
Worst Case Execution Time Analysis for Synthesized Hardware

Jun-hee Yoo
ihavnoid@poppy.snu.ac.kr
Seoul National University,
Seoul, Republic of Korea

Xingguang Feng
fengxg@poppy.snu.ac.kr

Seoul National University,
Seoul, Republic of Korea

Kiyoung Choi
kchoi@snu.ac.kr

Seoul National University,
Seoul, Republic of Korea

Eui-young Chung
euiyoung.chung@samsung.com

Samsung Electronics,
Yongin, Republic of Korea

Kyu-Myung Choi
kmchoi@samsung.com
Samsung Electronics,

Yongin, Republic of Korea

Abstract - We propose a hardware performance
estimation flow for fast design space exploration, based on
worst-case execution time analysis algorithms for software
analysis. Test cases on some real-world applications show
that our flow provides a tight upper bound of the execution
time, and many useful hints to the designer.

I. Introduction

As the Moore's law continues to apply to the embedded
system industry, systems become more complex every year.
Unfortunately, designer productivity doesn't continue to grow
as fast as system complexity, making design cost grow
rapidly every year. Especially, failing to meet the given
constraints (cost, performance, power consumption, etc) in
late stages of design and repeating the whole design cycle
can be catastrophic. Therefore, accurately estimating the
final design in early design stages becomes more and more
important.

Although many recent designs try to rely more on
software, many modern embedded systems use hardwired
logic for performance-critical portions of the given
algorithm, which is mainly because hardwired logic provides
performance higher than software. However, the performance
is achieved at higher manufacturing cost. To find an
optimal design in early design stages, it is crucial to
estimate accurately the performance and cost of the
hardware implementation of a given algorithm.

Since it is difficult and time-consuming to estimate the
final design manually considering the exceedingly large
design size of modern systems, there has to be some
automated method. This problem has been a research issue
for more than 10 years and there exist many hardware
estimation and analysis tools, along with tools that generate
hardware implementations from behavioral models. However,
most of the previous approaches evaluate the hardware's
performance based on simulation.

Simulation-based estimation flows have many limitations.
As the design size grows, simulation speed gets slower.
Moreover, the number of test cases needs to increase
exponentially as the system size grows, since there can be
many corner cases. Even with all those efforts, there's no
way to guarantee that every corner case has been tested, so
there always exists some possibility of missing tests for
worst case performance.

In this paper, we present a hardware estimation flow
based on static performance analysis techniques. The

proposed estimation flow translates a given C function into
CDFG, synthesizes a hardware structure from the CDFG,
and statically analyzes the generated hardware to estimate
the performance. Although the proposed estimation flow
analyzes the hardware implementation statically to obtain
worst case performance, it also does simulation-based
estimation for average case performance.

II. Related Work

A. Behavioral Synthesis and Estimation

Behavioral synthesis (commonly known as high-level
synthesis or architectural synthesis)[1] is a core part of our
estimation flow. It has been a research topic for more than
a decade and there are some real-world products that
perform behavior-level synthesis on C-based input
description. Catapult C-synthesis[2] from Mentor Graphics,
an example of such product, generates synthesizable HDL
code out of some restricted form of C/C++ code. The user
can explore the hardware design space by interactively
specifying how to implement some portions of codes, such
as by setting a loop to be always unrolled, or by
modifying the resource constraints. Additionally, the user
can select what kind of external interface the hardware will
have.

Forte's Cynthesizer[3] is another such synthesis flow
which starts from SystemC behavioral description. By
using Cynthesizer, users can generate many RTL
descriptions of an algorithm with different constraints, and
choose the appropriate one for the whole design.

However, these commercial tools focus on fast design
implementation by automating RTL coding, neglecting tight
worst-case execution time (WCET) analysis techniques. The
user can figure out how many cycles it takes by simulation,
or by figuring out how many times a loop might iterate in
the worst case, and multiply it by the worst-case execution
cycles of the loop body.

B. Static Estimation

There are many approaches to static software analysis.
Our work is inspired from those software estimation flows.

The Cinderella system[4] is a static approach to
estimating the performance of real-time software. The goal

Figure 1. The KPN-based SoC design space exploration flow.

of this approach is to estimate the worst-case execution
time (WCET) of a program. Based on basic block analysis,
the authors generate a series of linear constraints about the
execution counts of each basic block. Thus, the problem of
finding the WCET of a program is reduced to an integer
linear programming (ILP) problem. Together with the delay
of each basic block, the WCET is obtained by solving an
ILP with the objective of maximizing the total delay. Our
static hardware estimation flow is based on the idea from
this work.

SymTA/S[5] is another work based on static analysis. It
uses many approaches from real-time analysis theory to the
system level. The task execution times are obtained by
using the approaches from Cinderella. Furthermore, it
extends the Cinderella's work to system level WCET
analysis. Users can explore the design space of the given
system specification by trying different schedules and
different implementations.

There have been many researches on WCET analysis for
various microprocessor architectures, such as microprocessors
with cache, or microprocessors with branch prediction[6][7].
However, the authors are not aware of any prior research
on applying WCET analysis on synthesized hardware.

III. Application of the Estimation Flow

The hardware estimation flow described in this paper is
based on the hardware estimator of our prior work[8].
Figure 1 illustrates our SoC design space exploration flow.
Our prior work is an interactive SoC design space
exploration tool, which uses a KPN-modeled SystemC
description as its starting point. The steps of our SoC
design space exploration tool is as follows:
1) The input KPN model is translated to an HMDG

(hierarchical module dependency graph) consisting of
many MDGs. (module dependency graphs) and the
behavior of each node of the MDGs is extracted into
C code.

2) The C code is sent to the hardware estimator and
software estimator, which estimates the execution time
and implementation cost of each function.

3) Based on the estimation information, the
hardware/software partitioner decides whether an MDG
node should be implemented in hardware or software.
It may report mixed implementation of an MDG, if
some of its sub-MDGs are implemented in hardware
and the rest is implemented in software.

4) Since there can be many different implementations of
an algorithm, the optimal system implementation may
not be obtained unless we examine various designs
with various constraints. In our case, the partitioner
runs the hardware estimator multiple times on the
same input C function, each with different cost
constraints. However, since just estimating the
hardware design for all possible constraints for each
functional block of the system takes infeasible amount
of time, our partitioner uses a heuristic algorithm to
decide which subset of constraints will be tried for a
given function. However, it still takes a huge
amount of time with a naive approach such as
simulation, and thus requires a fast hardware
estimation method.

IV. Hardware Estimation Flow

A. Hardware Model

We assume that the generated hardware will be
connected using a bus, and communicate using a DMA
controller. We also assume that a hardware block will
have its own private memory space, which can be accessed
by other processors via the bus while the hardware block is
idle.

We assume the system operates as follows:
1) The caller (microprocessor or another hardware block)

checks to see if the hardware block is available, and
acquires the control over the generated hardware. This
control can be implemented using mutex.

2) The caller uses the DMA controller to transmit all
data required for the hardware to complete its
execution to the hardware's private memory space.

3) The caller writes a 'start' command on the hardware's
'command' register, which starts the execution of the
hardware.

4) After the execution completes, the caller uses a DMA
controller to fetch the computed result from the
hardware's private memory.
Figure 2 shows the hardware model we assumed. We

used this model because of the following reasons:
1) The hardware estimation flow is expected to estimate

hardware blocks that will run as a microprocessor
accelerator, thus, assuming a DMA using general
buses for communication will be appropriate.

Figure 2. Hardware model.

Figure 4. An example code with user constraints inserted.

Figure 3. Hardware estimation flow.

2) We assumed a private memory block because it's
difficult to predict how long a bus access will take.
If we assumed shared memory space, many kinds of
hard-to-predict latencies such as arbitration has to be
added, and it will be difficult to predict the
worst-case execution time correctly.
Although the model limits the generality of the

synthesized hardware, we believe that the proposed approach
can be applied to a more general model with proper
adjustment.

B. Overview of the analysis flow

Figure 3 illustrates our hardware estimation flow. The
input of the current estimation flow is a C function with
some restrictions on the constructs, including pointer access
and some control flow statements such as goto or break.
First, the input code is translated into an in-house
control-flow data graph (CDFG) implementation[9]. Next,
many target-independent optimizations, such as common
subexpression elimination and constant propagation, are
applied to the CDFG. The optimized CDFG is then
scheduled, and appropriate hardware resources are allocated
to meet the hardware constraints given by the user or some
other tool. This generates a CDFG that's ready to be
synthesized into hardware. These steps are a typical
behavioral synthesis flow.

However, no hardware is generated after this step. The
'synthesized' CDFG, which contains cycle-accurate
scheduling information, can be either analyzed statically or
simulated. The analysis (or simulation) result provides a
feedback such that the user can apply different constraints
to the CDFG and obtain different results.

Although this paper focuses on static analysis of
worst-case execution, simulation-based analysis is still useful
for analyzing the average-case execution cycles. The CDFG
simulator does cycle-accurate simulation for obtaining the
performance for some test case. Test cases are generated
by extracting the input data applied to the function. The
testbench generator library gets linked to the original C
code, to log the C code's input data to be used later as the
input test vector for simulation.

The following two sections describe the two blocks -
the constraint extractor and the CDFG extractor - which are
tightly related to static analysis.

C. Constraint Extractor

The constraint extractor analyzes the C code's structure,

and generates constraints that are always fulfilled regardless
of the input condition. Currently, our constraint extractor
looks for trivial loops with fixed number of iterations by
using the SUIF compiler infrastructure's code analyzer.[10]

Although our constraint extractor looks for trivial constraints
only, this can be further improved in our later versions of
the flow. Since constraint analysis has been an active
research field, we believe that we can integrate most of
these approaches to our flow.[11]

Even with the most sophisticated analysis algorithms,
there can be many constraints that are difficult to determine
automatically, or that are input-dependent. In this case, the
user may add constraints by annotating C code. The
constraint extractor extracts all constraints including the
user-specified constraints, and sends them to the CDFG
analyzer.

Constraints can be specified as a number of equations,
using variables as the execution count of the corresponding

control flow. Figure 4 shows an example function with the
user-given constraints added in. The user can add simple
constraints such as the maximum number of iterations a
loop will run (line 3). Moreover, the user can add
complicated dependencies between many execution counts,
such as the relationship between two branches' execution
paths (line 4).

D. Static CDFG Analyzer

The static CDFG analyzer generates a large list of
integer linear programming (ILP) constraints from the
synthesized CDFG. The constraints are then solved using an
ILP solver. For our flow, we have used GLPK[12], an
open-source ILP solver. Since we are interested in the
worst case performance, the ILP solver is invoked to find
the worst case.

The method of generating the ILP is adopted from
software estimation flows[13]. Although the approach has
been originally developed for static software analysis, it is
also possible to apply this technique to CDFG analysis,
since CDFGs also represent an algorithm's operations and
control flow.

The total execution time can be modeled as:

where is the total number of basic blocks, is
the execution time of the basic block, and is the
number of times that the basic block is executed. This is
the object value that must be maximized when solving the
ILP. Since is the number of cycles a basic block takes
to execute, it is determined when the hardware is
synthesized.

Constraints by the control path is generated by the fact
that for each basic block, the number of times the control
enters the basic block equals to the number of times the
control exits the basic block. However, unlike the typical
'flat' basic block graph structure, our synthesis flow
represents the control flow by using hierarchical nodes
which contains many basic blocks. This approach can be
found from some other high-level synthesis flows[14].

Our control flow representation contains two kinds of
hierarchical nodes - loop nodes which represents do-while
loops, and condition nodes which represents if-then-else
statements. A loop node contains one basic block which
represents the body and the condition expression of the
loop, and a condition node contains three basic blocks
where each of them represents the condition block, true
block and the false block. Each basic block can contain
other hierarchical nodes, and the whole function is
represented as a single basic block.

We modified the control path modeling as the
following: for all condition nodes , if we let be the
execution count of that node, and and
be the execution count of the 'true' basic block and the
'false' basic block of that condition node, a condition node
can be modeled as:

For loops, since we are modeling do-while loops, we
generate the constraint that the loop body should execute
more or same times than the loop node itself. This can be

modeled as:

Additionally, all nodes within a basic block has the
same execution count. Therefore, the constraint for that
should also be added.

For example, the constraints by the control path of the
example on figure 4 is generated as:

where is the execution count of the function
itself, and the other terms equal to the execution count of
the corresponding control block annotated on the code.

The final ILP formulation is generated by adding
user-specified constraints and automatically extracted
constraints. For the example on figure 4, the following
user-specified constraints can be added:

In order to make the static estimator give accurate
results, the execution counts of all loops in the CDFG have
to be known prior to performing static estimation. The loop
information generated by the constraint analyzer and
constraint extractor is used in this stage. However, in some
cases, the user may fail to specify all required loop
information, and that will result in failing to find tight
upper bound of execution time. In that case, users can
incrementally improve the analysis results by adding more
constraints on performance-critical code first. Additionally,
the user can compare the static analysis results with the
simulation results to see if there are unacceptably loose
estimation results.

Currently, the static analyzer can only analyze the
execution time. Other performance metrics such as energy
consumption per execution are obtained via simulation.

V. Test Case and Experimental Results

We have done experiments using two real-world
multimedia applications: the h.263 video encoder, and the
Karplus-Strong algorithm,

A. H.263 Encoder

We have experimented with the h.263 encoder, a widely
adopted video compression application. We analyzed the
two most heavily used functions: SAD_Macroblock and
Quantize.

Figure 5 and 6 show the area-performance tradeoff of
SAD_Macroblock function and Quantize function,
respectively. We have used different number of ALUs as
the area constraint of the implementation.

Figure 7 and 8 show the simulation results of the
hardware implementation with the maximum number of

Figure 7. Simulation result of SAD Macroblock.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 100 200 300 400 500

simulation ID

cy
cl

es

Figure 6. Area-performance tradeoff of Quantize.

2640

2660

2680

2700

2720

2740

2760

1 2 3 4 5 6 7 8

number of ALUs

cy
cl

es

Figure 9. The Karplus-Strong code for this experiment.

Figure 10. Simulation result of Karplus-Strong.

15200
15400
15600
15800
16000
16200
16400
16600

0 20 40 60 80 100 120
simulation ID

cy
cl

es

Figure 5. Area-performance tradeoff of SAD Macroblock.

1800
1850
1900
1950
2000
2050
2100
2150

1 2 3 4 5 6 7 8

number of ALUs

cy
cl

es

Figure 8. Simulation result of Quantize.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

simulation ID

cy
cl

es

functional units. The X axis represents the simulation run
ID number, and the Y axis represents the number of cycles.
We have done 451 simulations for SAD_Macroblock and
168 for Quantize, using different real-world testbenches.
From the figures, we can make sure that the execution time
obtained by simulation is always within the upper bound
obtained by static analysis.

For SAD_Macroblock, the worst case execution time
obtained by the simulation exactly matches the upper
bound. However, for Quantize, the worst case execution
time by the simulation is 2,458 cycles, whereas the static
estimation result gives 2,677 cycles. Through a careful
analysis, we have found that our simulation-based estimation
has missed running the h.263 encoder with different modes,
which takes exactly the same cycles as the static analysis
reports.

Even though ILP is known to be an NP-complete
problem, the execution of the ILP solver is done almost
instantly on an average workstation. (Intel Xeon 2.4GHz).
This is because the ILP problem is reasonably small - the
set of equations from Quantize has 49 variables and 55

equations and that from SAD_Macroblock has 54 variables
and 39 equations.

B. Karplus-Strong

Karplus-strong[15] is a method of generating synthesized
sound waveforms, which is based on physical modeling of
a hammered or plucked string, or some type of percussion.
We have used our implementation of Karplus-strong, which
does double-buffering on the output buffer. Figure 9 shows
the C code of our implementation.

By observing the C code, it's easy to find the constraint
that the two for loops have dependencies on loop iteration
numbers - the sum of the number of iterations on the two
loops are 1,023. These kind of constraints can be added by
formulating it as an ILP. In this case, the estimated worst
case was 16,385 cycles.

However, when using the simple method - multiplying
the number of worst-case iterations to the cycles that takes
to execute the loop body, we have to use the worst case
for both loops, and the two loops are assumed to iterate
1,023 times. In this case, the estimated worst case is
31,731 cycles.

Figure 10 shows the execution cycles of the simulation.
The X axis represents the simulation run ID number, and
the Y axis represents the number of cycles. The worst
case execution cycle of the simulation equals to our
analysis result. This shows that the analysis method of our
flow gives a tight upper bound.

VI. Conclusion and Future Work

In this paper, we present a hardware estimation flow
that can be used for design space exploration. The test
cases and experiments show that our flow can help the
designer to understand many possible issues that can happen
in the hardware implementation.

We summarize our contribution as:
1) Presenting a hardware estimation flow based on static

analysis of the execution pattern, and
2) presenting a method of adding complex execution

path constraints to a C function, and using them for
worst-case execution analysis.
However, our estimation flow has some more points to

improve. Our estimation flow made many on the
restrictions made in the input C code. These limitations
have added much labor on modifying the reference code to
work with the estimation flow. However, we expect to
remove most of these limitations in our future work.

Some additional features that might help the users of
this flow can be static energy consumption analysis. By
predicting a reasonable upper bound of energy consumption,
it would be possible to make a reasonable power budget.

Additionally, the hardware model that we used assumes
a local buffer memory, so that there would be no
unpredictable memory accesses delays. We believe this can
be improved by adding information about the external bus
into the static analyzer, and generate the appropriate ILP
formula based on those information.

References

[1] G. De Micheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, 1994

[2] Catapult C synthesis, Mentor Graphics,
http://www.mentor.com/products/c-based_design/

[3] Forte Cynthesizer,
http://www.forteds.com/products/cynthesizer.asp

[4] Cinderella 2.0
http://www.princeton.edu/~yauli/cinderella-2.0/

[5] SymTA/s, http://www.symta.org/

[6] S. Kim, S. Min, R. Ha, "Efficient worst case timing
analysis of data caching", In Proceedings of the IEEE
Real-Time Technology and Applications Symposium,
Pages 230 - 240, June 1996

[7] A. Colin, I. Puaut, "Worst case execution time
analysis for a processor with branch prediction",
Real-Time Systems. Vol. 18, no. 2, Pages 249-274.
Kluwer Academic Publishers, 2000,

[8] Y. Ahn et al, "An Interactive Environment for SoC
Design Starting from KPN in SystemC", Global Signal
Processing Expo., Oct. 2004

[9] Control Data Flow Graph Toolset,
http://poppy.snu.ac.kr/CDFG/

[10] The SUIF 1.x compiler system,
http://suif.stanford.edu/suif/suif1/index.html

[11] C. Healy and D. Whalley, "Tighter Timing
Predictions by Automatic Detection and Exploitation of
Value-Dependent Constraints", In Proceedings of Fifth
IEEE Real-Time Technology and Applications Symposium,
pages 79-88, 1999

[12] GNU Linear Programming Kit,
http://www.gnu.org/software/glpk/glpk.html

[13] Y. Li, S. Malik, and A. Wolfe, "Efficient
microarchitecture modeling and path analysis for
real-time software," In Proceedings of the 16th IEEE
Real-Time Systems Symposium, pages 298-307, 1995

[14] S. Gupta, N. Dutt, R. Gupta, A. Nicolau, "SPARK:
a high-level synthesis framework for applying
parallelizing computer transformations", In Proceedings of
the 16th International Conference on VLSI Design, pages
461-466, 2003

[15] Karplus-strong string synthesis, from Wikipedia
http://en.wikipedia.org/wiki/Karplus-Strong_string_synthesis

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

