
Hardware Debugging Method Based on Signal Transitions and Transactions

Nobuyuki Ohba Kohji Takano

IBM Research, Tokyo Research Laboratory, IBM Japan Ltd.
Yamato city, Kanagawa, Japan 242-8502

Tel: +81-46-215-4547
Fax: +81-46-273-7413

e-mail: {ooba, chano}@jp.ibm.com

Abstract - This paper proposes a hardware design debugging
method, Transition and Transaction Tracer (TTT), which
probes and records the signals of interest for a long time, hours,
days, or even weeks, without a break. It compresses the
captured data in real time and stores it in a state transition
format in memory. It can be programmed to generate a trigger
for a logic analyzer when it detects certain transitions. The
visualizer, which shows the captured data in the matrix,
timing-chart, and state-transition diagram formats, helps the
engineer effectively find bugs.

I. Introduction

System On Chip (SoC) design is widely used to boost the
performance, lower the power consumption, and reduce the
overall system costs by integrating many resources. In
ASIC/SoC design, however, growing design complexity has
forced engineers to tackle deeper bugs, and thus the
development requires more work in the test and debugging.
Hardware prototyping is widely used [1, 2] for accelerating
the work. It sure is a powerful tool giving outstanding test
speed, which is usually 100 to 100,000 times faster than
software simulation. It even allows the engineer to run real
firmware, an operating system, and applications [3, 4].

As the size and complexity of ASIC/SoC increases, many
more test cases are required to achieve sufficient test
coverage in the verification. In addition, long-running tests
taking hours or even days are needed to remove bugs from the
product. In such testing and debugging, engineers often face
difficulties in identifying what causes a bug. This is
especially the case if the error is intermittent and not
reproducible, as when the test program sometimes does and
sometimes does not generate the error.

To trace the behavior of signals in a hardware prototype,
designers normally use a logic analyzer and FPGA built-in
signal trace tools, such as the Xilinx ChipScope [5] or Altera
SignalTap [6]. The logic analyzer is a powerful tool for
debugging since it allows the engineer to see what is
happening in the target hardware in real time. However, the
logic analyzer also has weak points:
• A logic analyzer has a limited amount of memory, so that

it records signal behavior for only part of a test run, as
shown in .

• It is not always obvious to the engineer as to which trigger
conditions will pinpoint the source of the bug.

• Human designers find it difficult to fully understand the
large amount of collected data in the timing-chart format.

During hardware debugging, we occasionally came across
problems, which are hard to solve by using conventional
approaches. Let us show three typical problems:
1) I ran a test program on the prototype board and got an

error. Running the test program again, there was no error.
I ran it ten more times, but still had no error. Where is the
error gone?

2) I connected my new core to Design X from Company Y. I
ran a test program and got an error. We only have a
minimal data sheet for Design X. According to the
specifications, my core should work. Why not?

3) I am using a logic analyzer to trace an error, but I have no
idea as to what kind of trigger condition I have to set.

To address these problems, we have been developing a
hardware debugging tool named Transition and Transaction
Tracer (TTT). Our experiences in hardware development
show that the target ASIC/SoC is well verified for the
transactions that occur frequently. However, the ASIC/SoC
tends to have potential flaws in processing transactions that
rarely happen. For this reason, TTT captures the time varying
signals as a series of vectors, and records them for a long time,
such as for hours, days, or even weeks without a break. TTT
constantly monitors the transition counts between states to
help the engineer effectively find the problem. When it
detects a new or unexpected transition, it calls the attention of
the engineer by generating a trigger for the logic analyzer.

Trigger

Recorded

Not recorded

Time

Recorded

Not recorded

Trigger

Fig. 1. Signal transitions recorded by a logic analyzer

To help engineers easily perceive what happens in the
target hardware, TTT shows the signal behavior not only in
the timing-chart format but also in the state transition diagram.
To automatically identify and extract a transaction from the
signal transition sequence, we developed an idle state detector,
which splits two adjacent transactions.

This paper is organized as follows: Section 2 describes the
hardware architecture of TTT; Section 3 shows an
implementation of TTT using an FPGA prototyping board;
Section 4 shows the results obtained by running TTT on a PCI
bus; and Section 5 offers concluding remarks and discusses
future work.

II. Hardware Architecture of Transition and
Transaction Tracer

A. Overview of the debugging system
TTT captures the transitions of the target signals and

records them in a state transition form for a long time, for
hours, days, or even weeks, without a break. This greatly
decreases the possibility of missing the signal behavior
associated with an error. In contrast to a conventional logic
analyzer, TTT generates a trigger for signal capture when any
new transition is detected.

Fig. 1 is the overview of the typical debugging system,
which consists of a Device Under Test (DUT), Transition and
Transaction Tracer (TTT), a visualizer of TTT, and a logic
analyzer. TTT probes the target signals of the DUT, captures
the signal transitions, compresses the data in real time,
performs matching against the state transitions already stored,
and sends the analyzed data to the visualizer. It also has a
trigger generator connected to the logic analyzer.

B. Internal Structure of Transition and Transaction Tracer
Fig. 2 shows the internal structure of TTT. It is composed

of a transition recorder and transaction tracer. The transition
recorder focuses on the transitions between pairs of adjacent
states. The transition tracer, on the other hand, has a higher
view of completed transactions, where the transactions are

delimited by idle states.
The transition recorder consists of a transition memory

(U1) and a counter memory (U2). It captures the state
transition between adjacent states, which is the vectors at
Clock N-1 (previous state) and Clock N (current state). The
vector pair is stored in the transition memory. The counter
memory records the number of each transition between
adjacent states. If the transition has not yet been stored in the
transition memory, the transition recorder generates a trigger.
If the transition has already been stored, the transition
recorder increments the counter that is associated with the
captured transition.

Fig. 3 is a user interface example, which shows the state
transitions in a two-dimension matrix format. In the figure the
number 43,123 (marked with *) is the transition count from
state A to state B. The cell is automatically shaded because
the transition count exceeds the user specified threshold,
10,000 in this case. In like manner, the number 3 (marked
with **) shows the transition count from states D to B. The
cell color is reversed because the transition count is lower
than the user-specified threshold of 10, helping the user easily
spot the rare transitions.

Fig. 2. Internal Structure of Transition and Transaction Tracer

Transition
Memory
(U1)

Transition memory

(U1)

Transaction
Expression
Unit
(U3)

Compression
unit
(U3)

Iteration
Detector
(U4)

Ring buffer

(U4)

Transaction
Processing
Unit
(U5)

State-
transition
pattern-

matching unit
with idle
detector

(U5)

Transaction
Memory
(U6)

Transaction
memory

(U6)

Signals
from DUT

Trigger

Counter
Memory
(U2)

Counter
memory

(U2)

Counter
Memory
(U7)

(U7)

Transition recorder

Transaction tracer

Trigger

Counter
memory

11

1

000

100 010

110

001

011

111

101
111

110

State transition diagram

Device Under Test (DUT)

VisualizerTransition and Transaction Tracer (TTT)

Trigger
Logic analyzer

Real-time
compression,
pattern matching,
and conversion

Fig. 1. Debugging System Overview

State at Clock N
A B C …

A 121 43,123* 0 …
B 0 324 0 …
C 815 0 132 …
D 0 3** 43 … St

at
e

at

C
lo

ck
 N

-1

… … … … …

High threshold = 10,000
Low threshold = 10 (defined by the user)

Fig. 3. Visualization example in the matrix format

The transaction tracer captures the signal behavior as a
transaction, which is a series of states between idle states. The
idle states are defined by the user or by the idle state detector.
The transaction tracer consists of a compression unit (U3), a
ring buffer (U4), a state-transition pattern-matching unit with
an idle state detector (U5), a transaction memory (U6), and a
counter memory (U7). The compression unit carries out run
length coding to compress the captured data. The
state-transition pattern-matching unit searches for the
captured transaction pattern in the transaction memory. If it
finds the transaction to be new, it stores the data in the
transaction memory. The counter memory stores the number
of each specific transactions observed. The state transition
diagram drawn in the visualizer is constructed by using the
information stored in the transaction memory.

Table 1 shows an example of the compression procedure.
The transaction is defined as a series of states starting with the
transition from the idle state to a non-idle state and ending
with the transition from a non-idle state to the idle state. The
run-length expression in the table shows how the input states
are compressed in the run-length form. This is based on
blocks of repeated states and their repetition counts.

The compressed data is stored in the transaction memory.
The transaction tracer uses hashing for the search and store
operations. Since transactions vary in length, the compressed
data are stored in a linked list form.

C. Idle State Detector
In the first version of TTT, the idle state was defined by the

user. By experiences of debugging work, we have learned that
the idle state can easily be detected in many cases. The bus is
not busy all the time; rather it frequently “hovers” over the

idle state, in which the signals tend to keep the constant value.
From a power saving perspective, it is a good idea to keep the
signals unchanged in the idle state, and many hardware
designs adhere to this design scheme.

If the input signals are unchanged more than C cycles, the
idle state detector registers the state as IDLE, where C is a
user defined integer (C ≥ 2). By definition, one or more states
can be registered as IDLE. The transaction tracer uses this
state or these states to find a series of signal transitions
between the idle states and records them as a transaction.

III. Hardware Implementation

We implemented the transition and transaction tracer using
a custom-made FPGA prototyping board. Fig. 4 is a
photograph of the board. It has two Xilinx VirtexII
XC2V4000 FPGAs and a card-edge PCI interface, so that it
can be installed in a PCI slot.

We made the design in VHDL and synthesized it for the
FPGA configuration data using Xilinx ISE version 6.3. The
transition memory (U1) in Fig. 2 is a fully-associative
memory. The other memories and counters (U2, U6, and U7)
use a two-port 18 Kb block SRAM provided in the FPGA [7].
All the counters are 36 bits wide. Table 2 shows the number
of FPGA slices and 18 Kb SRAM modules used for the
implementation. In the table, the capacity is the maximum
number of transitions that can be stored in the transition
memory (U1). The transition recorder uses many more slices
than the transaction tracer. This is because the transition
memory is a fully-associative CAM running as fast as the
DUT signals. The CAM is implemented by using the
primitive latches and comparators of the FPGA. The depth is
the maximum recordable block length of a repetition. In Table
1, for example, the block length is two for (BC).

The amount of hardware resources for implementing the
transition and transaction tracer depends on the capacity and
depth, both of which are related to the complexity of the
target signal behavior, but not to the usage duration.

Fig. 4. FPGA prototyping board

Table 1: An example of a compression procedure
Sampling
time

Input
state

Direct
expression

Run-length
expression

+0 <idle>
+1 A A A
+2 B AB AB
+3 C ABC ABC
+4 B ABCB ABCB
+5 C ABCBC A(BC)1
+6 B ABCBCB A(BC)1B
+7 C ABCBCBC A(BC)2
+8 D ABCBCBCD A(BC)2D
+9 <idle>

Table 2: Hardware resources
(1) Transition recorder (2) Transaction tracer excluding

transaction memory
Capacity Slices SRAM

modules
 Depth Slices SRAM

modules
64 2,720 2 2 84 0

128 3,065 2 3 137 0
256 4,118 2 4 207 0
512 12,871 2 5 288 0

1,024 26,705 4 6 382 0
 7 492 0
(3) Transaction memory 8 621 0

 9 767 0 Capacity Slices SRAM
modules 10 928 0

512 315 2
1,024 315 3
2,048 315 5 (4) Idle state detector
4,096 315 9
8,192 315 17

C Slices SRAM
modules

16,384 315 33 31 674 3

IV. Evaluation

To see the effectiveness of the proposed method, we
captured the behavior of a 32-bit 33 MHz PCI bus. The
capacity of the transition recorder we chose for this
application was 64. The depth and capacity of the transaction
tracer were 4 and 1,024, respectively. By using the speed
optimized option in the synthesizer, the Virtex-II
XC2V4000-6 FPGA can run at up to 100 MHz.

In addition to the FPGA board, a network card and an IDE
control card were resident in the PCI bus. Ten PCI control
signals, FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#,
GNT#, C/BE#[3,2,1,0], were monitored.

Firstly, the bus state was manually defined as IDLE if
FRAME#, IRDY#, and TRDY# were all inactive. All of the
PCI transactions were monitored for about an hour. During
the test run, 78 types of transactions were captured. Fig. 5
shows the occurrence counts of the recorded transactions.
The transaction length is defined as the number of the states
between the idle states. The figure shows that the occurrence
count for the most frequently captured transaction was more
than 108, and a transaction that happened only once was also
recorded.

Without any background knowledge, it is very hard for
conventional methods to capture such a rare transaction. The
method proposed in this paper records all of the transactions
and display them in the state transition diagram, which helps
the engineer clearly understand what is happening in the
target hardware.

Secondly, we engaged the idle state detector. Value 31 was
assigned to C, and therefore the states that stay unchanged for
more than 30 cycles were automatically defined as IDLE.
After two hour test run, two states shown in Table 3 were
registered as IDLE.

This result conforms to the PCI specification [8].
FRAME#, IRDY#, TRDY#, DEVSEL#, and STOP# are all
sustained tri-state1 signals, and therefore they must be in H
state for the idle cycle. C/BE#[3,2,1,0], on the other hand, are
tri-state signals and can be left H or L after a transaction is
completed.

To help the engineer understand the target behavior, we
developed a visualizer, which runs on Windows and Linux. It
shows the signal transitions in three formats: 1) transition
matrix, 2) timing chart, and 3) state transition diagram. The
transition matrix, as illustrated in Fig. 3, is a two dimensional
matrix, which shows the transition counts for adjacent states.
Fig. 6 is a screen shot of the visualizer, which shows a state
transition diagram and a timing chart. While TTT is
monitoring the signals, the state transition diagram is
generated on the fly. Newly recorded transitions are colored
red to be easily identified.

To increase the bus bandwidth, address pipelining is used
in several bus protocols, such as IBM CoreConnect and
ARM AMBA. By definition, the address phase begins before
the previous data phase is completed. In such a case, a traced
transaction path delimited by an IDLE sate will contain two
or more transactions. Although the state transition diagram
becomes bigger, it still gives important information on how
two or more transactions are overlapped. To make it easier
for the user to distinguish address and data phases, the
visualizer can color the states in accordance with the
specified signal status.

Table 3. Idle states
Signal IDLE1 IDLE2
FRAME# H H
IRDY# H H
TRDY# H H
DEVSEL# H H
STOP# H H
GNT# H H
C/BE#[3] H L
C/BE#[2] H L
C/BE#[1] H L
C/BE#[0] H L

(H: high voltage, L: low voltage)

1 Sustained Tri-State is an active low tri-state signal owned and driven by
one and only one agent at a time. The agent that drives a sustained tri-state
pin low must drive it high for at least one clock before letting it float.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

2 3 4 5 6 7 8
Transaction length

Tr
an

sa
ct

io
n

oc
cu

rre
nc

e

v

Fig. 5. Occurrence of PCI transactions

V. Concluding Remarks

This paper proposes a new hardware debugging method, a
transition and transaction tracer, which focuses on the signal
transitions and transactions to accelerate ASIC/SoC
debugging. We implemented it using a prototyping FPGA
board and evaluated the hardware resources and operating
speed. A state transition diagram for PCI transactions was
shown as an example.

To review, here are the problems listed in the introduction
and how we tackled them:
1) I ran a test program on the prototype board and got an

error. Running the test program again, there was no error.
I ran it ten more times, but still had no error. Where is
the error gone?

A1) With TTT, I probed the crucial signals and recorded all
the transitions in each test run. The state transition
diagram from the test that caused an error has a
transition that does not appear in the error-free state
transition diagrams. It turned out that the transition
occurred only when three devices simultaneously
requested a bus. TTT provided a hint to solve the
problem.

2) I connected my new core to Design X from Company Y.
I ran a test program and got an error. We only have a
simple data sheet for Design X. According to the
specifications, my core should work. Why not?

A2) TTT showed that the error occurred in a specific
situation that is not described in the data sheet of Design

X. My core was never expected to encounter this
behavior. I contacted an engineer from Company Y and
we sorted out the problem.

3) I am using a logic analyzer to trace an error, but I have
no idea as to what kind of trigger condition I have to set.

A3) I configured TTT to trigger the logic analyzer to record
data for each new transition. By analyzing the captured
data in the logic analyzer, I found that the error was
associated with a very rare transition event, which
appeared roughly once an hour.

Design and verification engineers often delude themselves
that a certain input or transition is impossible. Looking at the
state transition diagram created with TTT, we sometimes
discover the reality is different from what we had believed.
We have been using TTT for practical ASIC development and
succeeded in accelerating our debugging work.

We are now developing a new function that incorporates
TTT with an assertion-based verification method [9]. The
assertion specifies state transitions that must not happen
(illegal transitions) and those that must happen (transitions
that must be tested) in the test run. We define these transitions
in the TTT prior to the test run. TTT gives warning to the
engineer if it detects an illegal transition. It also records the
number of captured states and transitions in each test run for
measuring the test coverage.

We are also studying how TTT gives more useful
information to the user in pipelined and split-transaction
buses.

Fig. 6. Screen shot of the visualizer

References

[1] N. Ohba and K. Takano, “An SoC Design Methodology
Using FPGAs and Embedded Microprocessors,”
Proceedings of Design Automation Conference,
pp.747-752, 2004.

[2] J. O. Hamblen, “Rapid Prototyping Using
Field-Programmable Logic Devices,” IEEE Micro,
pp.29-37, 2000.

[3] T. Matsumura, N. Yamanaka, R. Yamaguchi and K
Ishikawa, “Real-time Emulation Method for ATM
Switching Systems in Broadband ISDN,” Proceedings
of IEEE International Workshop on Rapid System
Prototyping, pp.19-21, 1996.

[4] M. Courtoy, “Rapid System Prototyping for Real-Time
Design Verification,” Proceedings of Ninth
International Workshop on Rapid System Prototyping,
pp.108-112, 1998.

[5] Xilinx Inc., “Chipscope Pro Software and Cores User
Guide,” October, 2004.

[6] Altera Inc., “Design Debugging Using the SignalTap II
Embedded Logic Analyzer,” December, 2004.

[7] Xilinx Inc., “Virtex-II Platform FPGA Handbook,”
December, 2001.

[8] PCI Special Interest Group, “PCI Local Bus
Specification – Revision 2.2,” December, 1998.

[9] Accellera, “Property Specification Language –
Reference Manual,” http://www.eda.org/ieee-1850/,
version 1.1, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

