
Fast Multi-Domain Clock Skew Scheduling
For Peak Current Reduction

Shih-Hsu Huang, Chia-Ming Chang, and Yow-Tyng Nieh
Department of Electronic Engineering

Chung Yuan Christian University
Chung Li, Taiwan, R.O.C.

Abstract - Given several specific clocking domains, the peak
current minimization problem can be formulated as a 0-1 integer
linear program. However, if the number of binary variables is
large, the run time is unacceptable. In this paper, we study the
reduction of this high computational expense. Our approach
includes the following two aspects. First, we derive the ASAP
schedule and the ALAP schedule to prune the redundancies
without sacrificing the exactness (optimality) of the
solution. Second, we propose a zone-based scheduling algorithm
to solve a large circuit heuristically.

I. Introduction

It is well known that the clock skew can be utilized to
shorten the clock period [1] or reduce the peak current [2].
However, it is very difficult to implement a wide spectrum of
dedicated clock delays.

The architecture of multiple clocking domains [3] provides
an alternative to unconstrained clock skew scheduling.
Fishburn [4] presented a polynomial time complexity
algorithm to derive a multi-domain clock skew schedule for a
target clock period. Ravindran, Keuhlmann, and Sentovich [5]
also studied the clock period minimization problem using
multiple clocking domains combined with small within-
domain latency.

Vittal, Ha, Brewer and Marek-Sadowska [6] used the 0-1
integer linear programming (ILP) formulations to minimize
the peak current under the constraint of multi-domain clock
skew scheduling. Although their approach guarantees the
optimality (in terms of the specified cost function), the run
time of the 0-1 ILP solver grows dramatically with the
increase of binary variables. The high computational expense
has limited the use of their approach.

This paper presents an approach to overcoming the
limitation. Our approach includes the following two aspects:
(1) We derive the ASAP (as-soon-as-possible) schedule and

the ALAP (as-late-as-possible) schedule of each register.
As a result, we can prune all the redundancies without
sacrificing the exactness (optimality) of the solution.

(2) For a large circuit, the number of binary variables and the
number of constraints are still very large even though all
the redundancies are pruned. Thus, we propose a zone-
based approach to solve a large circuit heuristically.

Note that the proposed algorithms are independent of the
used peak current model. Therefore, in fact, our approach is a
general methodology for the reduction of peak current under
the constraint of multi-domain clock skew scheduling.

II. Preliminaries

Multi-domain clock skew scheduling only uses n discrete
clocking domains: d1, d2, …and dn. A clocking domain dk,
where k = 1, 2, … and n, corresponds to a clock arrival time.
Without loss of generality, we assume that d1 ≤ d2 ≤ …≤ dn.

The clock arrival time of each register must be one of the n
clocking domains. Thus, the clock arrival time of register Ri
can be represented by n binary variables: Si,1, Si,2, …, Si,n,
where Si,k is 1 if and only if TCi is equal to dk. For each
register Ri, we have

n

k 1
i,kS 1.

=
=

For each data path Ri Rj, the double clocking constraint
can be rewritten as below:

n n

k 1 k 1
k j,k k i,k PDi, j(min)d S d S T

= =
⋅ − ⋅ ≤ ;

For each data path Ri Rj, the zero clocking constraint can
be rewritten as below:

n n

k 1 k 1
k i,k k j,k PDi, j(max)d S d S P T

= =

⋅ − ⋅ ≤ − .

The objective is to minimize the value peak_current.
Without loss of generality and for the convenience of
illustration, in the following, we assume that the total current

derivative at the clocking domain dk is
r

i 1
i,k iS I ,

=

⋅ where r

denotes the number of registers and Ii denotes the maximum
possible current of register Ri caused by the clock edge. As a

result, for each clocking domain dk, the peak current
constraint is as below:

r

i 1
i,k iS I

=

⋅ peak_current.

Thus, the peak current minimization problem formulated
by [6] has r+2s+n constraints, where s is the number of data
paths.

Using Fig. 1 as an example, the circuit graph has 6 registers
and 10 data paths. Suppose that clock period P = 6 tu (time
units) and I1 = I2 = I3 = I4 = I5 = I6 = c. If the circuit is fully
synchronous, a huge peak current 6*c is observed at the clock
edge. Assume that we are given 3 clocking domains: d1 = -2
tu, d2 = 0 tu and d3 = 2 tu. If we directly use the 0-1 ILP
formulations as described in [6], the number of binary
variables is 6*3 = 18 and the number of constraints is
6+2*10+3 = 29. After solving the 0-1 ILP formulations, we
find that the peak current is reduced to 2*c under the multi-
domain clock skew schedule in which TC1 = d1 = -2 tu, TC2 =
d2 = 0 tu, TC3 = d1 = -2 tu, TC4 = d3 = 2 tu, TC5 = d2 = 0 tu, and
TC6 = d3 = 2 tu.

Fig. 1: Circuit graph example.

III. The Approach

Section 3.1 derives an ASAP schedule and an ALAP
schedule to prune the redundancies. Section 3.2 presents a
zone-based scheduling algorithm for large circuits.

A. ASAP and ALAP

In fact, due to the zero clocking constraints and the double
clocking constraints, many binary variables used in the 0-1
ILP formulations are definitely to be 0. Therefore, a large
fraction of the binary variables are redundant. Moreover, a
large fraction of the constraints used in the 0-1 ILP
formulations are also redundant as they are implied by some
of the other constraints. If these redundant binary variables
and redundant constraints can be pruned, the problem size can
be significantly reduced. Thus, our approach is to find a tight
bound on the clock arrival time of each register without
sacrificing the exactness (optimality) of the solution.

Given the clock arrival time x of a register, we define the
following two functions: floor and ceil. The function floor(x)
gives the latest clocking domain before the clock arrival time
x; the function ceil(x) gives the earliest clocking domain after
the clock arrival time x. The pseudo codes of the two
functions are shown in Fig. 2 and Fig. 3, respectively, where n
is the number of clocking domains.

Given a circuit graph G and a target clock period P, the
procedure OBTAIN_ASAP_ALAP is to find a tight bound on
the clock arrival time of each register. Let ASAPi and ALAPi
denote the allowable earliest clocking domain and the
allowable latest clocking domain of register Ri, respectively.
Thus, we say that [ASAPi,ALAPi] is the allowable clocking
range of register Ri. Initially, we let the allowable clocking
range [ASAPi,ALAPi] be [d1,dn] for each register Ri. Then, by
iteratively applying the clocking constraints under the target
clock period P, we narrow the allowable clocking range of
each register. The repeat-until-loop iteration repeats until the
allowable clocking range of each register is stable. Thus, the
number of repeat-until-loop iterations is O(r*n). Fig. 4 gives
the pseudo code

Function floor(x) Function ceil(x)
begin begin
for i = n downto 1 do for i = 1 to n do

if (x di) then return(di); if (x di) then return(di);
return(d1); return(dn);
end. end.

Fig. 2: Function floor. Fig. 3: Function ceil.

Procedure OBTAIN_ASAP_ALAP(G,P)
begin

let [ASAPhost,ALAPhost] be [0,0];
for each register Ri do

[ASAPi,ALAPi] = [d1,dn];
repeat

update = 0;
for each data path Ri Rj do

begin
apply clocking constraints in the forward direction to narrow
the allowable clocking range [ASAPj,ALAPj];

 if [ASAPj,ALAPj] is narrowed then update = 1;
end;

for each data path Ri Rj do
begin
apply clocking constraints in the backward direction to narrow
the allowable clocking range [ASAPi,ALAPi];

 if [ASAPi,ALAPi] is narrowed then update = 1;
end

until (update == 0);
end.

Fig. 4: Procedure OBTAIN_ASAP_ALAP.

There are two directions to apply the clocking constraints
of data paths: forward direction and backward direction. The
first for-loop applies clocking constraints in the forward
direction (i.e., in the direction of data path); and the second
for-loop applies clocking constraints in the backward
direction (i.e., against the direction of data path). Note that the
sequence of data paths in each for-loop, which applies the
clocking constraints, can be arbitrarily specified without
affecting the calculation of ASAP schedule and ALAP
schedule. The details are described as below.
(1) If the clocking constraint of data path Ri Rj is applied in
the forward direction, the allowable clocking range
[ASAPj,ALAPj] of register Rj is narrowed under the
assumption that the allowable clocking range [ASAPi,ALAPi]
of register Ri is fixed. As a result, we have:
ASAPj = maximum(ASAPj,ceil(ASAPi+TPDi,j(max)-P));
ALAPj = minimum(ALAPj,floor(ALAPi+TPDi,j(min))).
(2) If the clocking constraint of data path Ri Rj is applied in
the backward direction, the allowable clocking range
[ASAPi,ALAPi] of register Ri is narrowed under the
assumption that the allowable clocking range [ASAPj,ALAPj]
of register Rj is fixed. As a result, we have:
ASAPi = maximum(ASAPi,ceil(ASAPj-TPDi,j(min)));
ALAPi = minimum(ALAPi,floor(ALAPj+P-TPDi,j(max))).

Let’s use the circuit graph shown in Fig. 1 as an example to
demonstrate the procedure OBTAIN_ASAP_ALAP. Suppose
that clock period P = 6 tu, I1 = I2 = I3 = I4 = I5 = I6 = c, and we
are given 3 clocking domains: d1 = -2 tu, d2 = 0 tu and d3 = 2
tu. At the beginning, we have [ASAPi,ALAPi] = [-2,2] for
each register Ri where i = 1, 2, 3, 4, 5 and 6. Then, we enter
the repeat-until-loop. We assume that the first for-loop (i.e.,
applying clocking constraints in forward direction) tackles the
data paths in the sequence of host R1, host R2, R1 R2,
R2 R3, R2 R5, R3 R4, R4 R5, and R5 R6, and the
second for-loop (i.e., applying clocking constraints in
backward direction) tackles the data paths in the sequence of
R6 host, R5 host, R5 R6, R4 R5, R3 R4, R2 R5,
R2 R3, and R1 R2. Table I gives the snapshot. The repeat-
until-loop iteration takes two times. The column forward
denotes the allowable clocking range after the first for-loop is
completed, and the column backward denotes the allowable
clocking range after the second for-loop is completed.

Table I. The snapshots of procedure OBTAIN_ASAP_ALAP.
First repeat-until-loop Second repeat-until-loop

forward backward forward backward
R1 [-2,0] [-2,0] [-2,0] [-2,0]
R2 [0,2] [0,0] [0,0] [0,0]
R3 [-2,2] [-2,0] [-2,0] [-2,0]
R4 [-2,2] [-2,2] [-2,2] [0,2]
R5 [-2,2] [-2,0] [0,0] [0,0]
R6 [-2,2] [-2,2] [0,2] [0,2]

 After the procedure OBTAIN_ASAP_ALAP is completed,
we have [ASAP1,ALAP1] = [-2,0], [ASAP2,ALAP2] = [0,0],
[ASAP3,ALAP3] = [-2,0], [ASAP4,ALAP4] = [0,2],
[ASAP5,ALAP5] = [0,0] and [ASAP6, ALAP6] = [0,2]. Since
ASAP2 = ALAP2 = 0 tu and ASAP5 = ALAP5 = 0 tu, we have
TC2 = d2 = 0 tu and TC5 = d2 = 0 tu. Thus, we only need to use
8 binary variables: S1,1, S1,2, S3,1, S3,2, S4,2, S4,3, S6,2 and S6,3.
Moreover, we can use both the ASAP schedule and the ALAP
schedule to simplify the zero clocking constraints and the
double clocking constraints. For example, the double clocking
constraint of the data path R1 R2 can be simplified to 2*S1,1

 TPD1,2(min) = 2 and thus can be easily justified as a redundant
constraint. The justification of redundant constraints is in
polynomial time complexity. By exploiting both the ASAP
schedule and the ALAP schedule, we find that all zero
clocking constraints and all the double clocking constraints in
this circuit graph become redundant. Consequently, the
number of constraints is reduced from 29 to 7. As a result, we
can rewrite the 0-1 ILP formulations as below:
minimize peak_current
subject to
S1,1 + S1,2 = 1;
S3,1 + S3,2 = 1;
S4,2 + S4,3 = 1;
S6,2 + S6,3 = 1;
S1,1*I1+S3,1*I3 peak_current;
S1,2*I1+1*I2+S3,2*I3+S4,2*I4+1*I5+S6,2*I6 peak_current;
S4,3*I4+S6,3*I6 peak_current;

By applying the 0-1 ILP solver, we have the results that S1,1
= 1, S1,2 = 0, S3,1 = 1, S3,2 = 0, S4,2 = 0, S4,3 = 1, S6,2 = 0 and
S6,3 = 1. In other words, the peak current is 2*c under the
multi-domain clock skew schedule in which TC1 = d1, TC2 = d2,
TC3 = d1, TC4 = d3, TC5 = d2 and TC6 = d3. Clearly, both the
number of binary variables and the number of constraints are
dramatically reduced without scarifying the exactness of the
solution.

B. Zone-Based Scheduling

For a large circuit, the number of binary variables is still
very large even though all the redundant binary variables are
pruned. Given a circuit graph G and a target clock period P,
Fig. 5 gives the procedure ZONE_BASED_SCHEDULING
to deal with a large circuit. At the beginning, in addition to
prune all the redundant binary variables, we also use the
algorithm proposed in [4] to derive a feasible multi-domain
clock skew schedule for the circuit graph G to work with
clock period P. We let the feasible schedule be the initial
solution. Note that the algorithm proposed in [4] does not
attempt to minimize the peak current. The kernel of zone-
based scheduling is an iteration process of the procedure
ZONE_PARTITION_SCHEDULING.

The procedure ZONE_PARTITION_SCHEDULING is to
reduce the peak current by re-scheduling the registers in the
set RS. Fig. 6 gives the pseudo code. By specifying the
constraint on the maximum number of binary variables in the
ILP formulations, we partition the set of registers RS into
some sub-sets. Each sub-set is called a zone. The philosophy
of zone partitioning is as below. Intuitively, if a register is
associated with few binary variables, the flexibility in
assigning its clock arrival time is limited. On the other hand,
if a register is associated with many binary variables, the
flexibility in assigning its clock arrival time is very high.
Therefore, in order to evenly spread the currents over the
clocking domains, a reasonable heuristic is to first re-schedule
the registers that are associated fewer binary variables. Based
on this philosophy, a zone is created to accommodate as many
registers as possible. The fewer associated binary variables,
the higher priority (to be assigned into the zone) the register
has. If the current zone cannot accommodate any more
register (due to the limitation on the maximum number of
binary variables), we create another new zone. The iteration
of zone creation repeats until all the registers are assigned.
Note that the earlier created zone has a higher priority to be
re-scheduled. When a zone is re-scheduled, the clock arrival
times of other registers are assumed to be fixed. Since the
maximum number of binary variables within a zone is limited,
the 0-1 ILP solver can re-schedule each zone efficiently.

Procedure ZONE_BASED_SCHEDULING(G,P)
begin
prune all the redundant binary variables according to the results
of the procedure OBTAIN_ASAP_ALAP(G,P);
apply [4] to derive a feasible multi-domain clock skew schedule
for the circuit graph G to work with clock period P;
phase = 1;
RS = all the registers in the circuit graph G;
call ZONE_PARTITION_SCHEDULING(phase,RS, G,P);
phase = 2;
repeat

RS=all the registers scheduled into hottest clocking domains;
call ZONE_PARTITION_SCHEDULING(phase,RS,G,P);

until (the peak current cannot be further reduce);
end.

Fig. 5: Procedure ZONE_BASED_SCHEDULING.

In fact, the zone-based scheduling uses two phases to apply
the procedure ZONE_PARTITION_SCHEDULING as below.
(1) The first phase is to derive a multi-domain clock skew

schedule that attempts to minimize the peak current. We
use the procedure ZONE_PARTITION_SCHEDULING
to re-schedule all the registers in the circuit graph G.
When a zone is re-scheduled, our objective is to
minimize the peak current produced by the registers that

have been re-scheduled. In the pseudo code of Fig. 6, we
use the notation RP to denote the set of all the registers
that have been re-scheduled.

(2) The second phase attempts to further reduce the peak
current. A clocking domain is called the hottest clocking
domain, if and only if the total current derivative at this
clocking domain is exactly the same as the peak current.
The peak current cannot be further reduced, unless some
registers scheduled in hottest clocking domains can be re-
scheduled into other clocking domains. Thus, we
iteratively apply the procedure
ZONE_PARTITION_SCHEDULING to re-schedule the
registers scheduled in hottest clocking domains. The
iteration process repeats until the peak current cannot be
further reduced. Note that, in the second phase, we let the
set RP be all the registers in the circuit graph G.

Procedure ZONE_PARTITION_SCHEDULING(phase,RS,G,P)
begin
partition all the registers in the set RS into zones (under the
constraint on the maximum number of binary variables);
if (phase == 1) then RP = ∅
else RP = all the registers in the circuit graph G;
for each zone do (in the sequence of their priorities)
begin

 if (phase == 1) then add all the registers in this zone into RP;
re-schedule this zone under all the clocking constraints to reduce
the peak current produced by the registers in the set RP;
end

 end.
Fig. 6: Procedure ZONE_PARTITION_SCHEDULING.

Let’s use Fig. 1 as an example. First, we derive both the
ASAP schedule and ALAP schedule as shown in Table I.
Also, we derive a feasible multi-domain clock skew schedule
in which TC1 = d2, TC2 = d2, TC3 = d2, TC4 = d2, TC5 = d2 and
TC6 = d2 to work with clock period 6 tu as the initial solution.
Therefore, initially, the peak current is 6*c. Suppose that the
maximum number of binary variables involved in a zone is
only 4. The process of zone-based scheduling is as below.

First, we enter the first phase of zone-based scheduling.
The first phase re-schedules all the registers in the circuit
graph. From both the ASAP schedule and the ALAP schedule,
we know that R1, R2, R3, R4, R5 and R6 are associated with 2,
0, 2, 2, 0 and 2 binary variables. Thus, all the registers in the
circuit graph are partitioned into two zones: zone Z1 = {R1, R2,
R3, R5} and zone Z2 = {R4, R6}, and zone Z1 has a higher
priority to be re-scheduled. In the following, we reduce the
peak current in the sequence of zone Z1 and zone Z2.

We reduce the peak current by re-scheduling zone Z1 under
TC4 = d2 and TC6 = d2. The 0-1 ILP formulations are as below:
minimize peak_current_Z1

subject to
S1,1 + S1,2 = 1;
S3,1 + S3,2 = 1;
S1,1*I1+S3,1*I3 peak_current_Z1;
S1,2*I1+1*I2+S3,2*I3+1*I5 peak_current_Z1;

We have the results that peak_current_Z1 = 2*c, S1,1 = 1,
S1,2 = 0, S3,1 = 1 and S3,2 = 0. As a result, we have TC1 = d1,
TC2 = d2, TC3 = d1, TC4 = d2, TC5 = d2, TC6 = d2 and the peak
current is 4*c. Thus, the peak current is reduced from 6*c to
4*c.

We further reduce the peak current by re-scheduling zone
Z2 under TC1 = d1, TC2 = d2, TC3 = d1 and TC5 = d2. The 0-1
ILP formulations are as below:
minimize peak_current_Z1_Z2

subject to
S4,2 + S4,3 = 1;
S6,2 + S6,3 = 1;
1*I1+1*I3 peak_current_Z1_Z2;
1*I2+S4,2*I4+1*I5+S6,2*I6 peak_current _Z1_Z2;
S4,3*I4+S6,3*I6 peak_current_Z1_Z2;

We have the results that peak_current_Z1_Z2 = 2*c, S4,2 = 0,
S4,3 = 1, S6,2 = 0 and S6,3 = 1. Thus, the peak current is
reduced from 4*c to 2*c.

Next, we enter the second phase of zone-based scheduling.
The peak current is 2*c. Since the total current derivative at
clocking domains d1, d2 and d3 are 2*c, 2*c, 2*c, respectively,
they are hottest clocking domains. We find that R1 and R3 are
scheduled to d1, R2 and R5 are scheduled to d2, and R4 and R6
are scheduled to d3. Thus, we partition these six registers into
two zones: zone Z3 = {R1, R2, R3, R5} and zone Z4 = {R4, R6},
and zone Z3 has a higher priority to be re-scheduled.

We re-schedule zone Z3 under TC4 = d3 and TC6 = d3. The 0-
1 ILP formulations are as below:
minimize peak_current
subject to
S1,1 + S1,2 = 1;
S3,1 + S3,2 = 1;
S1,1*I1+S3,1*I3 peak_current;
S1,2*I1+1*I2+S3,2*I3+1*I5 peak_current;
1*I4+1*I6 peak_current;

We have the results that peak_current = 2*c, S1,1 = 1, S1,2 =
0, S3,1 = 1 and S3,2 = 0. The peak current is still 2*c.

We re-schedule zone Z4 under TC1 = d1, TC2 = d2, TC3 = d1
and TC5 = d2. The 0-1 ILP formulations are as below:
minimize peak_current
subject to
S4,2 + S4,3 = 1;
S6,2 + S6,3 = 1;
1*I1+1*I3 peak_current;
1*I2+S4,2*I4+1*I5+S6,2*I6 peak_current;
S4,3*I4+S6,3*I6 peak_current;

The second phase of zone-based scheduling is finished with
the results that peak_current = 2*c, S4,2 = 0, S4,3 = 1, S6,2 = 0

and S6,3 = 1. After the zone-based scheduling is completed,
the peak current is 2*c under the multi-domain clock skew
schedule in which TC1 = d1, TC2 = d2, TC3 = d1, TC4 = d3, TC5 =
d2 and TC6 = d3.

IV. Experimental Results

Our approach has been implemented in a C++ program
running on a personal computer with AMD K8-3GHz CPU
and 1G Bytes RAM. We use Extended LINGO Release 8.0 as
the 0-1 ILP solver. The circuits from ISCAS’89 benchmark
suites are targeted to a 0.35µm cell library for the experiments.
Without loss of generality, in each benchmark circuit, we
assume that: (1) the clock period P is the longest path delay;

(2) we are given
P

2 1
0.3

× + clocking domains, where 0.3 ns

denotes the clock skew between two consecutive clocking
domains; (3) each clocking domain dk =

P
0.3 (k 1)

0.3
× − − ns, where k = 1, …,

P
2 1

0.3
× + ; (4) the

maximum possible current of each register is c (at the clock
arrival time); and (5) if the circuit is fully synchronous, the
peak current occurs when all the registers are switching
simultaneously.

Table II gives the characteristics of benchmark circuits.
The column zero skew denotes the peak current of fully
synchronous implementation, while the column [6] denotes
the peak current solved by the 0-1 ILP formulations as
described in [6]. We use the notation -- to denote that the
problem complexity cannot be solved within 12 hours.

Table II. Characteristics of benchmark circuits.
peak currrent circuit registers gates data

paths
clock
period zero

skew
[6]

S444 21 119 175 4.24 21*c 2*c
S499 22 120 528 3.99 22*c 6*c

S1269 37 437 455 9.89 37*c 4*c
S1512 57 413 686 5.50 57*c 6*c
S3271 116 1035 1137 8.50 116*c 4*c
S3384 183 1070 1831 19.86 183*c --
S5378 179 1001 2313 5.16 179*c 11*c
S6669 239 2155 2179 28.42 239*c --
S9234 228 2680 2830 9.42 228*c --
S13207 669 2573 4660 10.92 669*c --
S15850 597 3448 16863 14.23 597*c --
S35932 1728 12204 5159 5.14 1728*c 288*c
S38584 1452 11448 15329 11.85 1452*c --

Table III demonstrates the advantage of exploiting both the
ASAP schedule and the ALAP schedule to prune the

redundancies. Note that, for each benchmark circuit, both the
ASAP schedule and the ALAP scheduled can be derived
within 1 second. The column [6] describes the original 0-1
ILP formulations. The column Reduced formulations
describes the reduced 0-1 ILP formulations, in which all the
redundancies are pruned. The column #vars denotes the
number of binary variables, the column #cons denotes the
number of constraints, and the column CPU time gives the
CPU time in seconds.

Table III. The advantage of pruning redundancies.
 [6] Reduced FormulationsCircuit

#vars #cons CPU
time (s)

#vars #cons CPU
time (s)

S444 609 400 4 239 355 1
S499 594 1105 6 80 524 1
S1269 2405 1012 9 312 411 3
S1512 2109 1466 5 326 825 1
S3271 6612 2447 30087 3342 2027 88
S3384 24339 4316 -- 4917 3531 24
S5378 6265 4860 16046 2088 342 59
S6669 45171 5476 -- 3951 3265 122
S9234 14364 6803 -- 6554 6042 232

S13207 48837 10062 -- 20057 8416 362
S15850 56715 34418 -- 18124 28314 --
S35932 60480 12081 714 17516 3714 271
S38584 114708 32189 -- 40018 29569 --

Table IV demonstrates the results of zone-based scheduling.
The benchmark circuits that have more than 2000 irredundant
binary variables are used to test the effectiveness of zone-
based scheduling. Without loss of generality, here we use the
fully synchronous solution as the initial solution. The column
tackled zones denotes the number of times to use the 0-1 ILP
solver to re-schedule a zone. The CPU time includes the time
spent in both our C++ program and the 0-1 ILP solver. For the
convenience of comparisons, we also report the results
obtained by whole-circuit scheduling, which solves the whole
circuit as a single zone. We find that the whole-circuit
scheduling cannot solve benchmark circuits S15850 and
S38584 within 12 hours. However, on the other hand, the

zone-based scheduling can solve each benchmark circuit
within 712 seconds no matter the constraint on the maximum
number of binary variables involved in a zone is 500, 1000 or
2000.

V. Conclusions

This paper investigates a fast multi-domain clock skew
scheduling for peak current reduction. The main contribution
of our work is that it overcomes the high computational
expense of previous work. Benchmark data consistently show
that our approach achieves very good results within an
acceptable run time.

Acknowledgements
This work was supported in part by the National Science

Council of R.O.C. under grant number of NSC 93-2215-E-
033-004.

References
[1] J.P. Fishburn, “Clock Skew Optimization”, IEEE Trans. on

Computers, Vol. 39, No. 7, pp. 945—951, 1990.
[2] L. Benini, P. Vuillod, A. Bogliolo, and G. De Micheli, “Clock

Skew Optimization for Peak Current Reduction”, Journal of
VLSI Signal Processing, vol. 16, pp. 117—130, 1997.

[3] A. Vittal and M. Marek-Sadowska, “Power-Optimal Buffered
Clock Tree Design”, in the Proc. of IEEE/ACM Design
Automation Conference, pp. 497—502, 1995.

[4] J.P. Fishburn, “Solving a System of Difference Constraints with
Variables Restricted to a Finite Set”, Information Processing
Letters, vol. 82, no. 3, pp. 143—144, 2002.

[5] K. Ravindran, A, Keuhlmann, and E. Sentovich, “Multi-
Domain Clock Skew Scheduling”, in the Proc. of IEEE/ACM
International Conference on Computer Aided Design, pp. 801—
808, 2003.

[6] A. Vittal, H. Ha, F. Brewer, and M. Marek-Sadowska, “Clock
Skew Optimization for Ground Bounce Control”, in the Proc. of
IEEE/ACM International Conference on Computer Aided
Design, pp. 395—399, 1996.

Table IV. The results of zone-based scheduling.

500 variables in a zone 1000 variables in a zone 2000 variables in a zone whole-circuit circuit
peak

current
tackled
zones

CPU
time (s)

peak
current

tackled
zones

CPU
Time (s)

peak
current

tackled
zones

CPU
time (s)

peak
current

CPU
time (s)

S3271 4*c 8 10 4*c 6 14 4*c 4 88 4*c 88
S3384 5*c 10 5 5*c 6 8 5*c 4 14 5*c 24
S5378 11*c 7 7 11*c 5 28 11*c 2 54 11*c 59
S6669 11*c 10 11 11*c 6 20 11*c 5 26 11*c 122
S9234 7*c 8 23 7*c 7 25 7*c 5 37 7*c 232

S13207 16*c 28 205 16*c 13 238 16*c 11 285 16*c 362
S15850 15*c 29 501 15*c 19 557 15*c 12 712 -- --
S35932 288*c 35 133 288*c 18 169 288*c 9 240 288*c 271
S38584 38*c 54 334 37*c 32 420 36*c 21 513 -- --

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

