
Timing-Driven Placement Based on Monotone Cell Ordering Constraints
Chanseok Hwang

Department of Electrical Engineering-Systems
Univ. of Southern California, Los Angeles, CA 90089

Tel : 1-213-740-4472 Fax : 1-213-740-9803
Email : chanseoh@usc.edu

Massoud Pedram
Department of Electrical Engineering-Systems

Univ. of Southern California, Los Angeles, CA 90089
Tel : 1-213-740-4458 Fax : 1-213-740-9803

Email : pedram@usc.edu

Abstract− In this paper, we present a new timing-driven
placement algorithm, which attempts to minimize zigzags and
crisscrosses on the timing-critical paths of a circuit. We
observed that most of the paths that cause timing problems in
the circuit meander outside the minimum bounding box of the
start and end nodes of the path. To limit this undesirable
behavior, we impose a physical constraint on the placement
problem, i.e., we assign a preferred signal direction to each
critical path in the circuit. Starting from an initial placement
solution, by using a move-based optimization strategy, these
preferred directions force cells to move in a direction that
maximizes the monotonic behavior of the timing-critical paths
in the new placement solution. To make the direction
assignment tractable, we implicitly group all circuit paths into
a set of input-output conduits and assign a unique preferred
direction to each such conduit. We integrated this idea into a
recursive bipartitioning-based placement framework with a
min-cut objective function. Experimental results on a set of
standard placement benchmarks show that this approach
improves the result of a state-of-the-art industrial placement
tool for all the benchmark circuits while increasing the wire
length by a tolerable amount.

I. Introduction

Timing optimization during placement has been an active area of
research and development. This is in part due to the increasing
ratios of the interconnect delays to the gate delays in deep
submicron designs and the huge impact of cell placement on wire
lengths, and therefore, longest path delays in the circuit. In
general, a “good” timing-aware cell placement tool can positively
influence the timing closure of the circuit, and thus, greatly reduce
the overall design turn-around-time. There is therefore a need for
efficient timing-driven placement algorithms especially for the
design of high-performance ASICs.

Many techniques have been developed to optimize circuit delay
during placement. These techniques may be broadly classified into
two categories depending on whether they modify the netlist or
not. Circuit delay during placement can be optimized by using
buffer insertion, logic replication, or retiming techniques [1-4].
On the other hand, many techniques [5-12] do not alter the circuit
netlist. These techniques often give high weights to or specify
physical length constraints for the edges that lie on the critical
timing paths of the circuit. These methods therefore require an a
priori classification of signal nets into critical and non-critical
ones based on a static timing analysis of the circuit. Most of the
reported works use slack values to identify critical nets, and
decide the net weights or net length constraints. Since net weights
do not bear a direct relation to the circuit delay, it has been quite
difficult to stabilize the net weights in order to achieve good
timing convergence [6]. Net length (or size of net bounding box)
constraints have a more direct relation to the timing constraints.
However, it has been difficult to effectively incorporate these
constraints in a placement tool without creating “solution
oscillation” problems whereby the constraints on the current set of
critical nets are satisfied at the expense of making some other nets

timing-critical. In addition, these techniques tend to over-exert the
current set of constraints by making the lengths of the critical nets
much shorter than what they have to be in order to satisfy the
current timing constraints. A number of researchers [7][8] have
used the signal direction as an indicator of the timing gain
function during the move-based partitioning process. Examples
include “backward edges” [7] and “V-shaped nodes” [8]. These
early results motivate the use of signal direction to guide the
performance-driven placement process (see also the last paragraph
of Section III(A))

In this paper, we introduce a novel approach to timing-driven
placement, which employs a new type of physical constraint
imposed on the circuit. More precisely, we impose constraints that
specify preferred signal directions for the timing-critical input-
output conduits in a circuit (see Section III for a formal definition
of I/O conduits). These constraints then guide the cell placement
so that timing-critical paths satisfy a type of monotonicity
property in their cell ordering. Figure 1 depicts a critical path
which has (a) non-monotone cell ordering and (b) monotone cell
ordering. Clearly, the path with the monotone cell ordering will
have a lower delay than the other path. This notion of monotonic
path has also been used in logic synthesis to consider interconnect
delay [13][20]. In [4], the logic replication was used to make such
paths “straightened” for FPGA applications. Unlike their
approach which uses logic replication, we employ the new
physical constraint specifying preferred signal directions of the
timing-critical input-output conduits. This idea has been
integrated into a recursive bipartitioning-based placement
framework with min-cut objective, which is a general top-down
placement algorithm like that in [15]. The notion of the preferred
signal directions of input-output conduits was described in [21].
The focus of that paper was however on circuit partitioning and
does not consider two-dimensional placement in any form.

(a) Non-monotone cell ordering (b) Monotone cell ordering

Figure 1. An example of a critical timing path.

II. Problem Statement

In this section, we describe our basic approach for timing
optimization during a recursive partitioning-based placement.

Consider a sequential circuit, represented by a directed graph
G=(V, E). Each node vi ∈ V represents a combinational cell or
flip-flop in the design. It has a weight w(vi) which specifies its

layout area. Let’s denote the set of primary inputs of a circuit as
PI, the set of primary outputs as PO, and the set of flip-flops as FF.
We assume that the target chip area is known a priori and that PI
and PO are placed at the boundary of the chip and remain fixed
during placement. A path in the circuit is defined as the set of
nodes and edges that connect a pi ∈ PI (or FF) to a po ∈ PO (or
FF). Path delay d(π) can be calculated by the summation of delays
of all the edges and nodes along path π. The minimum cycle time
of graph G is denoted by ΦG and is equal to Max d(S) where S is a
set of all paths in a circuit. The primary objective of a timing-
driven placement tool is to minimize the cycle time of a circuit.

The timing optimization procedure in the context of recursive
partitioning-based global placement engine typically consists of
weighted wirelength-driven partitioning (WWP) and static timing
analysis (STA.) More precisely, critical nets in the circuit are first
identified based on STA and assigned higher weights. Next WWP
decomposes the given placement instance into smaller instances
by dividing the placement region into two sub-regions, and
assigning cells to one or the other sub-region such that the
weighted wire length is minimized and a balance condition on the
total cell area of each sub-region is satisfied. This process
continues until each region contains fewer then a certain number
of cells.

III. Proposed Approach

A. Signal Direction Constraints

For completeness, we review here the notion of a signal direction
of input-output conduits from [21], and the resulting constraint,
which will be used to straighten critical paths in order to optimize
circuit delay.

An input-output (I/O) conduit is defined as the set of all paths
from some input node (in PI or FF) to some output node (in PO or
FF). An I/O conduit, σ, is simply identified by the corresponding
input (pi ∈ PI or FF) and output (po ∈ PO or FF.) Notice that the
maximum number of I/O conduits in a sequential circuit netlist is
(nI+nF).(nO+nF) where nI, nO and nF denotes the cardinality of PI,
PO and FF, respectively. An I/O conduit then belongs to one of
the following types: PI PO, PI FF, FF FF, or FF PO.

In our approach a timing constraint is not explicitly specified for
an individual path. Instead, it is defined for an I/O conduit
(thereby it implicitly represents a constraint on a large number of
paths.) We denote a timing constraint for an I/O conduit σ by
c(σ). The delay of a I/O conduit is d(σ) = max d(Π) where Π
denotes the set of all paths between pi and po of the I/O conduit.
Then critical I/O conduits are defined as the set of I/O conduits Γ,
such that for every σ ∈ Γ, d(σ) c(σ).

Signal direction constraints for critical I/O conduits are illustrated
in Figure 2. A critical I/O conduit σ1 from pi1 to po1 comprises of
two critical paths pi1 v1 v2 v3 po1 and pi1 v1 v4 v5 po1.
To achieve a monotone cell ordering of these paths, the signal
directions of edges of σ1 should be from part M0 to part M1. Let
P(vi) denote the part that node vi is assigned to i.e., P(vi) = 0 if vi

is put in M0, otherwise, P(vi) = 1. Notice that P(vi) of the source
node vi of an edge e of σ1 should not be any larger than P(vj) of
the target node vj of that edge, and then both critical paths in σ1

have a monotone cell ordering.

σ1: pi1→v1→v2→v3→po1, e1(pi1,v1), e2(v1,v2), e3(v2,v3), e4(v3,po1)
pi1→v1→v4→v5→po1, e1(pi1,v1), e5(v1,v4), e6(v4,v5), e7(v5,po1)

σ2: pi2→v6→v7→v8→po2, e8(pi2,v6), e9(v6,v7), e10(v7,v8), e11(v8,po2)

Signal Direction Constraints:
P(s(ei)) ≤ P(t(ei)), 1≤ i ≤ 7 for σ1

P(s(ei)) = P(t(ei)) = 0, 8 ≤ i ≤ 11 for σ2

where P(vi) is a part number (0 or 1) of vi, and s(ei) and t(ei) are a source
and target nodes of edge ei, respectively.

Figure 2. Signal direction constraints of critical I/O conduits.

 This means that all critical paths in a critical I/O conduit σ have a
monotone cell ordering if and only if all edges of such critical
paths satisfy signal direction constraints for σ. Notice that in the
Figure 2 edge e6 violates the signal direction constraints for σ1,
resulting in a non-monotone cell ordering. In addition, for I/O
conduit σ2, comprising of a single path pi2 v6 v7 v8 po2, both
source and target nodes of edges on σ2 should be put in M0 in
order to satisfy the signal direction constraint of σ2.

Let L, R, B, and T denote left, right, bottom, and top, respectively.
Based on the above discussion, we define signal direction
constraints (SDC’s) for a vertical move line as follows:

SDC1: if SD(σ)=LL, ∀ ei ∈ σ, P(s(ei)) = P(t(ei)) = 0

SDC2: if SD(σ)=RR, ∀ ei ∈ σ, P(s(ei)) = P(t(ei)) = 1

SDC3: if SD(σ)=LR, ∀ ei ∈ σ, P(s(ei)) ≤ P(t(ei))

SDC4: if SD(σ)=RL, ∀ ei ∈ σ, P(s(ei)) ≥ P(t(ei))

where SD(σ) denotes the signal direction of σ, which is one of LL,
RR, LR, or RL for a vertical move line. Clearly, LL (RR) implies
that both start and end nodes of the conduit are located in M0

(M1), whereas LR (RL) means that the start node of the conduit is
in M0 (M1) while the end node of the conduit is in M1 (M0). The
SDC’s for a horizontal move line are obtained similarly (by
replacing LL with BB, RR with TT, LR with BT, and RL with TB
in the above equations.) For the remainder of this paper, we will
only refer to vertical move lines since the case of a horizontal
move line is really the same.

Based on the above definitions, each edge of every path in an I/O
conduit has the same preferred signal direction. Therefore,
although many paths of a conduit can go through an edge, the
edge will have only one signal direction constraint (SDC) for the
conduit. However, a placement solution that satisfies all of the
SDC’s associated with the timing-critical I/O conduits seldom
exists for any realistic netlist. This is because, in general, an edge
may belong to several critical conduits in the circuit, each
assigning a preferred signal direction to the edge. Therefore, we

give up on the idea of trying to strictly impose SDC’s. Instead we
resort to minimizing a cost function which is proportional to the
number of SDC violations.

We denote a violation of an SDC by SDV, which stands for a
signal direction violation. To manage the circuit delay as a scalar
objective function rather than as a set of signal direction
constraints, we make use of the violation counts of signal
directions as defined above. More precisely, in the framework of
move-based local neighborhood search algorithm which is used
during partition-based placement, we define a timing gain, TG(vi),
to exactly quantify the desirability of moving vi from M0 to M1.
The timing gain for a node vi is thus obtained by summing the
number of SDV’s of each edge ei connected to node vi as follows.

SDV1: if vi = s(ei) and P(s(ei)) = P(t(ei)) = 0, then

TG(vi) −= (SDC1-cnt(ei) + SDC3-cnt(ei))

SDV2: if vi = s(ei) and P(s(ei)) = P(t(ei)) = 1, then

TG(vi) −= (SDC2-cnt(ei) + SDC4-cnt(ei))

SDV3: if vi = s(ei) and P(s(ei)) > P(t(ei)), then

TG(vi) += (SDC1-cnt(ei) + SDC3-cnt(ei))

SDV4: if vi = s(ei) and P(s(ei)) < P(t(ei)), then

TG(vi) += (SDC2-cnt(ei) + SDC4-cnt(ei))

SDV5: if vi = t(ei) and P(s(ei)) = P(t(ei)) = 0, then

TG(vi) −= (SDC1-cnt(ei) + SDC4-cnt(ei))

SDV6: if vi = t(ei) and P(s(ei)) = P(t(ei)) = 1, then

TG(vi) −= (SDC2-cnt(ei) + SDC3-cnt(ei))

SDV7: if vi = t(ei) and P(s(ei)) > P(t(ei)), then

TG(vi) += (SDC1-cnt(ei) + SDC4-cnt(ei))

SDV8: if vi = t(ei) and P(s(ei)) < P(t(ei)), then

 TG(vi) += (SDC2-cnt(ei) + SDC3-cnt(ei))

where SDC*-cnt(ei) represents the number of signal direction
constraints of type * (ranging from 1 to 4) for edge ei, that is, the
number of timing-critical I/O conduits with the corresponding
signal direction that go through the edge. Notice that these
counter values are pre-computed before we begin the cell
movements for the purpose of timing optimization. The algorithm
for setting the SDC-count is described in Section III(B).

Note that the early works [7][8] that use the signal direction to
minimize cutsize cannot solve the problem globally. More
precisely, in these references, the authors attempt to optimize
local directions of edges without considering the parent path and
its criticality. Unlike these methods, we aggregate preferred signal
directions for all critical paths that pass through an edge, which in
turn enables us to exactly calculate the global signal directions,
resulting in maximization of the monotonic behavior of the
critical paths.

B. Timing Optimization Process

In a recursive bipartitioning-based timing-driven placement, STA
is performed at each level of the partitioning hierarchy in order to
first identify the timing-critical nets, and then to assign them
higher weights in order to prevent them from being cut at the
subsequent partitioning step. From our experimentations, we have
observed that timing analysis and optimization at early
hierarchical levels are not helpful in reducing the circuit delay.

 (a) Move directions (b) v2 is moved to the upper region

σ : pi→v1→v2→po, edges: e1(pi,v1), e2(v1,v2), e3(v2,po)
SDC2: SD(σ)=TT, ∀ ei ∈ σ, P(s(ei)) = P(t(ei)) = 1
SDC2-count(e2) = 1, SDC2-count(e3) = 1

VC(V2:P(v2)=0) = 2 // SDC violations before v2-move
SDC2 violated for e2 and e3.

VC(V2:P(v2)=1) = 0 // SDC violations after v2-move
SDC2 violations for e2 and e3 are eliminated.

∴TG(v2) = VC(V2:P(v2)=0) VC(V2:P(v2)=1) = 2

(c) Computation of timing gain for v2-moving to the upper region

Figure 3. An example of a cell move for timing optimization.

This is because the size of net bounding box, which is typically
used for calculating the interconnect parasitics, is too rough at
such levels where the chip area is divided into only a few sub-
regions. Based on this observation, we start our timing
optimization process after a few runs of the recursive partitioning
with min-cut objective. The starting level of hierarchy for the
timing optimization process is obviously a function of the circuit
netlist size and the chip bounding box. In this way, we start with
an initial global placement which has been optimized for
minimum wire length objective.

We use an accurate internal STA engine, which uses the Elmore
delay model and net-length estimation method proposed in [14] to
calculate the wire delay, and a commercial timing library to obtain
the gate delays. Based on the results of the timing analyzer, we
identify the critical edges and nodes as follows: edges with
negative slack values are marked as critical edges and nodes
which have at least one critical incoming and/or outgoing edge are
marked as critical nodes. Next, we find critical I/O conduits for
each critical edge using a modified depth-first-search algorithm
(MDFS), which visits only those successor nodes that are
connected to their parents by critical edges. We add a source node
and a sink node to the directed graph. Next we run a reverse-
MDFS to find all transitive PI’s and FF’s for each node vi and
stored them as set Si at that node. Similarly, all transitive PO’s and
FF’s are searched for and stored at set Ti at the node during
another MDFS. As a result, we can determine, Cij, the set of all
conduits that go thru any critical edge eij between nodes vi and vj

in the circuit graph as the Cartesian product of the sets Si and Tj.
Now, we count the number of critical conduits of type LL, LR, RL,
and RR in Cij for a vertical move line, and thereby, initialize the
corresponding SDC-count for all critical edges in the circuit.

We explain the timing gain calculation with the help of example
in Figure 3. In the Section III(A), we described the timing gain
calculation for the case of a move to a neighboring region over a
vertical move line. The timing gain for a move across a horizontal
move line can be calculated in a similar manner. Consider moving

pi

po

pi

po

v1 v1

v2 v2

e1

e2
e3

e1

e2
e3

Horizontal
M0

M1

move line

a critical node v2 in one of four directions, calculating the timing
gain for each direction of movement. v2 will be moved in the
direction with the highest gain. The timing gain calculation for v2

moving to the top region is shown in Figure 3(c). Signal direction
constraint of the critical I/O conduit σ passing v2 is SDC2 since
both pi and po of this conduit are in the upper region over the
horizontal move line. There are two edges connected to this node.
Edges e2 and e3 do not satisfy SDC2 of conduit σ. This is because
SD(σ)=TT but the source and target nodes of these two edges are
not in M1. The number of SDC violations is thus 2. After v2 is
moved to the upper region, SDC2 can be satisfied for both e2 and
e3. As a result, the total number of SDC violations are reduced by
two, i.e., the timing gain for the v2-move is two, TG(v2) = 2. We
calculate timing gains for other directions in the same way,
resulting in TG(v2) = 2 for v2 moving to the left region, TG(v2) =
0 for v2 moving to the right region and TG(v2) = 2 for v2 moving
to the bottom region. The maximum timing gain of v2 is then 2.

After computing the timing gains for all critical nodes, we put
them into a gain heap where nodes are sorted by their gain
(highest gain move is root of the heap.) Next we extract the root
node from the heap. Whenever a node vi moves to its preferred
region rp, we update gains of nodes connected to vi which are
remaining in the heap and re-order it so that the root is the node
with highest gain. If the remaining capacity of the region rp is zero,
then we choose a node vj among non-critical nodes in that region
based on the computation of wirelength gains for those nodes, and
move it to the region where vi is coming. This process continues
until the timing gain heap is empty. The running sum of the total
timing gain for the moves is constructed during this process in
order to identify a sequence of moves that produces the maximum
total gain. Moves that are not part of the accepted move sequence
are reversed. We call these steps as a pass, which is similar to the
mechanism used in a general FM partitioner[16]. We go through
multiples passes until no further timing gain can be achieved.
Figure 4 shows the pseudo-code for the proposed timing
optimization flow.

C. Timing-driven Placement

In this section, we describe the flow of our proposed timing-
driven placement. The placement framework is based on a
recursive bipartitioning-based placement algorithm, which
comprises of a hierarchical bipartitioning, terminal propagation
and legalization. Our proposed timing optimization process is
integrated into this framework. We used hMetis [17] as a
bipartitioning algorithm, which consists of three phases:
coarsening, initial partitioning and uncoarsening phases.

After each bipartitioning, those cells in a sub-region which are
connected to external cells are propagated to the boundaries of the
corresponding sub-regions. This terminal propagation is
performed in a straight-forward manner based on shortest path (or
a low-cost Steiner tree) connection of connected terminals. Finally,
we allocate all cells that are contained in each sub-region into
placement rows when the recursive bipartitioning reaches a
certain pre-specified end level. This step is typically called
legalization. We employed a simple technique whereby we divide
each row to several equal-sized bins, and then, assigned cells in a
sub-region to bins according to their coordinates. This assignment
may cause unbalances in the total cell size of each bin. To reduce
the unbalance, we move cells from “overfilled” bins to

“underfilled” bins, by a technique similar to that in [18]. Next,
within each row, cell positions are adjusted to eliminate any cell
overlaps. This whole procedure is described in Figure 5 and the
layout hierarchy of bipartitioning-based placement is shown in
Figure 6.

First, we calculate the start hierarchy level based on the target size
of the smallest region before we start the timing optimization
procedure. We obtained the target initial size of a region by
experimentation, and from that size, calculated the start level. The
end level is reached when the size of a sub-region of a hierarchy
level becomes smaller than ten times the average cell size in the
design. Next we ran a wirelength-driven bipartitioning-based
placement algorithm until we reached the start level. This step
resulted in the initial global placement.

Timing _Optimization_PSD (P,T)

P : An initial hierarchical placement solution with J regions
T : Timing constraints

1. Perform static timing analysis;
2. From T, find critical edges, nodes, and I/O conduits

(initialize corresponding SDC-count for all critical
edges);

3. Compute initial timing gains for all critical nodes;
4. Put all critical nodes into a timing gain heap;
5. While (heap != empty)
6. Extract root node vi from the heap and move it in its

preferred direction to a neighbor region in P;
7. If the region capacity is violated, select a non-critical

node in the region and move it back to the parent
region of vi;

8. Update timing gains and restructure the heap as
needed;

9. Find a sequence of moves that produces max_total_gain;
10. Undo moves that are not in the selected sequence;
11. If max_total_gain > 0 then goto step 3;
12. Else exit;

Figure 4. Flow of the proposed algorithm for timing
optimization with preferred signal directions.

PSD_Placement (G, T)

G : A directed graph representing a sequential circuit
T : Timing constraints
1. Calculate the start and end levels of timing-driven global

placement;
2. Do initial wirelength-driven global placement from level

one to start level;
3. While (start_level i end_level)
4. While (j=0; j < number of sub_regions in level i; j++)
5. Generate a bipartitioning-based placement Pi,j of

subregion j;
6. Do Timing_Optimization_PSD(Pi ,T);
7. Do the legalization;

Figure 5. Flow of the proposed preferred signal direction
placement algorithm.

Figure 6. The layout hierarchy of bipartitioning-based placement
with level descriptions.

Next we applied the Timing_Optimization_PSD to each level of
the hierarchy between the start and end levels. Note that the
timing optimization procedure is performed only once per
hierarchical level on placement solution Pi, which itself comprises
of J=2i sub-regions. In Figure 6, for example, at the start level,
first eight bipartitionings are performed to divide the chip area
into 16 equal-sized sub-regions. Next, the timing optimization is
done on the global placement solution with 16 sub-regions. After
reaching the end level, to allocate cells into placement rows
without overlaps, a legalization step is performed.

IV. Experimental Results

We have implemented the proposed timing optimization
algorithm and bipartitioning-based hierarchical placement flow in
C++ on a Sun Ultra Sparc II machine, and tested it on six industry
circuits. Four of them, matrix, vp2, mac1 and mac2, are among
the ISPD 2001 Circuit Benchmarks that first appeared in [19].
These circuits are also used in [5]. The characteristics of the
benchmark circuits are summarized in Table 1. We call our
timing-driven placement approach as PSDP (stands for Preferred
Signal Direction Placement). We compared PSDP with Capo-
boost [22], which attempts to improve circuit delay by reducing
the number of global interconnects, and an industrial placement
tool, which we call QuadP 1 . We use a 0.18µm standard-cell
library to report the delay results.

TABLE 1. The characteristics of benchmark circuits

Circuits #Cells #Nets #IOs

indust1 5931 5969 179

indust2 20193 21699 351

matrix 3,083 3,200 117

vp2 8,714 8,789 321

mac1 8,902 9,115 211

mac2 25,616 26,017 415

1 QuadP represents the virtual name of a commercial state-of-the-
art placement tool.

Let total negative slack, TNS, denote the sum of the slacks of all
paths with negative margins. Table 2 compares TNS between the
non-timing mode and the timing-driven mode of PSDP. PSDP in
non-timing mode (wirelength-driven) is the same as algorithm in
Figure 5 with step 6 removed. To obtain the TNS values, we used
our STA engine (which uses a commercial timing library to obtain
the gate delays and relies on the Elmore delay calculation for
interconnects) and assigned the clock cycle time of each circuit as
the maximum of “no-wiring path delays [6]” in that circuit. The
“no-wiring path delay” accounts for the delay of all gates on the
path, but sets the corresponding wire delays to zero. We achieved
an average of 44.5% improvement in TNS by using PSDP timing-
driven mode.

TABLE 2. Comparison of TNS (total negative slack of all timing
endpoints) between wirelength-driven and timing-driven mode of
PSDP with the zero-loading delay clock cycle.

Benchmark
circuits

Clock
cycle

Wirelength-
driven mode

Timing-
driven mode

%
Improvement

indust1 5.54 -38.2 -24.4 36.1%

indust2 8.75 -204.5 -93.1 54.5%

matrix 3.23 -5.8 -4.3 25.9%

vp2 3.67 -68.3 -25.1 63.3%

mac1 2.07 -21.4 -13.5 36.9%

mac2 2.35 -125.4 -62.7 50.2%

Average 44.5%

Table 3 compares PSDP with QuadP in wirelength-driven mode
and in timing-driven mode, and Capo-boost in terms of the post
placement wirelength (HPWL) and post routing wirelength
(RWL), and the post-routing worst negative slack (WNS). We
perform Cadence WarpRoute to route the placements obtained
from each placer, extract RC values, and run Pearl to perform
static timing analysis (STA). We use the values in [5] as the clock
cycle for the corresponding four circuits. The other two circuits
are available in complete LEF/DEF/GCF format. The wirelength
and worst negative slack are represented in microns and in
nanoseconds, respectively.

We observe that PSDP in timing-driven mode improved WNS for
all circuits compared to QuadP in the wirelength-driven mode, on
average, by 31%, while increasing the total wirelength of post
placement and post routing, on average, by 5% and 4%,
respectively. In addition, PSDP usually has a better result in terms
of WNS compared to the other two placers, QuadP in timing
mode and Capo-boost; our placer outperformed those placers for
all benchmark circuits except one. PSDP runs on average 48%
slower than QuadP in non-timing mode, but PSDP is on average
58% faster than QuadP in timing-driven mode.

V. Conclusions

The paper integrates wire planning into timing-driven min-cut
placement. It formulates a new kind of constraint on cell locations
based on preferred signal directions. These preferred directions
are deduced by grouping all paths from one major source to one
major sink into I/O conduits. All paths in the entire circuit are
grouped into these conduits. Constraints are computed for all cells
in this way, and they are then used to guide the optimization step

first level

second level

….

start level

….

….

….….

…. ….

end level….….

by forcing the cells to move in a direction such that the timing-
critical paths exhibit a monotonic behavior in their cell ordering.
The advantage of the new methodology has been confirmed by
experimental results; our placer achieves on average 31%
improvement on WNS compared to a leading industry placer at
the expense of wirelength increase, on average, by 5%.

Reference

[1] J. Cong and X. Yuan, “Multilevel Global Placement with Retiming”,
In Proceedings of the ACM/IEEE DAC, 208-213, 2003.

[2] M. Hrikic, J. Lillis and G. Beraudo, “An Approach to Placement-
Coupled Logic Replication”, In Proceedings of the ACM/IEEE
DAC, 711-716, 2004.

[3] P. Saxena and B. Halpin, “Modeling Repeaters Explicitly Within
Analytical Placement”, In Proceedings of the ACM/IEEE DAC, 699-
704, 2004.

[4] G. Beraudo and J. Lillis, “Timing Optimization of FPGA Placements
by Logic Replication”, In Proceedings of the ACM/IEEE DAC, 196-
201, 2003.

[5] X. Yang, B. Choi and M. Sarrafzadeh, “Timing-Driven Placement
using Design Hierarchy Guided Constraint Generation”, In
Proceedings of the IEEE ICCAD, 177-180, 2002.

[6] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A. Chowdlhary and
B. Halpin, “Timing Driven Force Directed Placement with Physical
Net Constraints”, In Proceedings of the ACM/IEEE ISPD, 60-66,
2003.

[7] J. Cong and S.K. Lim, “Performance Driven Multiway Partitioning”,
In Proceedings of the ACM/IEEE ASP-DAC, 441-446, 2000.

[8] A. B. Kahng and X. Xu, “Local Unidirectional Bias for Smooth
Cutsize-Delay Tradeoff in Performance-driven bipartitioning.” In
ACM/IEEE ISPD, 81-86, 2003.

[9] A. B. Kahng S. Mantik and I. L. Markov, “Min-Max Placement for
Large-Scale Timing Optimization”, In Proceedings of the
ACM/IEEE ISPD, 143-148, 2002.

[10] W. Choi and K. Bazargan, “Incremental Placement for Timing
Optimization”, In Proceedings of the IEEE ICCAD, 463-466, 2003.

[11] B. Halpin, C. Y .Chen and N. Sehgal, “Timing Driven Placement
using Physical Net Constraints”, In Proceedings of the ACM/IEEE
DAC, 780-783, 2001.

[12] S. Hur, T. Cao, K. Rajagopal, Y. Parasuram and B. Halpin, “Force
Directed Mongrel with Physical Net Constraints”, In Proceedings of
the ACM/IEEE DAC, 214-219, 2003.

[13] W. Gosti, A. Narayan, R. K. Brayton and A. L. Sangivanni-
Vincentelli, “Wireplanning in Logic Synthesis”, In Proceedings of
the IEEE ICCAD, 26-33, 1998.

[14] C. Ababei, N. Selvakkumaran, K. Bazargan, and G. Karypis, “Multi-
objective Circuit Partitioning for Cutsize and Path-based Delay
Minimization”, In Proceedings of the IEEE ICCAD, 181-185, 2002.

[15] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can recursive
bisection produce routable placements”, In Proceedings of the
ACM/IEEE DAC, 477-482, 2000.

[16] C. Fiduccia and R. Mattheyses, “A Linear Time Heuristic for
Improving Network Partitions”, In ACM/IEEE DAC, 175-181, 1988.

[17] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
Hypergraph partitioning”, In Proceedings of the ACM/IEEE DAC,
526-529, 1997.

[18] N. Viswanathan and C. C. Chu, “FastPlace: Efficient Analytical
Placement using Cell Shifting, Iterative Local refinement and a
Hybrid Net Model”, In Proceedings of the ACM/IEEE ISPD, 26-33,
2004.

[19] Y. Chou and Y. Lin, “A Performance-driven Standard-Cell Placer
Based on a Modified Force-Directed Algorithm”, In Proceedings of
the ACM/IEEE ISPD, 24-29, 2001.

[20] S. Iman, M. Pedram, C. Fabian, and J. Cong, “Finding uni-
directional cuts based on physical partitioning and logic
restructuring”, In Proceedings of the 4th ACM/IEEE Physical
Design Workshop, 187-198, 1993.

[21] C. Hwang and M. Pedram, “PMP: Performance-driven multilevel
partitioning by aggregating the preferred signal directions of I/O
conduits”, In Proceedings of the ACM/IEEE ASP-DAC, 428-432,
2005.

[22] A. B. Kahng, I. L. Markov and S. Reda, “Boosting: Min-Cut
Placement with Improved Signal Delay,” In Proceedings of the
IEEE DATE, 1098-1103, 2004.

TABLE 3. Timing-driven results of PSDP for six industry circuits with comparison to QuadP and Capo-boost.

QuadP

(wirelength-driven mode)

QuadP

(timing-driven mode)
Capo-boost

PSDP

(timing-driven mode)
Benchmark

circuits

Clock

cycle
HPWL RWL WNS HPWL RWL WNS HPWL RWL WNS HPWL RWL WNS

indust1 6.60 350134 461533 -1.23 358551 465394 -1.22 354437 472033 -1.85 357728 479551 -0.89

indust2 15.50 1573453 2754704 -4.31 1567428 2810432 -3.81 1638655 2866492 -3.52 1606993 2906574 -3.17

matrix 3.89 104695 116987 -2.2 107921 120481 -2.06 105133 115670 -2.04 111958 122867 -2.01

vp2 4.57 370677 450872 -3.02 377096 453074 -3.21 364578 482548 -3.21 381118 489366 -2.95

mac1 3.85 443460 506880 -0.56 444704 509136 -0.49 476643 523736 -0.41 481045 524894 -0.30

mac2 7.67 2247603 3244264 -14.46 2249426 3297112 -3.63 2354646 2948992 -1.01 2408205 3123254 -3.73

Ratio 1.00 1.00 1.00 1.01 1.01 0.83 1.03 1.01 0.85 1.05 1.04 0.69

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

