear time [16], the asymptotic com-
plexity of our algorithm is linear. If we let P represent the number of
pins incident to the bin, C represent the number of cells in the bin and
L represent the number of potential cut-lines in the bin, the cut-line
selection process runs in O(P +C + L) time. In the vast majority of
cases, P > C and P > L, so the runtime estimate simplifies to O(P).

The number of bins may double at each hierarchy layer, until bins
are small enough for end-case placement. End-case placement is gen-
erally a constant amount of runtime for each bin, so it does not affect
asymptotic calculations. Assume that ECO-system is able to reuse all
of the original placement. Since ECO-system performs bisection, it
will have O(logC) layers of bisection before end-case placement. At
layer i, there will be O(2i) bins, each taking O

( P
2i

)
time. This gives

a total time per layer of O(P). Combining all layers gives O(P logC).
Empirically, the runtime of the cut-line selection procedure (which
includes a single pass of a Fiduccia-Mattheyses partitioner) is much
smaller than partitioning from scratch. On large benchmarks, cut-line
selection requires 5% of ECO-system runtime time whereas min-cut
partitioning generally requires 50% or more of ECO-system runtime.

Handling macros and obstacles. With the addition of macros, the
flow of top-down placement becomes more complex. We adopt the

1We do not assume that the initial placement was produced by a min-cut algorithm.
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technique of “floorplacement” which proceeds as traditional place-
ment until a bin satisfies criteria for block-packing [29, 32]. If the
criteria suggest that the bin should be packed rather than partitioned,
a fixed-outline floorplanning instance is induced from the bin where
macros are treated as hard blocks and standard cells are clustered
into soft blocks. The floorplanning instance is given to a Simu-
lated Annealing-based floorplanner to be solved. If macros are placed
legally and without overlap, they are considered fixed. Otherwise, the
placement bin is merged with its sibling bin in the top-down hierar-
chy and the merged bin is floorplanned. Merging and re-floorplanning
continues until the solution is legal.

We add a new floorplanning criterion for our legalization tech-
nique. If no macros in a placement bin overlap each other, we gener-
ate a placement solution for the macros of the bin to be exactly their
placements in the initial solution. If some of the macros overlap with
each other, we let other criteria for floorplanning decide. If block-
packing is invoked, we must discard the placement of all cells and
macros in the bin and proceed as described in [32].

During the cut-line selection process, some cut-line locations are
considered invalid — namely those that are too close to obstacle
boundaries but do not cross the obstacles. This is done to prevent long
and narrow slivers of space between cut-lines and obstacle bound-
aries. Ties for cut-lines are broken based on the number of macros
they intersect. This helps to reduce overfullness in child bins allow-
ing deeper partitioning, which reduces runtime.

V. USING ECO-SYSTEM IN HIGH-LEVEL
AND PHYSICAL SYNTHESIS

We extend the proposed framework to offer users efficient access
to the features of incremental placement described in Sections III and
IV as well as provide greater user control and flexibility.

Tunable aggressiveness. ECO-system accepts or rejects derived
partitioning solutions based on how much a single pass of a Fiduccia-
Mattheyses partitioner can improve them. If the partitioner improves
the net cut by more than a threshold percentage, the partitioning so-
lution is rejected. This threshold can be adjusted by the user so as
to prevent ECO-system from performing large changes. If a designer
wants ECO-system to change the placement as little as possible, the
improvement threshold can be given as 100%. Tunable aggressive-
ness also allows one to adjust the strength of ECO-system legalization
to better correlate with the magnitude of design modifications [21].

Changing net weights. Having a legal placement facilitates more
precise static timing analysis and finding timing-critical nets. To im-
prove timing, weights are increased for nets with smallest slack, and
decreased for non-critical nets. As ECO-system checks if the cut of
an induced partitioning solution can be improved significantly, net
weights are naturally integrated into this test. With weighted cut,
ECO-system recognizes instances when replacement is in order due
to the sub-optimality of the initial placement.

User-defined locality. ECO-system operates automatically on the
given placement and quickly focuses on sections of overlap. It may be
the case that a designer has performed optimization on only a small
portion of the design. Having our algorithm run over the entire de-
sign to find this small area is potentially wasteful. Thus we allow the
user or a physical synthesis tool to specify one or more regions of the
placement area to apply legalization.

Satisfying density constraints. A common method for increasing
the routability of a design is to inject whitespace into regions that are
congested [4,23]. One can also require a minimum amount of whites-
pace (equivalent to a maximum cell density) in local regions of the de-
sign to achieve a similar effect [34]. As one of ECO-system’s legality
checks is essentially a density constraint (checking to see if a child bin
has more cell area assigned to it than it can physically fit), this legal-
ity check is easy to generalize. The new criterion for switching from
using the initial placement and partitioning from scratch is based on a
child bin having less than a threshold percent of relative whitespace,
which is controlled by the user. Combined with user-defined local-

ity, this allows a designer to re-tune whitespace allocation to reduce
congestion in localized regions of the design.

Placing new cells and macros. The addition of macros, IP blocks
and embedded memories to an already placed netlist can introduce
significant overlap. Large modules may need to be fixed due to align-
ment constraints and will appear as obstacles. Buffer insertion is also
a concern as numerous buffers may need to be inserted. There are
typically few legal locations for buffer insertion, and, compounding
the problem, buffers must be placed precisely to be effective.

Our current technique can accommodate newly added modules for
which tentative initial placements are given. All a designer would
need to do is place new modules roughly where they should go in
the core, and ECO-system will find legal positions for them automati-
cally. If new module locations are not known, they can be found with
simple analytical techniques. Specifically, if an unplaced module is
connected to several placed modules, an initial location for the mod-
ule could be the average location of its neighbors. This does not work
well, however, when a cluster of new logic is added to a design, es-
pecially in the presence of macros and obstacles. For this reason, we
develop a technique to place unplaced modules within ECO-system.

To handle new modules separately, one must be able to detect them
easily in a design. Some input formats allow the user to specify mod-
ules which are new with the keyword UNPLACED. For other input
formats without such a keyword, ECO-system checks for modules
that are placed outside of the core and marks them as being unplaced.
ECO-system also tests to see if several modules are placed at exactly
the same location which could indicate a cluster of new logic. Mod-
ules placed in exactly the same location, such as a default location
like (0,0), are also treated as unplaced.

In each bin, if a cut-line and partitioning are derived, unplaced
modules are partitioned with a separate partitioning call to assign
them to child bins. If the derived partitioning is not accepted, un-
placed modules are combined with the old modules, and placement
continues from scratch. In this way, unplaced modules will migrate
to good legal locations automatically. As the locations for unplaced
modules are chosen based on current locations of all the modules in
the design, the final locations of unplaced modules will likely be bet-
ter than ones that were chosen based on the initial placement.

If new modules are introduced into a design and a user defines a
region of the placement to work in, there is some ambiguity in what
ECO-system should do with unplaced modules. All unplaced mod-
ules could be placed inside the user-specified region, or ECO-system
could determine which of the unplaced modules would best be placed
in the region. Determining which of the unplaced modules belong
in a user-specified rectangular region requires at most four calls to a
partitioner (since the region can be carved out with four geometric
cut-lines), so this will still be efficient. To avoid uncertainty, the user
is allowed to specify which behavior is desired.

VI. EMPIRICAL RESULTS

We implemented ECO-system in C++ and ran it on 3.2GHz Pen-
tium Xeon machines. For testing we use two suites of benchmarks.
The first suite of benchmarks are the ICCAD 2004 IBM-MSwPins
benchmarks: mixed-size netlists with non-trivial macro sizes, aspect
ratios and pin offsets [32]. We placed all of the benchmarks with Capo
10 [32] and chose the best of 2 runs. Next we randomly resized the
standard cells of the benchmark to simulate cell sizing such that the
total area of cells would remain relatively constant. Each standard cell
of the design was randomly increased or decreased in size, but no cell
was decreased below the minimum cell size or increased beyond the
largest cell size. This resizing results in the original Capo placement
being illegal. The change in cell area and amount of overlap intro-
duced by the resizing is shown in Table I. The resized benchmarks
should have legal placements with HPWL near that of the original
benchmarks since total cell area does not change appreciably. Dis-
cussions with colleagues in the industry point out that cell resizing is
affected by a variety of factors, which are not as random as in our ex-
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IBM-MSwPins Area Orig. Orig. Capo 10 Legalizer [32] ECO-system
Benchmarks Ratio Time (s) HPWL (e6)

Overlap
Time (s) HPWL (e6) Ratio Time (s) HPWL (e6) Ratio

ibm01 0.9982 248 2.48 7.35% 1.27 2.57 1.0371 37.4 2.46 0.9913
ibm02 1.0008 463 5.12 5.56% 2.15 5.28 1.0328 65.6 5.11 0.9974
ibm03 1.0011 661 7.58 5.83% 15.9 7.99 1.0543 130 7.56 0.9978
ibm04 0.9990 728 8.61 8.13% 11.3 9.03 1.0482 135 8.65 1.0046
ibm05 1.0017 593 10.14 13.54% 0.13 10.25 1.0114 110 10.20 1.0057
ibm06 1.0018 846 6.78 7.36% 10.5 7.10 1.0469 123 6.81 1.0046
ibm07 0.9997 1213 11.63 9.61% 16.4 12.16 1.0455 167 11.65 1.0016
ibm08 1.0029 1492 13.42 8.50% 7.36 13.73 1.0232 192 13.49 1.0048
ibm09 1.0025 1492 14.96 8.14% 14.8 16.06 1.0732 249 14.91 0.9966
ibm10 0.9997 2476 31.79 4.53% 119 32.62 1.0260 384 31.38 0.9871
ibm11 0.9993 2067 21.43 8.48% 26.3 22.56 1.0529 317 21.50 1.0031
ibm12 0.9996 2903 38.52 5.91% 50.6 39.20 1.0175 345 37.63 0.9768
ibm13 1.0014 2667 27.30 7.94% 55.3 28.61 1.0478 494 27.35 1.0018
ibm14 1.0002 4954 40.00 13.49% 38.3 41.67 1.0417 594 40.45 1.0113
ibm15 1.0016 6241 53.72 10.85% 63.1 56.48 1.0514 1288 54.48 1.0142
ibm16 0.9997 7232 61.12 9.19% 36.2 62.74 1.0264 734 61.08 0.9993
ibm17 0.9987 7558 70.52 14.09% 36.0 73.09 1.0365 807 71.09 1.0081
ibm18 1.0017 6897 46.46 15.91% 13.7 48.11 1.0354 733 47.05 1.0128

Average 1.0005 1.0393 1.0010

ISPD05 Area Orig. Orig. Capo 10 Legalizer [32] ECO-system
Benchmarks Ratio Time (s) HPWL (e6)

Overlap
Time (s) HPWL (e6) Ratio Time (s) HPWL (e6) Ratio

adaptec1 1.0004 9403 83.87 18.17% 1020 88.81 1.0589 1627 84.27 1.0047
adaptec2 1.0012 9978 87.31 16.83% 1246 91.48 1.0477 1731 88.89 1.0181
adaptec3 1.0004 26937 231.17 17.37% 3090 240.44 1.0401 4579 225.12 0.9738
adaptec4 1.0005 29266 187.65 16.81% 1775 194.89 1.0386 3741 189.92 1.0121
bigblue1 1.0005 10752 101.96 15.62% 1.6 104.77 1.0276 1421 101.72 0.9976
bigblue2 0.9994 27902 159.08 16.15% 1238 164.21 1.0322 5064 158.31 0.9952
bigblue3 0.9999 69498 414.29 15.69% 4169 445.95 1.0764 11083 391.35 0.9446
bigblue4 1.0006 118741 884.39 15.58% 953 903.81 1.0220 13501 876.89 0.9915
Average 1.0004 1.0428 0.9920

TABLE I
OVERLAP LEGALIZATION ON THE IBM-MSWPINS [32] AND ISPD05 CONTEST BENCHMARKS [28]. “AREA RATIO” REPRESENTS THE CHANGE

IN TOTAL CELL AREA AFTER RESIZING. OVERLAP IS MEASURED AS A % OF THE TOTAL MOVABLE CELL AND MACRO AREA. ECO-SYSTEM

REQUIRES SIGNIFICANTLY MORE RUNTIME THAN THE CAPO 10 LEGALIZER [32], AND APPROXIMATELY 14% OF THE ORIGINAL PLACEMENT

TIME. ECO-SYSTEM INCREASES HPWL BY 0.10% ON AVERAGE WHILE THE CAPO 10 LEGALIZER INCREASES HPWL BY 3.93% ON THE

IBM-MSWPINS BENCHMARKS. ECO-SYSTEM decreases HPWL BY 0.80% ON AVERAGE WHILE THE CAPO 10 LEGALIZER INCREASES HPWL
BY 4.28% ON THE ISPD05 CONTEST BENCHMARKS.

periments. On the other hand, our technique is similar to real resizing
in that it creates local areas of high cell overlap and is reasonable. On
average, our resizing introduces 9% overlap by cell area (and more
when there are fixed obstacles in the design) which is greater than
what’s typically observed while resizing VLSI circuits.

We compare ECO-system to the legalizer of Capo 10, and the re-
sults are summarized in Table I. We use a constant improvement
threshold for ECO-system (see Figure 1, line 11) near 100% for all
benchmarks to minimize changes to the placement. The Capo le-
galizer runs quickly and produces legal placements, but it increases
HPWL by 3.93% on average. ECO-system takes less than 14% of the
original placement time, and only increases HPWL by 0.10% on aver-
age. We have also varied the amount of overlap introduced into these
benchmarks by reducing the number of cells affected by our sizing.
We find that HPWL is mostly unaffected (HPWL generally changes
by less than 0.5%) by increasing amounts of overlap for these designs.

The second set of benchmarks are from the ISPD 2005 Placement
Contest [28]. They are a standard cell benchmark suite with non-
trivial fixed obstacles throughout the placement area [28]. We placed
all of the benchmarks with APlace 2.04 [22] (the winning placer of
the contest) and randomly resized the standard cells of the benchmark
in the same way as the IBM-MSwPins benchmarks. The change in
cell area and amount of overlap introduced by the resizing is shown
in Table I. A comparison of ECO-system to the legalizer of Capo 10 is
summarized in Table I. The Capo legalizer runs 40% faster than ECO-
system, but increases HPWL by 4.28% on average. ECO-system
takes 14% of the original placement time, and decreases HPWL by
0.80%. Figure 4 depicts the benchmark adaptec3 before cell resizing
and after legalization with ECO-system. ECO-system’s placement is
similar to the original APlace 2.04 placement and does not move the
majority of cells far from their original locations. The average dis-
placement per cell is 0.3% of the half-perimeter of the design which
is an order of magnitude less than WSA’s displacements [23,24]. Only
2.7% of the cells have nontrivial displacements.

Lastly, we compare ECO-system to the APlace 2.04 legalizer
on APlace 2.04 global placements on the ISPD05 Contest bench-
marks. Analytical placement techniques generally produce a signif-
icant amount of overlap on the contest benchmarks because of the
numerous fixed obstacles in the core region. This can be seen in Ta-
ble II as the APlace 2.04 global placements have approximately 30%
or more overlap. APlace 2.04’s legalizer generally increases HPWL
by 4.91% while our legalizer produces an increase of only 3.67% on
average. In addition, ECO-system is 3x faster than APlace’s legalizer.

VII. CONCLUSIONS

Our main contribution is ECO-system — an algorithmic frame-
work designed to interface a wide variety of circuit optimizations
with their physical environment. This framework offers, for the first
time in the literature, a strong and robust legalizer that can handle
a broad range of modern placement instances with movable macros,
fixed obstacles, etc. ECO-system automatically focuses on regions of
the layout and sections of the netlist that require changes, and per-
forms optimization of adequate strength in each case. ECO-system
can be combined with an external global placer invoked when partic-
ularly large changes are required. It can also be used in incremental
re-synthesis, in high-level and physical synthesis optimizations, and
several other contexts.

ECO-system includes all detail placement methods implemented
in Capo [29,32–34], and can similarly be grafted onto other top-down
placers, such as BonnPlace [37], PolarBear [12] or NTUPlace [20],
by performing a one-pass Fiduccia-Mattheyses test. ECO-system can
act like the WSA technique [23], and can invoke any black-box global
placement algorithm when it decides that a particular bin must be
replaced from scratch.

The definitive success of ECO-system in legalizing APlace place-
ments (Table II) allows to answer a long-standing question in place-
ment — whether the slicing structure of min-cut placements costs
them HPWL. Given that the placements produced by ECO-system
are largely slicing, the answer appears negative.
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Orig. Illegal APlace 2.04 Legalizer [22] ECO-systemBenchmark
Time (s) HPWL (e6)

Overlap
Time (s) HPWL (e6) Ratio Time (s) HPWL (e6) Ratio

adaptec1 7569 81.05 34.74% 1346 83.87 1.0348 1730 84.84 1.0467
adaptec2 6062 94.22 47.25% 2543 101.64 1.0788 2042 99.47 1.0558
adaptec3 15849 211.13 47.12% 11495 231.17 1.0949 4500 227.32 1.0767
adaptec4 15404 197.24 36.78% 15271 206.23 1.0456 4132 203.24 1.0304
bigblue1 8265 100.51 28.53% 2486 101.96 1.0144 1804 105.14 1.0461
bigblue2 13650 154.51 30.15% 14252 159.08 1.0296 5183 156.63 1.0137
bigblue3 30624 385.40 41.06% 38873 414.29 1.0750 13708 388.46 1.0079
bigblue4 61932 865.03 32.01% 56809 884.39 1.0224 14910 881.04 1.0185
Average 1.0491 1.0367

TABLE II
OVERLAP LEGALIZATION OF APLACE 2.04’S [22] GLOBAL PLACEMENTS OF THE ISPD05 CONTEST BENCHMARKS [28]. OVERLAP IS

MEASURED AS A % OF THE TOTAL MOVABLE CELL AREA. ECO-SYSTEM PRODUCES LEGAL SOLUTIONS WITH NEARLY THE SAME OR BETTER

HPWL THAN APLACE 2.04’S LEGALIZER. APLACE’S LEGALIZER INCREASES HPWL BY 4.91% WHILE ECO-SYSTEM INCREASES HPWL BY

ONLY 3.67%. ECO-SYSTEM IS FASTER ON 7 OF THE 8 BENCHMARKS AND 3X FASTER THAN APLACE’S LEGALIZER OVERALL.

Before Resizing HPWL = 231.2e6 Top 2.7% cell displacements due to ECO-systemPostprocessed by ECO-system HPWL = 225.1e6

Fig. 4. When applied to resized netlist, ECO-system produces a placement (right) similar to the original placement (left). Fixed objects are outlined in
double black lines. The largest cell displacements are shown in red (center). Only displacements larger than 1.5% of the half-perimeter of the design are
shown. Average displacement is 0.3% of the half-perimeter. The majority of the large displacements form around the corners of the large, fixed
obstacles. Many of these large displacements appear to be clustered, indicating small groups of modules transported to another region of the core or
spread to accommodate area increases.

We have analyzed requirements for an ECO placement tool and
implemented an interface based on ECO-system applicable to high-
level and physical synthesis, allowing the designer to add and remove
nets and cells from a design, reallocate whitespace, resize cells and
re-weight nets while retaining control of the amount of change per-
formed by ECO-system.

REFERENCES

[1] C. J. Alpert, G.-J. Nam, P. Villarrubia and M. C. Yildiz, “Placement Stability Met-
rics,” ASPDAC, pp. 1144-1147, January 2005.

[2] S. N. Adya and I. L. Markov, “Consistent Placement of Macro-blocks Using Floor-
planning and Standard-Cell Placement”, ISPD, pp. 12-17, 2002.

[3] S. N. Adya and I. L. Markov,“Fixed-outline Floorplanning: Enabling Hierarchical
Design”, IEEE Trans. on VLSI, vol. 11, no. 6, pp. 1120-1135, December 2003.
(ICCD 2001, pp. 328-334).

[4] S. N. Adya, I. L. Markov and P. G. Villarrubia, “On Whitespace and Stability in
Mixed-Size Placement,” to appear in Integration: the VLSI Journal, 2006.

[5] A. Agnihotri et al., “Mixed Block Placement via Fractional Cut Recursive Bisec-
tion,” IEEE TCAD, vol. 24, no. 5, pp 748-761, 2005. (ICCAD 2003, pp. 307-310).

[6] U. Brenner and J. Vygen, “Legalizing a Placement With Minimum Total Move-
ment,” IEEE TCAD, vol. 23, no. 12, pp. 1597-1613, 2004. (ISPD 2004, pp. 2-9).

[7] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Optimal Partitioners and End-case
Placers for Standard-cell Layout,” IEEE TCAD, vol. 19, no. 11, pp. 1304-1314,
2000. (ISPD 1999, pp. 90-96).

[8] C.-C. Chang, J. Cong, D. Pan and X. Yuan, “Multilevel Global Placement with
Congestion Control,” IEEE TCAD, vol. 22, no. 4, pp. 395-409, 2003.

[9] C.-C. Chang, J. Cong and X. Yuan, “Multi-Level Placement for Large-Scale
Mixed-Size IC Designs,” ASPDAC, pp. 325-330, 2003.

[10] T. C. Chen, Y. W. Chang and S. C. Lin, “IMF: Interconnect-Driven Multilevel
Floorplanning for Large-Scale Building-Module Designs,” ICCAD, pp. 159-164,
November 2005.

[11] J. Cong and M. Sarrafzadeh, “Incremental Physical Design”, ISPD, pp. 84-92,
2000.

[12] J. Cong, M. Romesis and J. Shinnerl, “Robust Mixed-Size Placement Under Tight
White-Space Constraints,” ICCAD, pp. 165-173, 2005.

[13] J. Cong and M. Xie, “A Robust Detailed Placement for Mixed-Size IC Designs,”
ASPDAC, pp. 188-194, 2006.

[14] K. Doll, F. M. Johannes and K. J. Antreich, “Iterative Placement Improvement By
Network Flow Methods,” IEEE TCAD, vol. 13, no. 10, pp. 1189-1200, Oct. 1994.

[15] W. Donath et al., “Transformational Placement and Synthesis”, DATE, pp. 194-
201, 2000.

[16] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for Improving
Network Partitions,” DAC, pp. 175-181, June 1982.

[17] R. Goering, “Cadence CTO: CAD ‘Foundations’ Must Change,” EETimes, April
11, 2006, http://www.eetimes.com/
showArticle.jhtml?articleID=185300099

[18] D. Hill, “Method and System for High Speed Detailed Placement of Cells Within
an Integrated Circuit Design,” US Patent 6370673, April 2002.

[19] S. W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard Cell Place-
ment,” ICCAD, pp. 165-170, 2000.

[20] Z.-W. Jiang et al., “NTUPlace2: A Hybrid Placer Using Partitioning and Analyti-
cal Techniques,” ISPD, pp. 215-217, 2006.

[21] A. B. Kahng and S. Mantik, “On Mismatches Between Incremental Optimizers
and Instance Perturbations in Physical Design Tools,” ICCAD, pp. 17-22, 2000.

[22] A. B. Kahng and Q. Wang, “Implementation and Extensibility of an Analytic
Placer,” IEEE TCAD, vol. 25, no. 5, pp. 734-747, May 2005.

[23] C. Li, M. Xie, C. K. Koh, J. Cong and P. H. Madden, “Routability-driven Place-
ment and White Space Allocation,” ICCAD, pp. 394-401, 2004.

[24] C. Li, C.-K. Koh and P. H. Madden, “Floorplan Management: Incremental Place-
ment for Gate Sizing and Buffer Insertion,” ASPDAC, pp. 349-354, January 2005.

[25] L. Luo, Q. Zhou, X. Hong and H. Zhou, “Multi-stage Detailed Placement Algo-
rithm for Large-Scale Mixed-Mode Layout Design,” ICCSA, pp. 896-905, 2005.

[26] T. Luo, H. Ren, C. J. Alpert and D. Pan, “Computational Geometry Based Place-
ment Migration,” ICCAD, pp. 41-47, 2005.

[27] M. D. Moffitt, A. N. Ng, I. L. Markov, M. E. Pollack, “Constraint-driven Floorplan
Repair,” DAC, 2006.

[28] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter and M. Yildiz, “The ISPD2005
Placement Contest and Benchmark Suite,” ISPD, pp. 216-220, 2005.

[29] A. N. Ng, I. Markov, R. Aggarwal and V. Ramachandran, “Solving Hard Instances
of Floorplacement,” ISPD, pp. 170-177, April 2006.

[30] M. Pan, N. Viswanathan and C. Chu, “An Efficient and Effective Detailed Place-
ment Algorithm,” ICCAD, pp. 48-55, 2005.

[31] H. Ren, D. Z. Pan, C. J. Alpert and P.Villarrubia, “Diffusion-based Placement
Migration,” DAC, pp. 515-520, 2005.

[32] J. A. Roy, S. N. Adya, D. A. Papa and I. L. Markov, “Min-cut Floorplacement,”
IEEE TCAD, , vol. 25, no. 7, pp. 1313-1326, 2006.

[33] J. A. Roy, J. F. Lu and I. L. Markov, “Seeing the Forest and the Trees: Steiner
Wirelength Optimization in Placement,” ISPD, pp. 78-85, April 2006.

[34] J. A. Roy, D. A. Papa, A. N. Ng, I. L Markov, “Satisfying Whitespace Require-
ments in Top-down Placement,” ISPD, pp. 206-208, April 2006.

[35] N. Selvakkumaran and G. Karypis, “Theto - A Fast, Scalable and High-quality
Partitioning Driven Placement Tool,” Technical report, Univ. of Minnesota, 2004.

[36] N. Viswanathan, M. Pan and C. Chu, “FastPlace 2.0: An Efficient Analytical
Placer for Mixed-Mode Designs,” ASPDAC, pp. 195-200, 2006.

[37] J. Vygen, “Algorithms for Large-Scale Flat Placement,” DAC, pp. 746-751, 1997.

2A-4

152



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


