9C-5

An Exact Algorithm for the Statistical
Shortest Path Problem -

Liang Deng
Dept. of Electrical and Computer Engineering
University of lllinois at Urbana-Champaign

ldeng @ uiuc.edu

ABSTRACT

Graph algorithms are widely used in VLSI CAD. Tradi-
tional graph algorithms can handle graphs with deter-
ministic edge weights. As VLSI technology continues
to scale into nanometer designs, we need to use prob-
ability distributions for edge weights in order to model
uncertainty due to parameter variations. In this paper,
we consider the statistical shortest path (SSP) problem.
Given a graph G, the edge weights of G are random
variables. For each path P in G, let Lp be its length,
which is the sum of all edge We1ghts on P Clearly Lp
is a random variable and we let g, and 0’ be its mean
and variance, respectively. In the SSP problem our
goal is to ﬁnd a path P connecting two given vertices
to minimize the cost function 4, + () where ® is an

arbitrary function. (For example, if ®(z) = 3/z, the
cost function is g, + 30,.) To minimize uncertainty in
the final result, it is meamngful to look for paths with
bounded variance, i.e., > < B for a given fixed bound
B. In this paper, we present an exact algorithm to solve
the SSP problem in O(B(V + E)) time where V and E
are the numbers of vertices and edges, respectively, in G.
Our algorithm is superior to previous algorithms for SSP
problem because we can handle: 1) general graphs (un-
like previous works applicable only to directed acyclic
graphs), 2) arbitrary edge-weight distributions (unlike
previous algorithms designed only for specific distribu-
tions such as Gaussian), and 3) general cost function
(none of the previous algorithms can even handle the
cost function p, + 3g,. Finally, we discuss applications
of the SSP problem to maze routing, buffer insertions,
and timing analysis under parameter variations.

1. INTRODUCTION

With continued technology scaling, parameter vari-
ations have become a major factor that affects circuit
performance and could lead to excessive yield loss [1].
Variations in device and interconnect do not appear to
be scaling at the same rate with the technology. For
technology nodes of 65 nm or below, design method-
ologies that consider this important issue are needed to
avoid over-pessimistic design or yield loss in manufac-
turing.

Graph algorithms are widely used in VLSI CAD and
many CAD problems can be formulated as shortest path
problems. Traditional shortest path algorithms can han-
dle graphs only with deterministic edge weights. In or-

*This work was partially supported by the National Sci-
ence Foundation under grant CCR-0306244

0-7803-9451-8/06/$20.00 ©2006 IEEE.

965

Martin D. F. Wong
Dept. of Electrical and Computer Engineering
University of lllinois at Urbana-Champaign

mdfwong @ uiuc.edu

der to model uncertainty due to parameter variations,
we need to use probability distributions for edge weights.
In this paper, we consider the statistical shortest path
(SSP) problem. Given a graph G in which edge weights
are random variables. For each path P in G, let Lp
be its length which is the sum of all edge welghts on
P. Clearly Lp is a random variable. Let p, and % be
the mean and variance, respectively, of Lp. In the SSP
problem, our goal is to find a path P to minimize the
cost function p, + ®(o, ‘) where @ is an arbitrary func-
tion. For example, if ®(z) = 3/, the cost function
is pp + 30,. This cost function is widely used to mea-
sure the performance or yield when the distributions are
Gaussian. To minimize uncertainty in the final result, it
1s meanlngful to look for paths with bounded variance,
? < B for a given fixed bound B.

In th1s paper, we present an exact algorithm to solve
the SSP problem in O(B(V + E)) time where V and E
are the numbers of vertices and edges, respectively, in
G. Our algorithm assumes all edge-weight variances are
integers. (For graphs with non-integer edge-weight vari-
ances, we can simply discretized the range of real num-
bers for variances with desirable precisions and apply
the algorithm designed for integer variances.) The main
idea of our algorithm is to expand G into a larger graph
G’ by splitting each node into a number of nodes. New
edges are added and edge weights (real numbers) are
assigned intelligently. The resulting graph G’ is guar-
anteed to be directed acyclic and that the deterministic
shortest path in G’ gives an optimal path in G. There
were some previous efforts on the SSP problem [2-5].
Our algorithm is superior to previous algorithms be-
cause we can handle

e gemneral graphs
e arbitrary edge-weight distributions

e general cost function

Note that previous algorithms for the SSP problem were
designed for directed acyclic graphs with specific edge-
weight distributions such as Gaussian. Moreover, none
of the previous al§,0r1thms can handle the general cost
function p + ®(0”). In fact, none of them can handle
the important cost function p + 30 even for Gaussian
distributions.

The SSP problem has many applications in CAD for
VLSI. We will briefly discuss its applications to tim-
ing analysis, maze routing and buffer insertion under
parameter variations. For buffer insertion and timing
analysis, the graphs are directed acyclic, but for maze

9C-5

routing the graphs are of general forms. We have ap-
plied our SSP algorithm to some problems in these ap-
plications and the results are encouraging. For exam-
ple, in statistical timing analys1s our algorithm can find
not only the worst p1,+® () delay bound, but also the
longest delay path candldates even the delay distribu-
tions at outputs are not Gaussian.

The rest of paper is organized as follows. In Section
2, we will formally present the SSP problem. In Section
3, an efficient algorithm is proposed to find the optimal
solution for SSP problem. In Section 4, some techniques
are discussed to further improve its efficiency. We will
present some CAD applications for the SSP problem in
Section 5 and conclude the paper in Section 6.

2. STATISTICAL SHORTEST PATH
PROBLEM

Given a directed graph G, we are interested to find a
path from a vertex s (called source) to a vertex ¢ (called
sink). Such a path is called an s — ¢ path. As stated in
the last section, the goal of the statistical shortest path
(SSP) problem is to find a path P from s to ¢ in G such
that the cost function s, + ®(g) is minimized, where
Lp is the length of the path P, p, is the mean value

of Lp, 01'32 is the variance of Lp, and & is an arbitrary
function.

For each edge e in G, let X, be its edge weight distri-
bution, pe be the mean of X¢, and O’e be the variance
of X.. All edge-weight distributions are assumed to be
mutually independent. It is well known that if X and Y
are independent random variables and Z = X +Y, then
the mean and variances of Z can be obtained by adding
the means and variances of X and Y, respectively.

Consider an s — ¢t path P in G. From the fact that
means and variances are additive, it follows that:

IIPZZHfh U2P:ZO€

eepP eEP

Therefore, if the cost function is of the form p, + ko
then the SSP problem can be easﬂy solved by ass1gmng
a real-valued weight pe + ko? to each edge and solv-
ing the traditional deterministic shortest path problem.
Unfortunately, this approach would not work for the
general cost function 4, + ®(q), since

o(q7) # Y 2(0l)

ecP

For example, if ®(z) = \/z, we have ®(g’) = 0, which
is the standard deviation. It is well known that standard
deviations are not additive. As we will see later that an
important cost function is y, + kg, (i.e., ®(x) = kv/x),
we need to find a new approach to solve the problem.

We now discuss the importance of the cost function
tp + ko,. Typically, one would like to design for the
worst case. First, let us assume all edge-weight distri-
butions are Gaussian. Since adding two Gaussian dis-
tributions results in a Gaussian distribution, all path-
length distributions are Gaussian. It is well known that
with a Gaussian distribution for Lp, we have

P(|Lp — pp| < 30,) > 0.99

Therefore, one can use the cost function g, + 30, to
minimize for the worst case. As for general edge-weight

966

distributions, according to the Chebyshev’s inequality,

1
-5
Clearly, the larger the k, the smaller is the “tail” prob-
ability. Therefore, we can fix a value for k to define
what is considered to be the worst case. It follows that
minimizing the cost function p, + ko, is for minimizing
the statistical worst case path length.

As we mentioned i in Section 1, we only consider s — ¢
paths P such that a < B for a glven fixed bound B.
This is because we want to minimize uncertainty in the
final result due to large variance UP2. By bounding the
variance of the path length of P, we have the following
lemma.

P(|Lp — pp| < kop) >

LeMMA 1. Let P be an s —t path in G with g
Let u be a vertez on P and let Q C P be an s —
We have a, 2 < B.

path

Proor. Let P be < vo,v1,v2,...,vn, > where vg = s
and v, = t. Let P; be the subpath of P from vy to v;.
Let e; be the edge (vi—1,v;). Note that P;y; is obtained
by concatenating P; with e;41. Since variances are ad-
ditive, it follows that O’?:;i+1 afp + o2 i1 > 0}291,. Thus
the path length variances monotonically increase along
the path P. Since the maximum path length variance is
B which is at v, =t, all other path length variances on
the path P are strictly less than B. The lemma follows
since u is on P. [J

Finally, we assume all edge-weight variances are in-
tegers. This assumption allows us to design an algo-
rithm to exactly solve the SSP problem. Note that for
graphs with non-integer edge weights, we can discretize
the range of real numbers for variances within desirable
precision and then apply our algorithm.

3. ALGORITHM

We note that only p and o? are additive, not p +
®(0?) with arbitrary function of ®. So it is no longer
true that the optimal path must consist of optimal sub-
paths. Without this optimal-substructure property [6],
algorithms for classical shortest path problem are not
valid for SSP problem.

Our approach to solve the SSP problem is to recon-
struct the graph so that the optimal-substructure prop-
erty is satisfied. We will construct a new graph G’ from
the original G. G’ is a graph with deterministic edge
weight, and thus the existing algorithms for classical
shortest path problem can be used to find the shortest
path in G’. Furthermore, the shortest path in G’ must
correspond to the shortest path in G whose path-length
distribution has the minimum p + ®(o?) value.

Note that the edge weight distribution can be cap-
tured by p and ¢, and both of them are additive. We
modify the graph so that only one of them is stored
on the edge. Thus the edge weight becomes a deter-
ministic number. The problem is reduced to how to
modify the original graph G into a new graph G’ so all
edge weights become deterministic without losing the
random variable information.

We use the node-splitting technique to achieve this
obJectlve Since the SSP problem is to find optimal
pu+®(c?), which is linear in p but non-linear in variance.
We will use p as the new edge weight in G'. Expanded
vertices are used to preserve the variance. We split node

u € G into a set of nodes {u1,u2, - ,ui, - ,up}in G'.
Note that each s—wu path in G has a corresponding s—wu;
path in G'. The variance of the length of an s —u path
in G must be an integer between 1 and B according to
Lemma 1. Node w; in G’ represents the end point of
an s — w path in G with path length variance ¢. For
each u;, we call ¢ the variance-index or just var-index,
and write var-index(u;) = . According to Lemma 1, we
only need to consider paths with path-length variances
bounded by B in G. So for a node u € G, we only create
B nodes in G'. Of course, it is not necessary to expand
the source node s. We create a vertex so node in G’ to
represent s.

After vertex splitting, we create the edges in the new
graph G'. We have three different cases. First of all,
consider the edges from source node sg. As shown in
Figure 1, for any edge from s to a in G, we will create a
corresponding edge in G'. It points from sg to a;. As-
sume the edge-weight of (s,a) has mean p. and variance
ol. Then, i = o2 and w(so,a;) = p., where w(so,a;) is
the deterministic edge weight of (so,a:).

0z,
03,
) °
.L,. |::> ./p' ao-z
a

03,

Figure 1: Illustration of node splitting for the
source

Second, consider any edge e = (u,v) in G where u # s
and v # 5. pe and o2 are mean and variance of the edge
weight of (u,v), respectively. As shown in Figure 2, u
and v are divided into two sets of nodes in G'. Again,
because of the additive property of variance, we will
create the edge point from wu; to v;, where ¢ and j satisty
the following equation:

i=iton

U@
Figure 2: Illustration of node splitting

The edge weights are assigned as p. as illustrated.
We also notice the created edges in G’ are non-crossing.
Thus, for each edge in the original graph G, there will
be less than B edges created in G’

Finally, consider the sink node ¢t in G. After vertex
splitting, the sink node ¢ in G is also divided into B

967

9C-5

nodes in G'. To find the shortest path from s to ¢, we
have to create a new dummy node in G’ to represent ¢
in G. As shown in Figure 3, t' is created as the sink
node in G'.

According to the vertex splitting and edge creation
procedures we discussed, any path from sg to t; cor-
responds to a path from s to ¢ in G with path-length
variance i. To capture the ®(o?) term in the cost func-
tion, we assign ®(i) as the edge weight from ¢; to t'.

Thus the new deterministic graph G’ is constructed.
The psudocode is shown as BUILDGRAPH. It is obvious
that any path P’ from s¢ to ¢ in G’ corresponds to a
path P from s to ¢t in G. Because for any edge or vertex
in the path @ from sg to t;, it is mapped to one edge or
vertex in G. So @) corresponds to a distinct path P in
G. In G', t; is connected to t by one edge, which implies
the P’ also corresponds to a distinct Q. Thus P’ must
corresponds to one P in G.

We can also prove that distinct P in G maps to dis-
tinct P’ in G'. Let P be a path in G. For any sub-path
of P from s to u, the path-length variance is known
and fixed. So u corresponds to a vertex w; in G'. As-
sume (u,v) is an edge in P, and v corresponds to vertex
vj in G’'. Since only one edge (ui,v;) exists in G', for
any (u,v) € P, it maps to distinct (u;,v;). Thus the
one-to-one correspondence between P and P’ is proved.

BUILDGRAPH:
create source node so in G’
so corresponds to s in G
for each node u in G except s
Create B vertices {u1, - ,up} in G’
for each edge e = (u,v) in G
for each node u;
j=i+o?
ifj<B
create edge (u;,v;) in G’
’IU(’U,-L', vj) = Me
Create t' in G’
for each t;
Connect t; to t’
U)(ti, t’) =P

It is trivial to prove that P’ has a path-length p, +
®(c?). We have the following theorem:

THEOREM 1. The shortest path in G' which is created
by BUILDGRAPH from G corresponds to the optimal path
P in G which has the minimum p,+ ®(a?) for the path-
length distribution.

t, ®

Figure 3: Illustration of node splitting for the
sink

9C-5

Theorem 2 states an important property of G'.

THEOREM 2. The G' created by BUILDGRAPH from
G is a directed acyclic graph (DAG). Moreover, G’ has
at most B levels.

PROOF. Suppose thereis a cycle C' =< v, v1, ..., Um >
in G’ where vg = vp,. According to Lemma 1,

var-index(vp) < var-index(v1) < --- < var-index(vy,)

This is a contradiction since vg = v,,,. To see that G’ has
at most B levels, it suffices to show that every path P in
G’ has at most B edges. Note that the variance-index of
the nodes on P is monotonically increasing (Lemma 1).
If P has more than B edges, the var-index for the last
node w on P has var-index(u) > B, contradicting that
maximum var-index for every node is B. Therefore P
has at most B edges. It then follows that G' has at most
B levels. [

It is well known that the shortest path problem in a
directed acyclic graph (DAG) can be solved in O(V +
E) time. Moreover, existing linear time shortest path
algorithms for DAG can handle positive and negative
edge weights. Thus ®(g’) can be arbitrary function
with either positive or negative function values. In G’,
E'<B-Eand V' < B-V. So the SSP problem can be
solved in O(B(V + E)) time.

4. IMPROVED IMPLEMENTATION

Since G' must be a DAG, we can create G’ in a topo-
logical order. Thus, we don’t have to create all B nodes
for each vertex in GG, which not only speeds up the run-
time, but also saves the memory usage.

The first step is to create the sp vertex in G' and
create those vertices adjacent to so according to the
structure of G. This step is similar to the procedure in
BUILDGRAPH. For an edge (s,u) in G, we will create
the w; and connect the edge (so,u;). We will also store
some information in each created vertex w;:

e Its parent m(u;) = so.
e The path-length mean m(u;) from s to u;

e The level of this vertex. It is used to represent the
topological order. Now the level [(u;) = 1. Here
we assume the level of so is 0 because any edge
point to so is redundant and can be ignored.

Then assume we already expand G’ into level k. For
each node wu; in level k, we will create v; according to
the edge e = (u,v) in G, assuming j = i + o2 < B. If
v; doesn’t exist in G', we create v;, connect (u;,v;) and
store the following in v;:

o w(v;) = u;
o m(vj) = m(u;) + pe
. l(vj) =k+1

If v; already exists, we will compare m(v;) and m(u;) +
pe. If m(v;) < m(u;) + pe, it means the path from s
through u to v is not a sub-path of optimal path from s
to t. We don’t do anything on v;. Otherwise, the path
from s through u to v is a better solution, so we update
the information in v;.

We will repeat this procedure to level n. If nodes in
level n satisfy either one of the following conditions, we
will terminate our algorithm:

968

e n = B. Now all vertices of level n must have the
variance equals to B. According to Theorem 2, it
cannot create any vertex in G from these vertices.

e All vertices in level n corresponds to ¢ in G.

We terminate this algorithm by connecting all ¢; in
G’ to t' and calculate m(t;) + ®(z) to find the shortest
path.

Figure 4 illustrates an example of our faster approach.
Assume we use B = 25 to construct G’ from G in Fig-
ure 4(a). Using BUILDGRAPH, 100 vertices need to be
created by vertex splitting. By the improved implemen-
tation, the SSP problem can be solved very efficiently
as shown in Figure 4(b). It only creates 10 vertices in

G

(14,5) (10,4)

b
(8,14)

e (14,24) o
>Q
c (18,1) d

Figure 4: Improved implementation. (a) is the
original graph G. The edges are annotated by
(u,0?) as the edge weights (b) is the expanded
graph G'. The shortest path has a minimum pu+
30 value.

S. APPLICATIONS

Many problems in CAD for VLSI can be formulated
to SSP problem when variations become a concern. We
will here briefly discuss its applications to maze routing,
timing analysis and buffer insertion under parameter
variations.

5.1 Maze Routing

Maze routing is to find the shortest path with min-
imum length in a grid routing problem. Traditionally,
edge weights are assigned as real-valued number by cost
function. However, parameter variations make it nec-
essary to model the edge weights as random variables.
The cost functions are often related to those parameters
with variations. Considering the parameter variations,
the maze routing problem can be formulated as a SSP
problem.

Assume we want to find the optimal routing solution
for a critical net. So we use the wire delay as the cost
function. Considering the parameter variations, delay
is not only the function of wire length. The geometric

process variations come from various sources. For ex-
ample, the 30 value of wire width variation could reach
25% of nominal wire width [7]. Thus the delay value
changes substantially. Because of the systemic varia-
tions, the nominal values of wire resistance and capaci-
tance per unit length are no longer uniform within one
die. Furthermore, temperature variation can also im-
pact the performance.

Without considering the variation, the cost function
is D = f(P,T), where P is a set of geometric param-
eters related to wire delay, and T is the temperature.
Now, process variations become significant. P; € P are
random variables. All these variations are assumed to
have a distribution in Gaussian. We use first order ap-
proximation [8] to calculate the delay distribution:

: 0
D =P T)+ 3 oL
piep "

AP, (1)

where Py is a set of the nominal value of parameters.
AP; are parameter variables with zero mean. Now the
new cost function D’ will assign a Gaussian distribution
to edge weight. Consider the systemic variation, we use
the following equation to calculate the mean value of
edge weight:

H= g(d?,y,Po,T)
The variance can be calculated directly from Equation 1.
Since the path length is now obviously Gaussian, we
use g + 3o to find the optimal path length. Now the
maze routing problem is formulated as a SSP problem.
It can be solved by our proposed algorithm.

1)

(a)

Figure 5: Compare the maze routing with or
without consider the variations. (a) is the short-
est path found by classical shortest path problem
and (b) is the result by solving SSP problem.

‘We have applied our SSP algorithm to solve the maze
routing problem. Physical parameters for 65nm tech-
nology from ITRS2001 [9] are used. 3o values of these
parameters are set to be 30% of their nominal values.
Elmore’s delay model is used to calculate the delay these
physical parameters. Figure 5 shows one of the compar-
isons between the traditional approach and our method.
The darker region in Figure 5 means higher tempera-
ture. To make the routing wire clear, the temperature
profiles are only shown in the blocks. Figure 5(a) shows
the results without considering variation. To make the
comparison fair, we use temperature profile to calculate
the mean delay value. Systemic variations are also con-
sidered. In Figure 5(b), all variations are considered
and the shortest path is found by solving the SSP prob-
lem. It is clear that the path in Figure 5(b) intelligently
avoids the hot spots.

969

9C-5

5.2 Time Analysis

It is always a concern to predict the circuit perfor-
mance accurately. Precise timing information is needed
for circuit optimization to meet the yield or to avoid
over design. Timing analysis considering variations is
extensively studied recently. Path-based or block-based
algorithms have been proposed to find the statistical
longest paths and the delay distributions. Path-based
approaches usually depend on static timer to find out a
set of longest path candidates, and then the statistical
approaches can be performed [10,11]. Block based al-
gorithms can get the delay distributions by propagating
the random variables. However, they need path-based
analysis to find out the longest paths [12,13].

Our algorithm can be modified to find the earliest or
latest arrival time. To perform timing analysis, a circuit
is modeled as a DAG. The delay distributions for cells
and interconnects are assigned as the weights of edges.
Then our algorithm can be used to find the longest path
with maximum p + ko value, or the shortest path with
minimum g — ko value. Since this timing analysis is
to find the extreme case of delays, the bound B could
be large. With the pruning technologies similar to [14],
our algorithm can find the longest or shortest path very
efficiently, even if we set B to be infinity.

Another note on our proposed method is that the de-
lay distribution for the longest path is not the delay dis-
tribution for the corresponding output. To find the true
distribution of an output, we need to take M AX opera-
tion on delays of different paths to this output [10]. And
even if the path delays are Gaussian, the delay distribu-
tion at the output is not necessarily Gaussian.However,
we can use the Dyyax = p + ko value of the longest
path as a good bound for delay distribution at output.

Our algorithm stated in Section 3 can also be modified
to find longest path candidates. We will check all the
edges to the sink node t'. If the delay distribution is
not stochastically smaller than the longest path, we will
treat it as a candidate of the statistical longest paths.

Table 5.2 shows some experimental results on ISCAS
benchmark circuits. Our algorithm is performed to find
the longest paths as well as the bound Dyax (k = 3).
The number of longest path candidates is labeled Np in
the table. Monte Carlo method is used for comparison.
We perform 10000 runs of Monte Carlo analysis for each
circuit. And the Ny shows the cases in Monte Carlo
analysis which delays exceed the bound Dy ax (out of
10,000). We also show the mean pim. and variance o2,
of Monte Carlo analysis results. Since the delay distri-
bution at an output is not Gaussian, fime + 30me could
lead to a worse bound for timing analysis. Column T
shows the runtime for different testbench circuits.

bench | Dyax T Np Hme Ome Ny
C432 | 75.0546 | 0.05s 95 73.73 0.47 19
C499 | 45.2776 | 0.02s 186 43.91 0.49 13
C880 | 72.6244 | 0.03s 13 71.26 0.48 20
C1355 | 61.6536 | 0.05s 93 60.46 0.43 9
C1908 | 109.891 | 0.77s 134 | 108.27 | 0.54 4
C2670 | 103.08 6.07s | 2959 | 102.20 | 0.62 12
C3540 | 132.986 | 3.35s 585 | 131.05 | 0.64 13
ChH315 | 121.185 | 0.71s 19 119.28 | 0.64 15
C6288 | 267.311 | 22.91s 33 265.22 | 0.775 | 21
C7552 | 103.156 0.64 4 101.83 | 0.445 8

Table 1: Timing analysis on ISCAS benchmark

9C-5

5.3 Buffer Insertion

Buffer insertion is a widely used interconnection opti-
mization method. It can also be formulated as a short-
est path algorithm [15]. Figure 6 illustrates a simple
example with three possible buffer locations. The input
driver resistance is Ry and the output load capacitance
is CL.

We construct corresponding graph as shown in Fig-
ure 6(b), where s is the source node which represents
the driver, ¢ is the sink node of the graph which corre-
sponds to the load of the wire. The remaining vertices a,
b and c represent three possible buffer locations. Each
edge corresponds to a wire segment between two pos-
sible buffers. We treat driver and load as buffers for
convenience.

Edges are always directed along the signal transmis-
sion direction, The edge weight is defined as the delay
tq from one buffer input to the next buffer input. So
tq =ty + tw, where tg is the delay of the buffer and ¢.,
is the delay of the wire.

driver

Figure 6: Formulate buffer insertion into short-
est path problem. (a) is a small buffer insertion
example with 3 possible locations. (b) Graph is
built from (a).

Now consider the parameter variations. Delays of
buffers and interconnects are modeled as random vari-
ables. All ¢; in Figure 6(b) are now distributions instead
of deterministic numbers. The buffer insertion becomes
a SSP problem.

Similar to the maze routing problem, we use Elmore
delay model. The parameter data are from ITRS. Ta-
ble 5.3 shows some runtime results for our method. The
wire length is set to be 10mm. 45nm technology param-
eters are used. And we set B = 200. It runs on a Linux
box with 1GHz Pentium III CPU and 512MB memory.
LMAX is the possible buffer locations uniformly dis-
tributed on the wire. BUF# is the number of inserted
buffer. and pgeiay and ogeiay are mean and standard
deviation of shortest path, respectively.

LMAX | BUF# | pdeiay | 0detay | runtime
50 11 536 18.8 <0.01s
100 10 537 18.7 2.1s
150 11 536 18.8 17s

Table 2: Buffer Insertion Results

6. CONCLUSION

In this paper, we proposed a new algorithm to exactly
solve the statistical shortest path problem. It can find

970

the optimal solution in O(B(V + E)) time. Techniques
are also proposed for improvement. This algorithm can
be used in various applications in nanometer designs
when the parameter variations become a concern.

7. REFERENCES

[1] Shekhar Borkar, Tanay Karnik, Siva Narendra,
Jim Tschanz, Ali Keshavarzi, and Vivek De.
Parameter variations and impact on circuits and
microarchitecture. In Proc. of the 40th Design
Automation Conference, pages 338-342. ACM
Press, 2003.

H. Frank. Shortest path in probabilistic graphs.
Oper. Res., 17:583-599, 1969.

C. Elliott Sigal, A. Alan B. Pritsker, and James J.
Solberg. The stochastic shortest route problem.
Opers. Res., 28:1122-1128, 1980.

R. P. Loui. Optimal path in graphs with
stochastic or multidimensional weights. Comm. of
ACM, 26:670-676, 1983.

Ishwar Murthy. Stochastic shortest path problems
with piecewise-linear concave utility functions.
Management Science, 44:125-136, 11 1998.
Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 2001.

Duane Boning and Sani Nassif. Destgn of
High-Performance Microprocessor Circuits. 2002.
Kanak Agarwal, Dennis Sylvester, David Blaauw,
Frank Liu, Sani Nassif, and Sarma Vrudhula.
Variational delay metrics for interconnect timing
analysis. In DAC 2004, pages 381-384. ACM
Press, 2004.

Semiconductor Industry Association.
International Technology Roadmap for
Semiconductors, 2001.

Michael Orshansky and Kurt Keutzer. A general
probabilistic framework for worst case timing
analysis. In Proc. of the 39th Design Automation
Conference, pages 556-561. ACM Press, 2002.
Hongliang Chang and S.S. Sapatnekar. Statistical
timing analysis considering spatial correlations
using a single pert-like traversal. In Proc.
International Conference on Computer Aided
Design, pages 621-625, 2003.

A. Davgan and C. Kashyap. Block-based static
timing analysis with uncertainty. In Proc. of
international conference on Computer Aided
Design 2003, pages 607— 614, 2003.

C. Visweswariah, K. Ravindran, K. Kalafala, S. G.
Walker, and S. Narayan. First-order incremental
block-based statistical timing analysis. In Proc. of
the 41st Design Automation Conference, pages
331-336, New York, NY, USA, 2004. ACM Press.
Chirayu S. Amin, Noel Menezes, Kip Killpack,
Florentin Dartu, Yehea Ismail, Umakanta
Choudhury, and Nagib Hakim. Statistical static
timing analysis: How simple can we get? In Proc.
of the 42nd Design Automation Conference, pages
652657, New York, NY, USA, 2005. ACM Press.
Y. Gao and D. Wong. A graph based algorithm
for optimal buffer insertion under accurate delay
models. In Proc. of the conference on Design,
automation and test in Europe, pages 535-539.
IEEE Press, 2001.

[5]

[6]

[7]

[12]

[13]

[15]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

