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Abstract -  Given several specific clocking domains, the peak 
current minimization problem can be formulated as a 0-1 integer 
linear program. However, if the number of binary variables is 
large, the run time is unacceptable. In this paper, we study the 
reduction of this high computational expense. Our approach 
includes the following two aspects. First, we derive the ASAP 
schedule and the ALAP schedule to prune the redundancies 
without sacrificing the exactness (optimality) of the 
solution. Second, we propose a zone-based scheduling algorithm 
to solve a large circuit heuristically.  

I. Introduction 

It is well known that the clock skew can be utilized to 
shorten the clock period [1] or reduce the peak current [2]. 
However, it is very difficult to implement a wide spectrum of 
dedicated clock delays.  

The architecture of multiple clocking domains [3] provides 
an alternative to unconstrained clock skew scheduling. 
Fishburn [4] presented a polynomial time complexity 
algorithm to derive a multi-domain clock skew schedule for a 
target clock period. Ravindran, Keuhlmann, and Sentovich [5] 
also studied the clock period minimization problem using 
multiple clocking domains combined with small within-
domain latency. 

Vittal, Ha, Brewer and Marek-Sadowska [6] used the 0-1 
integer linear programming (ILP) formulations to minimize 
the peak current under the constraint of multi-domain clock 
skew scheduling. Although their approach guarantees the 
optimality (in terms of the specified cost function), the run 
time of the 0-1 ILP solver grows dramatically with the 
increase of binary variables. The high computational expense 
has limited the use of their approach.  

This paper presents an approach to overcoming the 
limitation. Our approach includes the following two aspects: 
(1) We derive the ASAP (as-soon-as-possible) schedule and 

the ALAP (as-late-as-possible) schedule of each register. 
As a result, we can prune all the redundancies without 
sacrificing the exactness (optimality) of the solution. 

(2) For a large circuit, the number of binary variables and the 
number of constraints are still very large even though all 
the redundancies are pruned. Thus, we propose a zone-
based approach to solve a large circuit heuristically.  

Note that the proposed algorithms are independent of the 
used peak current model. Therefore, in fact, our approach is a 
general methodology for the reduction of peak current under 
the constraint of multi-domain clock skew scheduling. 

II. Preliminaries 

Multi-domain clock skew scheduling only uses n discrete 
clocking domains: d1, d2, …and dn. A clocking domain dk,
where k = 1, 2, … and n, corresponds to a clock arrival time. 
Without loss of generality, we assume that d1 ≤ d2 ≤ …≤ dn.

The clock arrival time of each register must be one of the n
clocking domains. Thus, the clock arrival time of register Ri
can be represented by n binary variables: Si,1, Si,2, …, Si,n,
where Si,k is 1 if and only if TCi is equal to dk. For each 
register Ri, we have 
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For each data path Ri Rj, the double clocking constraint 
can be rewritten as below: 
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For each data path Ri Rj, the zero clocking constraint can 
be rewritten as below: 
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The objective is to minimize the value peak_current.
Without loss of generality and for the convenience of 
illustration, in the following, we assume that the total current 

derivative at the clocking domain dk is 
r
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⋅  where r

denotes the number of registers and Ii denotes the maximum 
possible current of register Ri caused by the clock edge. As a 



result, for each clocking domain dk, the peak current 
constraint is as below: 

r
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⋅ peak_current.

Thus, the peak current minimization problem formulated 
by [6] has r+2s+n constraints, where s is the number of data 
paths. 

Using Fig. 1 as an example, the circuit graph has 6 registers 
and 10 data paths. Suppose that clock period P = 6 tu (time 
units) and I1 = I2 = I3 = I4 = I5 = I6 = c. If the circuit is fully 
synchronous, a huge peak current 6*c is observed at the clock 
edge. Assume that we are given 3 clocking domains: d1 = -2 
tu, d2 = 0 tu and d3 = 2 tu. If we directly use the 0-1 ILP 
formulations as described in [6], the number of binary 
variables is 6*3 = 18 and the number of constraints is 
6+2*10+3 = 29. After solving the 0-1 ILP formulations, we 
find that the peak current is reduced to 2*c under the multi-
domain clock skew schedule in which TC1 = d1 = -2 tu, TC2 = 
d2 = 0 tu, TC3 = d1 = -2 tu, TC4 = d3 = 2 tu, TC5 = d2 = 0 tu, and 
TC6 = d3 = 2 tu. 

Fig. 1: Circuit graph example. 

III. The Approach 

Section 3.1 derives an ASAP schedule and an ALAP 
schedule to prune the redundancies. Section 3.2 presents a 
zone-based scheduling algorithm for large circuits.  

A. ASAP and ALAP 

In fact, due to the zero clocking constraints and the double 
clocking constraints, many binary variables used in the 0-1 
ILP formulations are definitely to be 0. Therefore, a large 
fraction of the binary variables are redundant. Moreover, a 
large fraction of the constraints used in the 0-1 ILP 
formulations are also redundant as they are implied by some 
of the other constraints. If these redundant binary variables 
and redundant constraints can be pruned, the problem size can 
be significantly reduced. Thus, our approach is to find a tight 
bound on the clock arrival time of each register without 
sacrificing the exactness (optimality) of the solution. 

Given the clock arrival time x of a register, we define the 
following two functions: floor and ceil. The function floor(x) 
gives the latest clocking domain before the clock arrival time 
x; the function ceil(x) gives the earliest clocking domain after 
the clock arrival time x. The pseudo codes of the two 
functions are shown in Fig. 2 and Fig. 3, respectively, where n
is the number of clocking domains. 

Given a circuit graph G and a target clock period P, the 
procedure OBTAIN_ASAP_ALAP is to find a tight bound on 
the clock arrival time of each register. Let ASAPi and ALAPi
denote the allowable earliest clocking domain and the 
allowable latest clocking domain of register Ri, respectively. 
Thus, we say that [ASAPi,ALAPi] is the allowable clocking 
range of register Ri. Initially, we let the allowable clocking 
range [ASAPi,ALAPi] be [d1,dn] for each register Ri. Then, by 
iteratively applying the clocking constraints under the target 
clock period P, we narrow the allowable clocking range of 
each register. The repeat-until-loop iteration repeats until the 
allowable clocking range of each register is stable. Thus, the 
number of repeat-until-loop iterations is O(r*n). Fig. 4 gives 
the pseudo code 

Function floor(x)                        Function ceil(x) 
begin                                           begin 
for i = n downto 1 do                  for i = 1 to n do

if (x  di) then return(di);           if (x  di) then return(di);
return(d1);                                   return(dn);
end.                                               end.

Fig. 2: Function floor.            Fig. 3: Function ceil.

Procedure OBTAIN_ASAP_ALAP(G,P) 
begin 

let [ASAPhost,ALAPhost] be [0,0]; 
for each register Ri do

[ASAPi,ALAPi] = [d1,dn];
repeat 

update = 0; 
for each data path Ri Rj do

begin 
apply clocking constraints in the forward direction to narrow 
the allowable clocking range [ASAPj,ALAPj]; 

        if  [ASAPj,ALAPj] is narrowed then update = 1; 
end; 

for each data path Ri Rj do
begin 
apply clocking constraints in the backward direction to narrow 
the allowable clocking range [ASAPi,ALAPi]; 

        if  [ASAPi,ALAPi] is narrowed then update = 1; 
end

until (update == 0);
end.

Fig. 4: Procedure OBTAIN_ASAP_ALAP. 



There are two directions to apply the clocking constraints 
of data paths: forward direction and backward direction. The 
first for-loop applies clocking constraints in the forward 
direction (i.e., in the direction of data path); and the second 
for-loop applies clocking constraints in the backward 
direction (i.e., against the direction of data path). Note that the 
sequence of data paths in each for-loop, which applies the 
clocking constraints, can be arbitrarily specified without 
affecting the calculation of ASAP schedule and ALAP 
schedule. The details are described as below. 
(1) If the clocking constraint of data path Ri Rj is applied in 
the forward direction, the allowable clocking range 
[ASAPj,ALAPj] of register Rj is narrowed under the 
assumption that the allowable clocking range [ASAPi,ALAPi]
of register Ri is fixed. As a result, we have: 
ASAPj = maximum(ASAPj,ceil(ASAPi+TPDi,j(max)-P));  
ALAPj = minimum(ALAPj,floor(ALAPi+TPDi,j(min))).
(2) If the clocking constraint of data path Ri Rj is applied in 
the backward direction, the allowable clocking range 
[ASAPi,ALAPi] of register Ri is narrowed under the 
assumption that the allowable clocking range [ASAPj,ALAPj]
of register Rj is fixed. As a result, we have: 
ASAPi = maximum(ASAPi,ceil(ASAPj-TPDi,j(min)));
ALAPi = minimum(ALAPi,floor(ALAPj+P-TPDi,j(max))).

Let’s use the circuit graph shown in Fig. 1 as an example to 
demonstrate the procedure OBTAIN_ASAP_ALAP. Suppose 
that clock period P = 6 tu, I1 = I2 = I3 = I4 = I5 = I6 = c, and we 
are given 3 clocking domains: d1 = -2 tu, d2 = 0 tu and d3 = 2 
tu. At the beginning, we have [ASAPi,ALAPi] = [-2,2] for 
each register Ri where i = 1, 2, 3, 4, 5 and 6. Then, we enter 
the repeat-until-loop. We assume that the first for-loop (i.e., 
applying clocking constraints in forward direction) tackles the 
data paths in the sequence of host R1, host R2, R1 R2,
R2 R3, R2 R5, R3 R4, R4 R5, and R5 R6, and the 
second for-loop (i.e., applying clocking constraints in 
backward direction) tackles the data paths in the sequence of 
R6 host, R5 host, R5 R6, R4 R5, R3 R4, R2 R5,
R2 R3, and R1 R2. Table I gives the snapshot. The repeat-
until-loop iteration takes two times. The column forward
denotes the allowable clocking range after the first for-loop is 
completed, and the column backward denotes the allowable 
clocking range after the second for-loop is completed.

Table I. The snapshots of procedure OBTAIN_ASAP_ALAP. 
First repeat-until-loop Second repeat-until-loop 

forward backward forward backward 
R1 [-2,0] [-2,0] [-2,0] [-2,0] 
R2 [0,2] [0,0] [0,0] [0,0] 
R3 [-2,2] [-2,0] [-2,0] [-2,0] 
R4 [-2,2] [-2,2] [-2,2] [0,2] 
R5 [-2,2] [-2,0] [0,0] [0,0] 
R6 [-2,2] [-2,2] [0,2] [0,2] 

 After the procedure OBTAIN_ASAP_ALAP is completed, 
we have [ASAP1,ALAP1] = [-2,0], [ASAP2,ALAP2] = [0,0], 
[ASAP3,ALAP3] = [-2,0], [ASAP4,ALAP4] = [0,2], 
[ASAP5,ALAP5] = [0,0] and [ASAP6, ALAP6] = [0,2]. Since 
ASAP2 = ALAP2 = 0 tu and ASAP5 = ALAP5 = 0 tu, we have 
TC2 = d2 = 0 tu and TC5 = d2 = 0 tu. Thus, we only need to use 
8 binary variables: S1,1, S1,2, S3,1, S3,2, S4,2, S4,3, S6,2 and S6,3.
Moreover, we can use both the ASAP schedule and the ALAP 
schedule to simplify the zero clocking constraints and the 
double clocking constraints. For example, the double clocking 
constraint of the data path R1 R2 can be simplified to 2*S1,1

 TPD1,2(min) = 2 and thus can be easily justified as a redundant 
constraint. The justification of redundant constraints is in 
polynomial time complexity. By exploiting both the ASAP 
schedule and the ALAP schedule, we find that all zero 
clocking constraints and all the double clocking constraints in 
this circuit graph become redundant. Consequently, the 
number of constraints is reduced from 29 to 7. As a result, we 
can rewrite the 0-1 ILP formulations as below: 
minimize peak_current
subject to 
S1,1 + S1,2 = 1;
S3,1 + S3,2 = 1; 
S4,2 + S4,3 = 1;
S6,2 + S6,3 = 1; 
S1,1*I1+S3,1*I3 peak_current;
S1,2*I1+1*I2+S3,2*I3+S4,2*I4+1*I5+S6,2*I6 peak_current;
S4,3*I4+S6,3*I6 peak_current;

By applying the 0-1 ILP solver, we have the results that S1,1
= 1, S1,2 = 0, S3,1 = 1, S3,2 = 0, S4,2 = 0, S4,3 = 1, S6,2 = 0 and 
S6,3 = 1. In other words, the peak current is 2*c under the 
multi-domain clock skew schedule in which TC1 = d1, TC2 = d2,
TC3 = d1, TC4 = d3, TC5 = d2 and TC6 = d3. Clearly, both the 
number of binary variables and the number of constraints are 
dramatically reduced without scarifying the exactness of the 
solution. 

B. Zone-Based Scheduling 

For a large circuit, the number of binary variables is still 
very large even though all the redundant binary variables are 
pruned. Given a circuit graph G and a target clock period P, 
Fig. 5 gives the procedure ZONE_BASED_SCHEDULING 
to deal with a large circuit. At the beginning, in addition to 
prune all the redundant binary variables, we also use the 
algorithm proposed in [4] to derive a feasible multi-domain 
clock skew schedule for the circuit graph G to work with 
clock period P. We let the feasible schedule be the initial 
solution. Note that the algorithm proposed in [4] does not 
attempt to minimize the peak current. The kernel of zone-
based scheduling is an iteration process of the procedure 
ZONE_PARTITION_SCHEDULING. 



The procedure ZONE_PARTITION_SCHEDULING is to 
reduce the peak current by re-scheduling the registers in the 
set RS. Fig. 6 gives the pseudo code. By specifying the 
constraint on the maximum number of binary variables in the 
ILP formulations, we partition the set of registers RS into 
some sub-sets. Each sub-set is called a zone. The philosophy 
of zone partitioning is as below. Intuitively, if a register is 
associated with few binary variables, the flexibility in 
assigning its clock arrival time is limited. On the other hand, 
if a register is associated with many binary variables, the 
flexibility in assigning its clock arrival time is very high. 
Therefore, in order to evenly spread the currents over the 
clocking domains, a reasonable heuristic is to first re-schedule 
the registers that are associated fewer binary variables. Based 
on this philosophy, a zone is created to accommodate as many 
registers as possible. The fewer associated binary variables, 
the higher priority (to be assigned into the zone) the register 
has. If the current zone cannot accommodate any more 
register (due to the limitation on the maximum number of 
binary variables), we create another new zone. The iteration 
of zone creation repeats until all the registers are assigned. 
Note that the earlier created zone has a higher priority to be 
re-scheduled. When a zone is re-scheduled, the clock arrival 
times of other registers are assumed to be fixed. Since the 
maximum number of binary variables within a zone is limited, 
the 0-1 ILP solver can re-schedule each zone efficiently. 

Procedure ZONE_BASED_SCHEDULING(G,P) 
begin 
prune all the redundant binary variables according to the results 
of the procedure OBTAIN_ASAP_ALAP(G,P); 
apply [4] to derive a feasible multi-domain clock skew schedule 
for the circuit graph G to work with clock period P; 
phase = 1; 
RS = all the registers in the circuit graph G; 
call ZONE_PARTITION_SCHEDULING(phase,RS, G,P); 
phase = 2; 
repeat 

RS=all the registers scheduled into hottest clocking domains; 
call ZONE_PARTITION_SCHEDULING(phase,RS,G,P); 

until (the peak current cannot be further reduce);
end.

Fig. 5: Procedure ZONE_BASED_SCHEDULING. 

In fact, the zone-based scheduling uses two phases to apply 
the procedure ZONE_PARTITION_SCHEDULING as below. 
(1) The first phase is to derive a multi-domain clock skew 

schedule that attempts to minimize the peak current. We 
use the procedure ZONE_PARTITION_SCHEDULING 
to re-schedule all the registers in the circuit graph G. 
When a zone is re-scheduled, our objective is to 
minimize the peak current produced by the registers that 

have been re-scheduled. In the pseudo code of Fig. 6, we 
use the notation RP to denote the set of all the registers 
that have been re-scheduled. 

(2) The second phase attempts to further reduce the peak 
current. A clocking domain is called the hottest clocking 
domain, if and only if the total current derivative at this 
clocking domain is exactly the same as the peak current. 
The peak current cannot be further reduced, unless some 
registers scheduled in hottest clocking domains can be re-
scheduled into other clocking domains. Thus, we 
iteratively apply the procedure 
ZONE_PARTITION_SCHEDULING to re-schedule the 
registers scheduled in hottest clocking domains. The 
iteration process repeats until the peak current cannot be 
further reduced. Note that, in the second phase, we let the 
set RP be all the registers in the circuit graph G. 

Procedure ZONE_PARTITION_SCHEDULING(phase,RS,G,P) 
begin 
partition all the registers in the set RS into zones (under the 
constraint on the maximum number of binary variables); 
if (phase == 1) then RP = ∅
else RP = all the registers in the circuit graph G; 
for each zone do (in the sequence of their priorities) 
begin 

       if (phase == 1) then add all the registers in this zone into RP; 
re-schedule this zone under all the clocking constraints to reduce 
the peak current produced by the registers in the set RP; 
end 

  end.
Fig. 6: Procedure ZONE_PARTITION_SCHEDULING. 

Let’s use Fig. 1 as an example. First, we derive both the 
ASAP schedule and ALAP schedule as shown in Table I. 
Also, we derive a feasible multi-domain clock skew schedule 
in which TC1 = d2, TC2 = d2, TC3 = d2, TC4 = d2, TC5 = d2 and 
TC6 = d2 to work with clock period 6 tu as the initial solution. 
Therefore, initially, the peak current is 6*c. Suppose that the 
maximum number of binary variables involved in a zone is 
only 4. The process of zone-based scheduling is as below. 

First, we enter the first phase of zone-based scheduling. 
The first phase re-schedules all the registers in the circuit 
graph. From both the ASAP schedule and the ALAP schedule, 
we know that R1, R2, R3, R4, R5 and R6 are associated with 2, 
0, 2, 2, 0 and 2 binary variables. Thus, all the registers in the 
circuit graph are partitioned into two zones: zone Z1 = {R1, R2,
R3, R5} and zone Z2 = {R4, R6}, and zone Z1 has a higher 
priority to be re-scheduled. In the following, we reduce the 
peak current in the sequence of zone Z1 and zone Z2.

We reduce the peak current by re-scheduling zone Z1 under 
TC4 = d2 and TC6 = d2. The 0-1 ILP formulations are as below: 
minimize peak_current_Z1



subject to 
S1,1 + S1,2 = 1;
S3,1 + S3,2 = 1; 
S1,1*I1+S3,1*I3 peak_current_Z1;
S1,2*I1+1*I2+S3,2*I3+1*I5 peak_current_Z1;

We have the results that peak_current_Z1 = 2*c, S1,1 = 1, 
S1,2 = 0, S3,1 = 1 and S3,2 = 0. As a result, we have TC1 = d1,
TC2 = d2, TC3 = d1, TC4 = d2, TC5 = d2, TC6 = d2 and the peak 
current is 4*c. Thus, the peak current is reduced from 6*c to 
4*c. 

We further reduce the peak current by re-scheduling zone 
Z2 under TC1 = d1, TC2 = d2, TC3 = d1 and TC5 = d2. The 0-1 
ILP formulations are as below: 
minimize peak_current_Z1_Z2

subject to 
S4,2 + S4,3 = 1;
S6,2 + S6,3 = 1; 
1*I1+1*I3 peak_current_Z1_Z2;
1*I2+S4,2*I4+1*I5+S6,2*I6 peak_current _Z1_Z2;
S4,3*I4+S6,3*I6 peak_current_Z1_Z2;

We have the results that peak_current_Z1_Z2 = 2*c, S4,2 = 0, 
S4,3 = 1, S6,2 = 0 and S6,3 = 1. Thus, the peak current is 
reduced from 4*c to 2*c. 

Next, we enter the second phase of zone-based scheduling. 
The peak current is 2*c. Since the total current derivative at 
clocking domains d1, d2 and d3 are 2*c, 2*c, 2*c, respectively, 
they are hottest clocking domains. We find that R1 and R3 are 
scheduled to d1, R2 and R5 are scheduled to d2, and R4 and R6
are scheduled to d3. Thus, we partition these six registers into 
two zones: zone Z3 = {R1, R2, R3, R5} and zone Z4 = {R4, R6},
and zone Z3 has a higher priority to be re-scheduled.  

We re-schedule zone Z3 under TC4 = d3 and TC6 = d3. The 0-
1 ILP formulations are as below: 
minimize peak_current
subject to 
S1,1 + S1,2 = 1;
S3,1 + S3,2 = 1; 
S1,1*I1+S3,1*I3 peak_current;
S1,2*I1+1*I2+S3,2*I3+1*I5 peak_current;
1*I4+1*I6 peak_current;

We have the results that peak_current = 2*c, S1,1 = 1, S1,2 = 
0, S3,1 = 1 and S3,2 = 0. The peak current is still 2*c. 

We re-schedule zone Z4 under TC1 = d1, TC2 = d2, TC3 = d1
and TC5 = d2. The 0-1 ILP formulations are as below: 
minimize peak_current
subject to 
S4,2 + S4,3 = 1;
S6,2 + S6,3 = 1; 
1*I1+1*I3 peak_current;
1*I2+S4,2*I4+1*I5+S6,2*I6 peak_current;
S4,3*I4+S6,3*I6 peak_current;

The second phase of zone-based scheduling is finished with 
the results that peak_current = 2*c, S4,2 = 0, S4,3 = 1, S6,2 = 0 

and S6,3 = 1. After the zone-based scheduling is completed, 
the peak current is 2*c under the multi-domain clock skew 
schedule in which TC1 = d1, TC2 = d2, TC3 = d1, TC4 = d3, TC5 = 
d2 and TC6 = d3.

IV. Experimental Results 

Our approach has been implemented in a C++ program 
running on a personal computer with AMD K8-3GHz CPU 
and 1G Bytes RAM. We use Extended LINGO Release 8.0 as 
the 0-1 ILP solver. The circuits from ISCAS’89 benchmark 
suites are targeted to a 0.35µm cell library for the experiments. 
Without loss of generality, in each benchmark circuit, we 
assume that: (1) the clock period P is the longest path delay; 

(2) we are given 
P

2 1
0.3

× + clocking domains, where 0.3 ns 

denotes the clock skew between two consecutive clocking 
domains; (3) each clocking domain dk = 

P
0.3 (k 1)

0.3
× − − ns, where k = 1, …, 

P
2 1

0.3
× + ; (4) the 

maximum possible current of each register is c (at the clock 
arrival time); and (5) if the circuit is fully synchronous, the 
peak current occurs when all the registers are switching 
simultaneously.  

Table II gives the characteristics of benchmark circuits. 
The column zero skew denotes the peak current of fully 
synchronous implementation, while the column [6] denotes 
the peak current solved by the 0-1 ILP formulations as 
described in [6]. We use the notation -- to denote that the 
problem complexity cannot be solved within 12 hours. 

Table II. Characteristics of benchmark circuits. 
peak currrent circuit registers gates data 

paths 
clock 
period  zero 

skew 
[6] 

S444 21 119 175 4.24 21*c 2*c 
S499 22 120 528 3.99 22*c 6*c 

S1269 37 437 455 9.89 37*c 4*c 
S1512 57 413 686 5.50 57*c 6*c 
S3271 116 1035 1137 8.50 116*c 4*c 
S3384 183 1070 1831 19.86 183*c -- 
S5378 179 1001 2313 5.16 179*c 11*c 
S6669 239 2155 2179 28.42 239*c -- 
S9234 228 2680 2830 9.42 228*c -- 
S13207 669 2573 4660 10.92 669*c -- 
S15850 597 3448 16863 14.23 597*c -- 
S35932 1728 12204 5159 5.14 1728*c 288*c 
S38584 1452 11448 15329 11.85 1452*c -- 

Table III demonstrates the advantage of exploiting both the 
ASAP schedule and the ALAP schedule to prune the 



redundancies. Note that, for each benchmark circuit, both the 
ASAP schedule and the ALAP scheduled can be derived 
within 1 second. The column [6] describes the original 0-1 
ILP formulations. The column Reduced formulations 
describes the reduced 0-1 ILP formulations, in which all the 
redundancies are pruned. The column #vars denotes the 
number of binary variables, the column #cons denotes the 
number of constraints, and the column CPU time gives the 
CPU time in seconds.  

Table III. The advantage of pruning redundancies.
 [6] Reduced FormulationsCircuit 

#vars #cons CPU 
time (s) 

#vars #cons CPU 
time (s) 

S444 609 400 4 239 355 1 
S499 594 1105 6 80 524 1 
S1269 2405 1012 9 312 411 3 
S1512 2109 1466 5 326 825 1 
S3271 6612 2447 30087 3342 2027 88 
S3384 24339 4316 -- 4917 3531 24 
S5378 6265 4860 16046 2088 342 59 
S6669 45171 5476 -- 3951 3265 122 
S9234 14364 6803 -- 6554 6042 232 

S13207 48837 10062 -- 20057 8416 362 
S15850 56715 34418 -- 18124 28314 -- 
S35932 60480 12081 714 17516 3714 271 
S38584 114708 32189 -- 40018 29569 -- 

Table IV demonstrates the results of zone-based scheduling. 
The benchmark circuits that have more than 2000 irredundant 
binary variables are used to test the effectiveness of zone-
based scheduling. Without loss of generality, here we use the 
fully synchronous solution as the initial solution. The column 
tackled zones denotes the number of times to use the 0-1 ILP 
solver to re-schedule a zone. The CPU time includes the time 
spent in both our C++ program and the 0-1 ILP solver. For the 
convenience of comparisons, we also report the results 
obtained by whole-circuit scheduling, which solves the whole 
circuit as a single zone. We find that the whole-circuit 
scheduling cannot solve benchmark circuits S15850 and 
S38584 within 12 hours. However, on the other hand, the 

zone-based scheduling can solve each benchmark circuit 
within 712 seconds no matter the constraint on the maximum 
number of binary variables involved in a zone is 500, 1000 or 
2000.  

V. Conclusions 

This paper investigates a fast multi-domain clock skew 
scheduling for peak current reduction. The main contribution 
of our work is that it overcomes the high computational 
expense of previous work. Benchmark data consistently show 
that our approach achieves very good results within an 
acceptable run time. 
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Table IV. The results of zone-based scheduling. 

500 variables in a zone 1000 variables in a zone 2000 variables in a zone whole-circuit circuit 
peak 

current 
tackled 
zones 

CPU 
time (s) 

peak 
current 

tackled 
zones 

CPU 
Time (s) 

peak 
current 

tackled 
zones 

CPU 
time (s) 

peak 
current 

CPU 
time (s) 

S3271 4*c 8 10 4*c 6 14 4*c 4 88 4*c 88 
S3384 5*c 10 5 5*c 6 8 5*c 4 14 5*c 24 
S5378 11*c 7 7 11*c 5 28 11*c 2 54 11*c 59 
S6669 11*c 10 11 11*c 6 20 11*c 5 26 11*c 122 
S9234 7*c 8 23 7*c 7 25 7*c 5 37 7*c 232 

S13207 16*c 28 205 16*c 13 238 16*c 11 285 16*c 362 
S15850 15*c 29 501 15*c 19 557 15*c 12 712 -- -- 
S35932 288*c 35 133 288*c 18 169 288*c 9 240 288*c 271 
S38584 38*c 54 334 37*c 32 420 36*c 21 513 -- -- 
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