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ABSTRACT
Physical synthesis optimizations and engineering change orders typ-
ically change the locations of cells, resize cells or add more cells to
the design after global placement. Unfortunately, those changes usu-
ally lead to wirelength increases; thus another pass of optimizations
to further improve wirelength, timing and routing congestion char-
acteristics is required. Simple wirelength-driven detailed placement
techniques could be useful in this scenario. While such techniques
can help to reduce wirelength, ones without careful timing constraint
considerations might degrade the timing characteristics (worst nega-
tive slack, total negative slack, etc) and/or introduce more electrical
violations (exceeding maximum output load constraints and maxi-
mum input slew constraints). In this paper, we propose a new de-
tailed placement paradigm, which use a set of pin-based timing and
electrical constraints in detailed placement to prevent it from degrad-
ing timing or violating electrical constraints while reducing wire-
length, thus dubbed as Hippocrates: FIRST-DO-NO-HARM opti-
mizations. Our experimental results show great promises. By hon-
oring these constraints, our detailed placement technique not only
reduces total wirelength (TWL), but also significantly improves tim-
ing, achieving 37% better total negative slack (TNS).

1. INTRODUCTION
“Primum non nocere” is a Latin phrase that means “First, do no

harm”. Originated from Hippocratic Corpus, it is one of the princi-
ple precepts all medical students are taught in schools. It reminds
a physician that he or she must consider the possible harm that any
intervention might do.

Global placement is one of the most critical process in modern
physical synthesis. Its task is to determine the overall locations of
objects in the design. Many global placement algorithms have been
proposed to minimize total wirelength [1] [2] [3] [4] [5] [6] [7], just
naming a few. However, physical synthesis transformations [8], such
as buffering [9] and gate sizing [10], are applied after placement to
further optimize timing. These transforms usually insert new cells or
change the size of existing cells. Engineering change order (ECO)
is another source of modifications for designs under optimization.
It could also introduce new logics, change the physical sizes of ob-
jects, or change the locations of existing cells. All these changes
might result in overlaps among cells. Therefore one needs additional
legalization to remove those overlaps. Although many legalization
algorithms have been proposed to minimize the disturbance to the
original placement [11] [12] [13] [14] [15] [16], they usually result
in wirelength degradation. This is because the relative order of newly
inserted/sized cells are not fully optimized as much as it was done
during global placement. The poor wirelength causes inferior timing
and routing congestion problems. Therefore it is of great interest to
further improve wirelength after physical synthesis or Engineering
Change Order (ECO).

To the best of our knowledge, there is no previous work on in-
cremental placement for both wirelength reduction and timing im-
provement. Several previous works [17] [18] and [19] addressed in-
cremental placement for timing improvement issue. [19] proposed
using differential timing method and Linear Programming (LP) to
formulate the timing driven placement of critical cells. It moves a

few critical cells, which helps improve timing significantly. How-
ever, our intention in this paper is to improve timing as well as total
wirelength. Thus, we would have to include every gate in the LP
formulation unlike [19], which only includes a portion of critical
gates. This would result in severe overlapping situations and huge
timing degradation during legalization. Similar to [19], the itera-
tive method proposed by [17] and the net contraction method pro-
posed by [18] both use analytical method to find better locations for
a few critical cells. Thus for the same reason, they cannot directly
solve wirelength optimization problem either. Therefore we resort to
wirelength-driven detailed placement techniques to solve this prob-
lem.

Detailed placement techniques such as Simulated Annealing (SA)
based swapping and moving [7], cell interleaving [12], branch-and-
bound reordering [13], branch-and-price reordering [20], guided lo-
cal search [21], global swap and local reordering [22], and net length
constrained SA approach [23] can all reduce the total wirelength.
However, reducing total wirelength does not necessarily result in
timing improvement, particularly after physical synthesis. This is
because detailed placement might increase the wirelength on critical
paths while reducing the total wirelength.

As Hippocrates would remind us, we should “first, do no harm”
to the timing characteristics of the design after physical synthesis
or ECO because the design is already optimized. To achieve this
FIRST-DO-NO-HARM paradigm, we need to model the delay im-
pact of any placement change. Surely we can call a static timer after
each placement change. But it is too costly to do so during detailed
placement. The differential timing model [19] helps to reduce the
computation need while still providing accurate enough timing es-
timation for placement. However, the path propagation technique
of [19] is too costly to be directly used in any detailed placement
framework. Therefore an efficient delay model is needed for detailed
placement to avoid doing any harm to timing critical paths while im-
proving total wirelength.

Our contributions in this work are:

• We develop a pin-based timing and electrical constraint model
to prevent detailed placement from degrading timing or violat-
ing electrical constraints. These constraints need to be gener-
ated only once before detailed placement. They remain valid
through the placement process no matter how many cells are
moved.

• We implement these constraints in an industry strength de-
tailed placer. The constrained detailed placer can significantly
improve timing while reducing total wirelength.

• These constraints are simple to implement and can be easily
integrated into a majority of detailed placement frameworks.

In the rest of the paper, we will introduce these constraints and
provide the proof that honoring these pin-based timing constraints
will DO NO HARM to the timing results during detailed placement.
We will also demonstrate how we implement these constraints in
detailed placer and demonstrate significant improvements on timing
and wirelength.
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Figure 1: Critical Path and Delta Arrival Time

2. PIN-BASED TIMING AND ELECTRICAL
CONSTRAINTS

In this section, we will model timing and electrical constraints for
detailed placement. The purpose of adding these constraints is to
prevent any degradation of timing results (worst negative slack, total
negative slacks etc) or electrical violation such as maximum output
load constraints and maximum input slew constraints.

Unlike [19] which imposes constraints on timing paths, our tim-
ing constraints are imposed on individual pins. Although these con-
straints that we model may be conservative, using pin-based con-
straint would greatly simplify the timing computation during place-
ment because the expensive path propagation computation is not re-
quired.

2.1 Delta Arrival Time Constraints
As shown in Fig 1, we can build a timing diagram with gate and

wire delay segments1. Let N be a set of gates, primary inputs (PIs)
and primary outputs (POs) in a design; and for a gate k, m ∈ N ,
dk be the delay of gate k, and dk,m be the delay of wire connection
between k and m.

The arrival time of each pin of a gate is defined as the summation
of delay segments from timing start points, i.e. PIs or the output of
a sequential logic, to the pin itself. The arrival time of each gate
is simply defined as the summation of delay segments on the most
critical input pin.

Thus, let Nm be a set of gates or PIs connected to the input of gate
m, and gate k ∈ Nm connected to input pin j of gate m. The arrival
time of pin j will be:

ATm,j = ATk + dk + dk,m (1)

where ATm,j is the arrival time of pin j of gate m, ATk is the arrival
time of gate k (thus, the arrival time of the most critical input pins of
gate k).

We define the delta arrival time of input pin as the differences
between the arrival time of pin itself and the arrival time of the gate.
As shown in Fig 1, the delta arrival time of the input j of gate m,
∆ATm,j , is defined as:

∆ATm,j = ATm − ATm,j (2)

For example, suppose ATh = 1ns, ATk = 2ns, dh = 3ns, dk =
1ns, dh,m = 2ns and dk,m = 1.5ns; then arrival time at pin c of
gate m is ATm,c = ATh + dh + dh,m = 6ns, while arrival time at
pin j of gate m is ATm,j = ATk + dk + dk,m = 4.5ns. Therefore
1We made a couple of simplifications to the static timing analysis
model in order to simplify the explanation and notation. First, we
assume the gate delays from each input pin to output pin are the
same for ease of explaining the key idea of delta arrival time. For
non-uniform input to output pin delay case (mostly on complex gates
only), the difference can be incorporated into the input pin arrival
time. Second, among all feasible signal transitions, i.e. rise-fall etc,
we only consider the most critical transition, which is conservative
as well.

the most critical input pin of gate m is pin c and arrival time ATm of
gate m is equal to ATm,c = 6ns. The delta arrival time at pin j is
∆ATm,j = ATm − ATm,j = 1.5ns. The delta arrival time at pin
c is ∆ATm,c = ATm − ATm,c = 0ns. The delta arrival time for
a primary output pin (PO) or a sequential logic input pin is always
zero because there is only one pin to compare with.

Note that delta arrival time is absolutely different from slack.
Slack is the difference between arrival time and required arrival time,
while delta arrival time is the difference between the arrival time of
an input pin to the most critical input pin. Pins with same slack can
have different delta arrival time, and pins with same delta arrival time
can have different slacks.

For combinational gates, the delta arrival time indicates how much
arrival time can increase on a particular pin before it will make tim-
ing worse on the output pin. For example, if arrival time on pin j
increases 0.5ns, because 0.5ns < ∆ATm,j = 1.5ns, pin c is still
the most critical pin and the arrival time of gate m will not change.
This observation leads to Lemma 1.

LEMMA 1. Suppose the output pin of gate k is connected to the
input pin j of gate m, i.e. k ∈ Nm, let new ATk be the new arrival
time of gate k after placement modifications.

If 1) the combined increment of gate delay k (∆dk) and wire delay
connecting k and m (∆dk,m) is less than or equal to the delta arrival
time of pin j, i.e. ∆dk + ∆dk,m ≤ ∆ATm,j and (2) the arrival
times of gates in Nm do not increase,i.e. new ATk ≤ ATk for
every k ∈ Nm, then the arrival time on gate m will not increase, i.e.
new ATm ≤ ATm.

PROOF. Substitute ATm,j with (2), (1) becomes
ATm = ATk + dk + dm,k + ∆ATm,j (3)

If the placement changes, the gate delay dm and wire delay dm,k

and arrival time on all the gates will also change.
Thus, the new arrival time on gate m can be computed as

new ATm = max
k∈Nm

[new ATk +dk +dk,m +∆dk +∆dk,m] (4)

Since ∆dk +∆dk,m ≤ ∆ATm,j and new ATk ≤ ATk for every
k ∈ Nm, we will always have
new ATm = max

k∈Nm

[new ATk + dk + dk,m + ∆dk + ∆dk,m]

≤ max
k∈Nm

[new ATk + dk + dk,m + ∆ATm,j ]

≤ max
k∈Nm

[ATk + dk + dk,m + ∆ATm,j ]

≤ ATm

Therefore we can prove following theorem:

THEOREM 1. The arrival time of any gate is nonincreasing, and
slack on any timing end point (PO or sequential logic input pin) will
not degrade if the change of combined gate and wire delay is always
less than or equal to the delta arrival time on input pin (or PO) which
it connects to, i.e.

∆dk + ∆dk,m ≤ ∆ATm,j (5)

PROOF. Suppose we traverse the netlist in a topological order
from input to output and label gates in that order from 1 to n. At
the beginning of traversal, we assume the arrival time on the timing
start points are constants. Suppose gates 1 to k are the gates directly
connected to timing beginning points. As Lemma 1 indicates, AT1

to ATk will not increase since the change of wire delay on any input
pin is less than or equal to the delta arrival time on the input pin and
the arrival times on PI and sequential logic output pin are constants.
Now as we traverse to gate k+1, the arrival time of its input pins are
determined by the arrival times of its previous gates and the delays
between gate k+1 and its previous gates. Since we have proven that
all the arrival time of gate 1 to k are nonincreasing, and the change
of delay on any input pin is less than or equal to the delta arrival
time on the input pin, according to Lemma 1, the arrival time of gate
k + 1 is also nonincreasing. In the same manner, we can approve
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Figure 2: Delay and Arrival Time of a Simple Circuit

the arrival times of gates 1 to n are all nonincreasing. At the end
of traverse where it hits timing end points, the arrival times of those
gates or POs are also nonincreasing. Since the required arrival times
(RAT) at timing end points are constant, the slacks on the timing end
points will not degrade.

Fig 2 shows a small network with 4 PI, 1 PO, 3 gates and 7 nets.
The upper figure 2(a) shows the original gate and wire delays, arrival
times on all three gates, PIs and PO, and delta arrival times on non-
critical internal pins, while the lower figure 2(b) shows the changed
gate/wire delays, and new arrival times. We can see that the increase
on the merged gate delay and wire delay is less than the delta arrival
time. For example, the combined gate and wire delay between gate
B and C changes from 2+1=3 to 4+6=10. However, the ∆AT on
this connection is 9 which is still greater than the mount of delay
increase 10-3=7. Even the critical input pin of gate C changes, the
arrival time on the input of C is still reduced from 18 to 16. We can
see the arrival times on all the gates do not increase and so does the
PO arrival time. Therefore the slack on PO is not degraded.

Theorem 1 asserts a delay constraint on each gate input pin or
PO. It guarantees a non-deteriorating timing result if all the delay
constraints are satisfied during any placement transformation 2 . Note
that this analysis only needs to be done once, and it will be valid
during the entire detailed placement process no matter how many
cells change positions.

2.2 Electrical Constraints
In addition to delay constraints, detailed placement also needs to

satisfy electrical constraints, such as maximum output capacitance
and maximum input slew. The output capacitance constraint speci-
fies the maximum load capacitance a gate can drive, including wire
capacitances and sink pin capacitances. The slew constraint specifies
the maximum slew on an input pin.

Suppose the maximum input pin slew is smax
m,j on pin j of gate

m, and the maximum output pin load is cmax
k for gate k, we can

formulate the output load and input slew constrains as follows.
∆sm,j ≤ smax

m,j − old sm,j (6)

∆ck ≤ cmax
k − old ck (7)

where ∆sm,j is the slew increment on pin j of gate m, and ∆ck is
the load increment of gate k. old sm,j is the original slew on pin j,
and old ck is the original load of gate k.

Both constraints are pin based constraints. The load constraint is
asserted on each output pin and PI, while slew constraint is asserted
on each input pin and PO.

3. CONSTRAINED DETAILED PLACEMENT

2We only consider the setup timing constraints but not hold timing
constraints. Hold timing constraints can be fixed by simple buffering
or gate sizing techniques following detailed placement.

Detailed placement can mean different things to different peo-
ple. In this paper we mean the placement transforms that convert
placement from one legal solution to another legal solution. These
transforms take a legally placed netlist, change locations of cells
while still maintaining the legality. Normally these transforms only
check whether the movements reduce the total wirelength or not.
Our “First-Do-No-Harm” constrained detailed placer will also check
whether the timing and electrical constraints are met under a weighted
total wirelength objective. In the rest of this section, we first derive
these constraints, define the objective function and then present the
overall detailed placement flow.

3.1 Constraint Formulation
During detailed placement, we can get an accurate estimation of

the net half perimeter wirelength (HPWL) and Manhattan distance
between source and sink. If we can roughly estimate delay or slew
based on HPWL and Manhattan distance, then we can check whether
the constraints given in section 2 are satisfied or not.

To do this we employ a differential gate delay and wire delay
model similar to what proposed in [19], which estimates delay and
slew increments of placement change. However, the main difference
is the gate delay modeling. Whereas [19] models the gate delay and
output slew with input pin slew and output pin load, we assume input
pin slew as fixed. Therefore the gate delay and output slew is only
determined by output load. The advantage of this is to avoid slew
propagation, which is time consuming because one has to propagate
the slew all the way down to the end and recompute the timing on
many cells down the way. As long as we can keep the delta arrival
time constraints, Theorem 1 guarantees that the arrival time on the
most critical input pin of any gate will not increase, therefore it is rea-
sonable to assume that the input slew on that pin will not increase as
well. Thus using a constant input slew is a conservative estimation of
gate delay. Using a conservative gate delay modeling actually makes
the timing constraints more conservative, which helps safeguarding
any timing degradation.

Gate delay and output slew can be represented as linear functions
of input slew and output load as follows:

dk = A0 + A1ck + A2sk,j (8)

sk = B0 + B1ck + B2sk,j (9)

where dk and sk are the delay and output slew of gate k; j is the most
critical input pin of gate k and sk,j is the input slew on pin j. A0,
A1, A2 and B0, B1 and B2 are constants determined by the standard
cell library characterization. Since we assume the critical input pin
slew is constant, the differential gate delay and output slew can be
computed by

∆dk = Ak∆ck (10)

∆sk = Bk∆ck (11)

where ∆dk and ∆sk is the gate delay and output slew increments
for gate k, respectively. The Ak = A1 and Bk = B1 are the delay
sensitivity and slew sensitivity to output load for gate k, respectively.
∆ck is the total output load increment, which can be computed by

∆ck = c∆li (12)

where c is the unit wire capacitance (here we only use one wiring
layer for estimation); ∆li is the total wirelength (HPWL) increment
for net i which gate k drives. We do not consider effective capaci-
tance because it is costly to estimate it during detailed placement.

Same as [19], we model the wire delay as if there is a separate
wire connecting source and sink (star wire model). Although this
model is not very accurate, it is efficient to embedded into placement
engine and accurate enough for low fanout nets.

The delay dk,m and slew sk,m of the wire connecting gate k and
m can be computed as
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dk,m = KD · r · lk,m(
c · lk,m

2
+ cpink) (13)

sk,m = KS · r · lk,m(
c · lk,m

2
+ cpink) (14)

where lk,m is the Manhattan distance between gate k and m; KD =
0.69, and KS = 2.2 are constants based on transition of 10% to 90%
VDD. Note that here sk,m is the additional slew introduced by the
wire, the real slew on the input of gate m is the sum of gate slew sk

and wire slew sk,m.
The differential wire delay and slew can be computed by:

∆dk,m = KD[r(c · old lk,m + cpink) · ∆lk,m +
rc(∆lk,m)2

2
] (15)

∆sk,m = KS [r(c · old lk,m + cpink) · ∆lk,m +
rc(∆lk,m)2

2
] (16)

where ∆dk,m is the wire delay increment between gate k and m;
∆sk,m is the wire slew increment; ∆lk,m is the Manhattan distance
increment between gate k and m, and old lk,m is the original Man-
hattan distance between k and m.

Add (10) with (15), and (11) with (16) and replace ∆ck with (12),
we can compute the combined gate and wire delay and slew incre-
ments as:

∆dk + ∆dk,m = α∆li + β∆lk,m + γ∆l2k,m (17)

∆sk + ∆sk,m = ζ∆li + η∆lk,m + θ∆l2k,m (18)

where
α = Akc

β = KDr(c · old lk,m + cpink)

γ = KD
rc

2
ζ = Bkc

η = KSr(c · old lk,m + cpink)

θ = KS
rc

2
(19)

Using the differential timing equations (17) and (18) we can eas-
ily convert the delta arrival time constraints (5), maximum input
slew constraints (6), and maximum output capacitance constraints
(7), into constraints represented by the net HPWL and gate-to-gate
wire Manhattan distance. These constrains are:

α∆li + β∆lk,m + γ∆l2k,m ≤ ∆ATm,j

ζ∆li + η∆lk,m + θ∆l2k,m ≤ smax
m,j − old sj

c∆li ≤ cmax
k − old ck (20)

where pin j is the input pin of gate m which is connected to gate k
by net i.

3.2 Objective Function
The objective of our detailed placement is to reduce both TWL and

TNS. Assuming we can guarantee that slacks do not degrade as The-
orem 1 states, we can use weighted total wirelength as the optimiza-
tion objective for detailed placement. Critical nets (nets with nega-
tive slacks) are given higher weights than other nets. The weighted
wirelength objective function is given below.

WTWL = wili (21)

where WTWL is the weighted total wirelength. wi is the net weight
for net i, and li is the HPWL of net i.

We have tried different net weighting schemes [24] and found that
the final results are not that different probably due to the constraints.
Therefore we choose to use a simple slack based netweight assign-
ment as shown below:

wi =
α − βslki if slki < 0

α if slki ≥ 0
(22)

where wi is the netweight of net i, slki is the slack on net i; α and β
are two positive constants.

Detailed placement normally moves a set of cells then evaluates
the objective function. If the objective function decreases, it accepts

those movements, otherwise it rejects those movements. Therefore
we only need to check whether the WTWL increment ∆WTWL is
negative or not. ∆WTWL can be computed as

∆WTWL =
i∈M

wi∆li (23)

where M is a set of net that are connected to cells moved.

3.3 Detailed Placement Transforms
Since detailed placement heuristics are well studied [7] [12] [13]

[20] [21] [22] [23] and relative easy to understand, we only briefly
introduce the techniques used in our placer, which is an industry
strength placer. Again, the timing and electrical constraints can be
directly used in any detailed placement framework which uses evaluate-
and-execute approach and may be modified to be used in others
which use model based approaches.

There are four transforms used in our placer: SWAP , MOV E,
COMPACT and CENTER. The move procedures for SWAP ,
MOV E, COMPACT and CENTER are shown in algorithm 1,
2, 3 and 4. SWAP swaps two cells within a local window; MOV E
moves a cell within a local window; COMPACT moves cells on
the boundary of a net inside, which compacts the net bounding box;
CENTER moves a cell to the center of its connected nets.

Algorithm 1 SWAP detailed placement transform

for all movable cell A do
select a window W (5 circuit row high and wide) surrounding
cell A
for all movable cell B ∈ W do

swap A and B

Algorithm 2 MOV E detailed placement transform
fill the empty space on the chip with minimum size pseudo cells
for all movable cell A do

select a window W (5 circuit row high and wide) surrounding
cell A
for all cell or pseudo cell B ∈ W do

move A to the place of B

Algorithm 3 COMPACT detailed placement transform

for all net A do
for all movable cell B attached to net A’s bounding box do

move B toward the center of bounding box

The objective of these transforms is to reduce the weighted total
wirelength WTWL. During each transform, it will recursively move
one or multiple cells according to transform guidelines. The place-
ment after these moves might not be legal, thus the transform will
also legalize the placement by sliding cells along the circuit row. Af-
ter legalization, the transform has produced a new legal placement.

Since the differential delay/slew modeling is not based on actual
routing, it is possible that it becomes inaccurate when cells move
a long distance especially for cells connected to high fanout nets.
Therefore, to accurately estimate delay/slew on critical nets, we im-
pose a maximum move limit on those cells connected to critical nets
with high fanout (i.e. fanout > 4) to prevent them from moving too
far away to make the differential delay/slew modeling invalid.

3.4 Algorithm
The complete description of Hippocrates detailed placement algo-

rithm is give in algorithm 5. Given a legal placement after physical
synthesis or ECO, we first run static timing analysis to get slack and
delay for each timing point. Then we compute delay constraints co-
efficients and netweights and give them to detailed placer. The de-
tailed placer performs transforms such as SWAP , COMPACT ,
MOV E, and CENTER one by one. Each transform will make
many moves. After each move and the legalization following the
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Algorithm 4 CENTER detailed placement transform

for all movable cell A do
find the set of cells connected to A
move A to the geometric center of that set of cells

move, one or multiple cells have moved, and the nets connecting
those cells might have changed. The increments of HPWLs of those
nets and Manhattan distances of any source-sink pairs on those nets
can be computed easily with new cell coordinates. Based on these
data, it then evaluates the timing and electrical constraints, weighted
wirelength and movement distance. Moves that reduce WTWL while
satisfying timing and electrical constraints and move limit will be ac-
cepted, others will be rejected and cell locations before those moves
will be restored. Note that we do not call static timer during the
detailed placement.

Algorithm 5 Hippocrates Detailed Placement
Inputs: legal placement after physical synthesis or ECO

perform static timing analysis
compute γ, θ for global wires, and α, ζ for each output pin and
β, η for each input pin or PO based on (19).
compute net weight wi based on (22) for each net i
assign move limit for a set of cells C that connect to critical nets
with fanout > 4
for all detailed placement transforms SWAP , MOV E,
COMPACT and CENTER do

while transform not finish do
move cells according to this transform
slide move cells to remove overlaps
identify a set of net M that is changed by these movements
compute HPWL change ∆li for every net i ∈ M
compute Manhattan distance change ∆lk,m between each
source-sink gate pair k, m of net i, where k is the source
gate and m is the sink gate
compute weighted total wirelength increment (∆WTWL)
with (23)
if any of (20) is violated for any net i ∈ M
OR ∆WTWL ≥ 0
OR movement > limit for cells in C then

Reject these movements, restore original cell locations
else

Accept these movements

4. EXPERIMENTAL RESULTS
We have implemented the constrained detailed placement algo-

rithm in C on Linux machines. Instead of using MCNC or ISPD
benchmarks, we select a few state-of-art industry circuits for better
timing accuracy and latest technologies. The testcases use technolo-
gies ranging from 65nm to 130nm. The clock frequencies are multi
GHz for 65nm and multi hundreds MHz for other technologies. The
size and technology for each testcase is reported in Table 1. These
testcases are the outputs of an industry strength physical synthesis
tool which did timing driven placement, physical aware logic trans-
forms, gate sizing and buffering, therefore the timing can be con-
sidered extensively optimized at this point. The total negative slack
(TNS) and worst negative slack (WNS) of these testcases are also
reported in Table 1.

To demonstrate that our Hippocrates style constrained detailed
placer (Hipp) does really “do no harm”, we compare it with two other
detailed placers that use the same detailed placement transforms as
(Hipp) uses. One is regular wirelength driven detailed placer (DP);
the other is a naive timing driven detailed placer (TDP), which uses
the exact same netweight as Hipp does but without constraints.

Table 2 shows the total negative slack (TNS) comparison of orig-
inal placement (Base) and those after DP, TDP and Hipp. We high-
light those cases where TNS did not degrade from baseline. We can

Table 1: Design size, technology and initial timing
designs cells tech(nm) TNS(ns) WNS(ps)

ckt1 3.8K 65 -4.048 -42
ckt2 3.9K 65 -0.575 -20
ckt3 4.4K 65 -2.447 -50
ckt4 6.0K 65 -14.011 -64
ckt5 7.5K 65 -0.753 -18
ckt6 64K 130 -452 -409
ckt7 295K 90 -83 -97
ckt8 445K 90 -631 -915

see that Hipp improves the TNS on all the testcases with an average
of 37% improvement, while both DP and TDP degrade the TNS a lot.
Although TDP can improve the TNS of several testcases, on average
it still degrades the TNS a lot. The 37% TNS improvement from
Hipp is a big improvement considering that the original placement is
after extensive physical synthesis optimizations. The fact that TDP
can not lower the TNS as Hipp does strongly demonstrates that it
is the Hippocrates timing constraints that help prevent timing from
degrading.

Table 2: TNS(ns) comparison of DP, TDP and Hipp
testcases Base DP TDP Hipp

ckt1 -4.048 -4.418 -5.229 -3.822
ckt2 -0.575 -1.337 -0.832 -0.416
ckt3 -2.447 -4.821 -0.846 -1.76
ckt4 -14.011 -14.46 -13.05 -12.31
ckt5 -0.753 -2.776 -0.706 -0.229
ckt6 -452 -681 -415 -408
ckt7 -83 -1486 -2805 -33
ckt8 -631 -3202 -3707 -108

Average -332% -469% 37%

Table 3 reports the worst negative slack (WNS) for both DP, TDP
and Hipp. The testcases where WNS did not degrade from baseline
are also highlighted. We can see that Hipp can keep or improve WNS
on all testcases, while DP and TDP degrade it a lot. TDP is slightly
better than DP, but both made timing worse. Table 3 also shows
the longest path delay change after detailed placements. On average,
Hipp reduces the longest path delay by 0.4%, while DP increase it by
33% and TDP by 26%. We also verified that Hipp does not introduce
any additional electrical violation while DP and TDP both introduce
significant amount of violations.

Table 3: WNS(ps) comparison of DP, TDP and Hipp
testcases Base (ps) DP TDP Hipp

ckt1 -42 -52 -41 -41
ckt2 -20 -73 -35 -20
ckt3 -50 -63 -51 -49
ckt4 -64 -80 -107 -61
ckt5 -18 -55 -67 -18
ckt6 -409 -620 -456 -399
ckt7 -97 -3372 -2828 -79
ckt8 -915 -2103 -1881 -909

Longest Path Change 33% 26% -0.4%

Table 4 gives the total wirelength (TWL) comparison among DP,
TDP and Hipp. Considering that the placement is already optimally
placed by a global placer during physical synthesis, the improve-
ments are significant. DP makes 6.86% improvement, TDP makes
5.89% improvement and Hipp makes 4.04% improvement. Although
DP and TDP do make more TWL improvement than Hipp, the timing
improvement of Hipp makes it a better candidate for post optimiza-
tion applications. If we compare TDP and DP, we find that DP is
doing slightly better than TDP on TWL because TDP puts higher
weights on critical nets while DP has a uniform weight for every
net. We also evaluated wiring congestion after Hipp and found the
congestion is slightly better after Hipp than the original placement.

One can also run Hipp consecutively and get a slightly better re-
sult. Table 5 shows the average TNS and TWL improvement per-
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Table 4: TWL (x106) comparison of DP, TDP and Hipp
testcases Base DP TDP Hipp

ckt1 0.88 0.83 0.84 0.86
ckt2 0.76 0.71 0.72 0.74
ckt3 0.53 0.49 0.50 0.51
ckt4 0.64 0.59 0.60 0.62
ckt5 1.15 1.08 1.09 1.11
ckt6 12.09 11.33 11.39 11.44
ckt7 85.41 81.70 82.57 83.49
ckt8 109.55 96.53 97.78 99.61

Average 6.86% 5.89% 4.04%

centages of the Hipp iterations over the original placement. We can
see that more Hipp iterations indeed made both TWL and TNS bet-
ter although the improvement rate is diminishing. WNS are the same
for all the iterations, thus we do not show them. Although those im-
provements are small, the fact that we can further reduce wirelength
and improve timing by additional iterations once again proves that
Hipp does no harm to timing.

Table 5: TNS & TWL improvements for Hipp iterations
iterations 1 2 3

TNS 36.98 % 37.55 % 37.59%
TWL 4.04 % 4.27 % 4.32 %

The runtime comparison of DP, TDP and Hipp is reported in Ta-
ble 6. Hipp only took half an hour on a half-million-gate design.
Although Hipp is slower than DP and TDP due to additional con-
straints validation, it is still fast enough to be easily integrated in an
industry back end design flow.

To speedup detailed placement process, we have also implemented
a simplified Hipp algorithm (SHipp) to speedup the runtime. It ignores
the incremental wire delay during constraints computation, which
means γ, θ, β, and η (20) are zero. The reasoning for such sim-
plification is: the wire RC delay/slew is relatively less than the gate
dealy/slew (gate delay includes wire load) on critical paths after phys-
ical synthesis. Therefore, ignoring the incremental wire delay/slew
has less impact on the accuracy of entire constraint computation pro-
vided that the constraints are already conservative. Our preliminary
result on SHipp shows significant speed up than Hipp, almost com-
parable to regular DP. Same timing and wirelength performance on
ckt6, ckt7, and ckt8 as Hipp, and a little worse result on ckt1-ckt5
because ckt1-ckt5 are 65nm design which has larger wire delays to
gate delays ratio.

Table 6: Runtime (s) comparison of DP, TDP and Hipp
testcases DP TDP Hipp

ckt1 4 4 10
ckt2 5 5 12
ckt3 5 5 13
ckt4 6 6 16
ckt5 7 7 20
ckt6 76 81 366
ckt7 330 350 1230
ckt8 792 870 1788

5. CONCLUSION
Following Hippocrates’ “First, do no harm” principle, we devise

a set of pin-based constraints for detailed placement to keep the
original timing and honor electrical constraints while reducing wire-
length. These constraints are essentially sufficient conditions for the
path based constraints. We demonstrated that by using these con-
straints and weighted wirelength objective function, detailed place-
ment can not only reduce wirelength, but also significantly improve
timing. These constraints and objective function are simple to im-
plement and can be applied to many detailed placement frameworks.
Besides post-optimization detailed placement, we believe a rich set
of placement transforms during physical synthesis can also use first-
do-no-harm paradigm.
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