Principles Of Digital Design

Technology Mapping

Mapping Boolean Expressions to Gates

- Mapping to NAND and NOR Gates
- Delay Minimization

Technology Mapping for Gates

- Some implementation technology usually have a library with only one type of gate (such as 3-input NOR, or 3-input NAND)
- Technology mapping is a transformation of Boolean expressions into a logic schematic containing only given type(s) of gate(s)
- Technology mapping consist of three tasks
 - Conversion replaces each operator with an operator representing the gate function given in the gate array
 - Optimization eliminates unnecessary inverters
 - Decomposition replaces a *n*-input gate with an *m*-input gate available in the library

Conversion and Optimization

Optimization Rules

Conversion Procedure:

 Replace AND and OR gates with NAND or NOR gates by using Rules 1 – 4, and eliminate double inverters whenever possible

Translation of Standard Terms to NAND **and** NOR **Schematics**

Conversion to NAND (NOR) Gates

Example: Conversion to NAND (NOR) gates

Problem: Derive the NAND and NOR implementations of the carry function

Map Definition Carry Function c_{i+1}

NAND Implementation

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = (x_i + y_i)(x_i + c_i)(y_i + c_i)$$

Standard Forms

NOR Implementation

Decomposition of 10-input into 3-input Gates

Level Number	Number of Inputs	Number of Gates
1	10	[10 / 3] = 3
2	3 + (10 - 3([10 / 3])) = 4	[4 / 3] = 1
3	1 + (4 - 3([4 / 3])) = 2	[2/3] = 1

Input and Gate Computation on Each Level

One Possible Decomposition

Alternative Decomposition

Technology Mapping for Gates

- **Example:** Technology mapping for gates
- Implement the sum function with 3–input NAND gates **Problem:**

Copyright © 2010-2011 by Daniel D. Gajski

Design Retiming

Example: Design retiming

Problem: Implement 4–bit carry-look-ahead function using 3–input NAND gates

Decomposition of AND-OR Implementation

NAND Implementation of Above, Delay = 8.2ns Copyright © 2010-2011 by Daniel D. Gajski

AND-OR Implementation

Performance Optimized Decomposition

Performance Optimized NAND Implementation, Delay = 6.4ns EECS 31/CSE 31, University of California, Irvine

Technology Mapping Procedure

Copyright © 2010-2011 by Daniel D. Gajski

Technology Mapping for Custom Libraries

- Libraries contain gates with different functions and different delays
- Technology mapping means covering schematic with library gates
- Primary goal: Minimize delay on critical paths
- Secondary goal: Minimize cost on non-critical paths

Mapping for Custom Libraries

Example: Technology mapping for custom libraries

Problem: Implement the expression w'z' + z(w + y) with the logic gates defined earlier

Conversion Procedure for Custom Libraries

Copyright © 2010-2011 by Daniel D. Gajski

Summary

Technology mapping for NAND/NOR gates

- Decomposition
- Conversion
- Optimization
- Retiming
- Technology mapping for custom libraries by schematic covering with complex gates with
 - Time optimization on circuit paths
 - Cost optimization on non-critical paths