Principles Of Digital Design

Chapter 3

Boolean Algebra and Logic Design

- Boolean Algebra
- Logic Gates
- Digital Design
- Implementation Technology
 - ASICs
 - Gate Arrays

Basic Algebraic Properties

• A set is a collection of objects with a common property

- If S is a set and x is a member of the set S, then x ∈ S
 A = {1, 2, 3, 4} denotes the set A, whose elements are 1, 2, 3, 4
- A *binary operator* on a set *S* is a rule that assigns to each pair of elements in *S* another element that is in *S*
- Axioms are assumption that are valid without proof

Examples of Axioms

Closure

- A set S is closed with respect to a binary operator iff for all x, y ∈ S,
 (x y) ∈ S
 - $Z^+ = \{1, 2, 3, ...\}$ is closed to addition, because positive numbers are in Z^+

Associativity

A binary operator ● defined on a set S is associative iff for all x, y, z ∈ S

$$(x \bullet y) \bullet z = x \bullet (y \bullet z)$$

Identity Element

• A set *S* has an identity element *e* for every $x \in S$

$$e \bullet x = x \bullet e = x$$
$$x + 0 = 0 + x = x$$

Examples of Axioms

Commutativity

• A binary operator • is commutative iff for all $x, y \in S$

 $x \circ y = y \circ x$

Inverse Element

• A set S has an inverse iff for every $x \in S$, there exists an element $y \in S$ such that

 $x \bullet y = e$

• Distributivity

If ● and □ are two binary operators on a set S, ● is said to be distributive over □ if, for all x, y, z ∈ S

$$x \bullet (y \square z) = (x \bullet y) \square (x \bullet z)$$

Axiomatic Definition of Boolean Algebra

Boolean algebra is a set of elements *B* with two binary operators, + and \cdot , which satisfies the following six axioms:

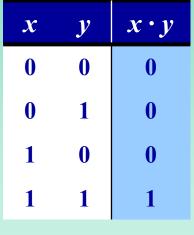
- Axiom 1 (Closure Property): (a) *B* is closed with respect to the operator +; (b) *B* is also closed with respect to the operator \cdot
- Axiom 2 (Identity Element): (a) *B* has an identity element with respect to +, designated by 0; (b) *B* also has an identity element with respect \cdot , designated by 1
- Axiom 3 (Commutativity Property): (a) B is commutative with respect to +; (b) B is also commutative with respect to \cdot
- Axiom 4 (Distributivity Property): (a) The operator \cdot is distributive over +; (b) similarly, the operator + is distributive over \cdot
- Axiom 5 (Complement Element): For every x ∈ B, there exists an element x' ∈ B such that (a) x + x' = 1 and (b) x ⋅ x' = 0 This second element x', is called the complement of x
- Axiom 6 (Lower Cardinality Bound): There are at least two elements $x, y \in B$ such that $x \neq y$

Axiomatic Definition of Boolean Algebra

Differences between Boolean algebra and ordinary algebra

- In ordinary algebra, + is not distributive ·
- Boolean algebra does not have inverses with respect to + and ·; therefore, there are no subtraction or division operations in Boolean algebra
- Complements are available in Boolean algebra, but not in ordinary algebra
- Boolean algebra applies to a finite set of elements, whereas ordinary algebra would apply to the infinite sets of real numbers
- The definition above for Boolean algebra does not include associativity, since it can be derived from the other axioms

- Set *B* has two elements: 0 and 1
- Algebra has two operators: AND and OR



AND Operator

x	у	x+y
0	0	0
0	1	1
1	0	1
1	1	1
	_	

OR Operator

Two-valued Boolean algebra satisfies Huntington axioms

- Axiom 1 (Closure Property): Closure is evident in the AND/OR tables, since the result of each operation is an element of *B*.
- Axiom 2 (Identity Element): The identity elements in this algebra are 0 for the operator + and 1 for the operator •. From the AND/OR tables, we see that:

$$0 + 0 = 0$$
, and $0 + 1 = 1 + 0 = 1$

•
$$1 \cdot 1 = 1$$
, and $1 \cdot 0 = 0 \cdot 1 = 0$

• Axiom 3 (Commutativity Property): The commutativity laws follow from the symmetry of the operator tables.

• Axiom 4 (Distributivity): The distributivity of this algebra can be demonstrated by checking both sides of the equation.

 $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ $z \mid y+z \quad x \cdot (y+z) \quad xy \quad xz \quad (xy) + (xz)$ x v 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1

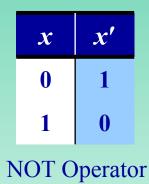
 $x + (y \cdot z) = (x + y)(x + z).$

x	y	z	yz	x + (yz)	<i>x</i> + <i>y</i>	x + z	(x+y)(x+z)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Proof of distributivity of ·

Proof of distributivity of +

• Axiom 5 (Complement): 0 and 1 are complements of each other, since 0+0'=0+1=1 and 1+1'=1+0=1; furthermore, $0 \cdot 0'=0 \cdot 1=0$ and $1 \cdot 1'=1 \cdot 0=0$.



 Axiom 6 (Cardinality): The cardinality axiom is satisfied, since this two-valued Boolean algebra has two distinct elements, 1 and 0, and 1 ≠ 0.

Boolean Operator Procedure

• Boolean operators are applied in the following order.

	Parentheses	()
	NOT	/	
	AND	•	
	OR	+	

Example: Evaluate expression (x + xy)' for x = 1 and y = 0:

 $(1 + 1 \cdot 0)' = (1 + 0)' = (1)' = 0$

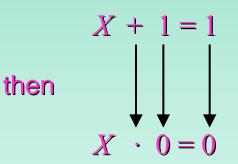
Duality Principle

 Any algebraic expression derived from axioms stays valid when

- OR and AND
- ♦ 0 and 1

are interchanged.

Example:



by the duality principle

Theorem of Boolean Algebra

Theorem 1	(a)	x + x	=	X
(Idempotency)	(b)	xx	=	x
Theorem 2	(a)	<i>x</i> + 1	=	1
	(b)	$x \cdot 0$	=	1
Theorem 3	(a)	yx + x	=	x
(Absorption)	(b)	(y+x)x	=	x
Theorem 4		(x')'	=	x
(Involution)				
Theorem 5	(a)	(x+y)+z	=	x + (y + z)
(Associativity)	(b)	x(yz)	=	(xy)z
Theorem 6	(a)	(x+y)'	=	<i>x'y'</i>
(De Morgan's Law)	(b)	(xy)'	=	x' + y'

Basic Theorems of Boolean Algebra

Theorem Proofs in Boolean Algebra

Theorems can be proved by transformations based on axioms and theorems

Example: Theorem 1(a) Idempotency: x + x = x.

Proof:

x + x= $(x + x) \cdot 1$ by identity (Ax. 2b)=(x + x) (x + x')by complement (Ax. 5a)=x + xx'by distributivity (Ax. 4b)=x + 0by complement (Ax. 5b)=xby identity (Ax. 2a)

Duality

Example:

Theorem 1(b) Idempotency: $x \cdot x = x$.

Proof:

x + x	=	X	by Theorem 1(a)
$x \cdot x$	=	X	by Duality principle

Theorem Proofs in Boolean Algebra

Checking theorems for every combinations of variable value

Example:

Theorem 6(a) DeMorgan's Law: (x + y)' = x'y'

x	y	x+y	(x+y)'	<i>x'</i>	у'	<i>x'y'</i>
		0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Proof of Demorgan's First Theorem

Boolean Functions

• Algebraic expression, which are formed from binary variables and Boolean operators AND, OR and NOT.

Example:

$$F_1 = xy + xy'z + x'yz$$

This function would be equal to 1 if
$$x = 1$$
 and $y = 1$, or
if $x = 1$ and $y = 0$ and $z = 1$, or
if $x = 0$ and $y = 1$ and $z = 1$;

otherwise, $F_1 = 0$.

Note 1: When we evaluate Boolean expressions, we must follow a specific order of operations, namely, (1) parentheses, (2) NOT, (3) AND, (4) OR.

Note 2: A primed or unprimed variable is usually called a literal.

Boolean Functions

• Truth tables which list the functional value for all combinations of variable values.

Example:

Row Numbers	Variable Values			Function Values
	x y z			F_1
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

$$F_1 = xy + xy'z + x'yz$$

Complement of a Function

• Complement of function *F* is function *F'*, where *F'* can be obtained by:

Interchanging 0 and 1 in the truth table. Example:

Row Numbers	Variable Values			Function Values		
	x	y	Ζ	F_1	F ₁ '	
0	0	0	0	0	1	
1	0	0	1	0	1	
2	0	1	0	0	1	
3	0	1	1	1	0	
4	1	0	0	0	1	
5	1	0	1	1	0	
6	1	1	0	1	0	
7	1	1	1	1	0	

F_1	= xy	+xy'z	+x'yz
	~	✓	✓

Complement of a Function

• Complement of function *F* is function *F'*, where *F'* can be obtained by:

Repeatedly applying DeMorgan's theorems.

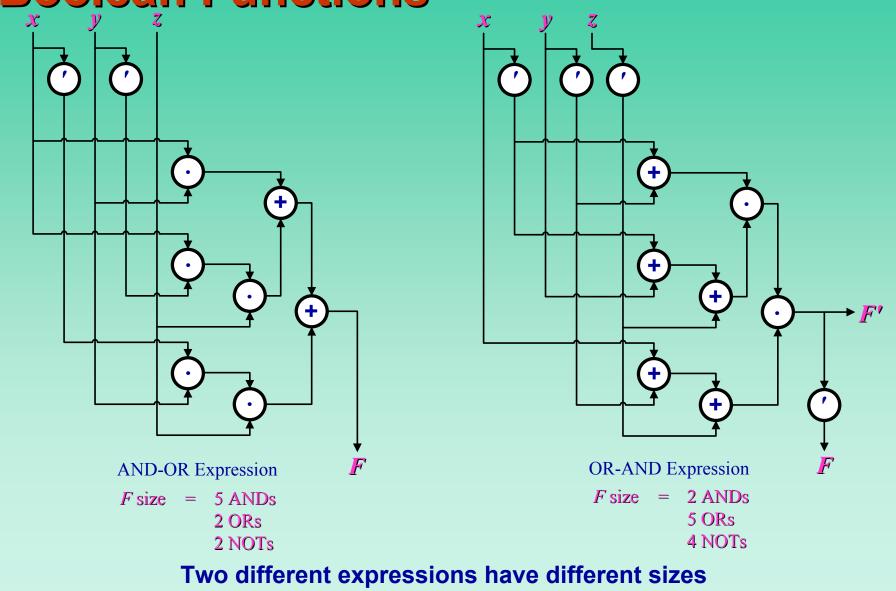
Example:
$$F_1' = (xy + xy'z + x'yz)'$$

= $(xy)'(xy'z)'(x'yz)'$
= $(x' + y')(x' + y + z')(x + y' + z')$

by definition of Fby DeMorgan's Th. by DeMorgan's Th.

Duality Principle

Graphic Representation of Boolean Functions



Expression Equivalence

• We can prove expression equivalence by algebraic manipulation in which each transformation uses an axiom or a theorem of Boolean algebra.

Example:
$$F_1 = xy + xy'z + x'yz$$
$$= xy + xz + yz$$

Proof:

$$\begin{array}{rcl} xy + xy'z + x'yz &=& xy + xyz + xy'z + x'yz \\ &=& xy + x(y + y')z + x'yz \\ &=& xy + x1z + x'yz \\ &=& xy + x1z + x'yz \\ &=& xy + xz + x'yz \\ &=& xy + xyz + xz + x'yz \\ &=& xy + xz + (x + x')yz \\ &=& xy + xz + (x + x')yz \\ &=& xy + xz + 1yz \\ &=& xy + xz + yz \end{array}$$
by absorption by distributivity by complement by identity

xy + xy'z + x'yz	requires 5 ANDs	2 ORs	2 NOTs
xy + xz + yz	requires 3 ANDs	2 ORs	
Difference:	2 ANDs	and	2 NOTs

Copyright © 2004-2005 by Daniel D. Gajski

Minterms

Minterm definition

If $i = b_{n-1}...b_0$ is a binary number between 0 and $2^n - 1$, then a minterm of *n* variables $x_{n-1}, x_{n-2}..., x_0$, could be represented as:

$$n_i(x_{n-1}, x_{n-2}, \dots, x_0) = y_{n-1}, \dots, y_0$$

where for all k such that $0 \le k \le n - 1$,

$$y_k = \begin{cases} x_k & \text{if } b_k = 1 \\ x_k' & \text{if } b_k = 0 \end{cases}$$

x	y	z	Minterms	Designation
0	0	0	<i>x'y'z'</i>	m_0
0	0	1	<i>x'y'z</i>	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	xy'z	m_5
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

Minterms for Three Binary Variables

Sum-of-Minterms

• Any Boolean function can be expressed as a sum (OR) of its 1-minterms:

F(list of variables $) = \Sigma($ list of 1-minterm indices)Example:

	Row Numbers	Variable Values			Function Values		
		x	y	z	F_1	F ₁ '	
	0	0	0	0	0	1	
	1	0	0	1	0	1	
	2	0	1	0	0	1	
	3	0	1	1	1	0	
	4	1	0	0	0	1	
	5	1	0	1	1	0	
	6	1	1	0	1	0	
	7	1	1	1	1	0	
Equation Table							
$F_{1} = xy + xy'z + x'yz$ $F_{1}' = (x' + y')(x' + y + z')(x + y' + z')$							
Copyright © 200	04-2005 by Daniel D. Ga	jski					

$$F_{1}(x, y, z) = \Sigma(3, 5, 6, 7)$$

= $m_{3} + m_{5} + m_{6} + m_{7}$
= $x'yz + xy'z + xyz' + xyz$

$$\overline{r_1}'(x, y, z) = \Sigma(0, 1, 2, 4) = m_0 + m_1 + m_2 + m_4 = x'y'z' + x'y'z + x'yz' + xy'z'$$

Expansion to Sum-of-Minterms

 Any Boolean function can be expanded into a sum-ofminterms form be expanding each term with (x + x') for each missing variable x.

Example:

$$F = x + yz$$

= $x(y + y')(z + z') + (x + x')yz$
= $xyz + xy'z + xyz' + xy'z' + xyz + x'yz$

After removing duplicates and rearranging the minterms in ascending order:

$$F = x'yz + xy'z' + xy'z + xyz' + xyz = m_3 + m_4 + m_5 + m_6 + m_7 = \Sigma(3, 4, 5, 6, 7)$$

Conversion to Sum-of-Minterms

 Each Boolean function can be converted into a sum-ofminterms form by generating the truth table and identifying 1-minterms.

Example: F = x + yz

x	y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

 $F = m_3 + m_4 + m_5 + m_6 + m_7$

Maxterms

• Maxterms can be defined as the complement of minterms:

 $M_i = m_i'$ and $M_i' = m_i$

x	y	z	Maxterms	Designation
0	0	0	x + y + z	M_0
0	0	1	x + y + z'	M_{1}
0	1	0	x + y' + z	M_2
0	1	1	x + y' + z'	M_3
1	0	0	x' + y + z	M_4
1	0	1	x' + y + z'	M_5
1	1	0	x' + y' + z	M_6
1	1	1	x' + y' + z'	M_7

Maxterms for Three Binary Variables

Product-of-Maxterms

• Any Boolean function can be expressed as a product (AND) of its 0-maxterms:

$F(\text{list of variables}) = \Pi(\text{list of } 0\text{-maxterm indices})$ Example:

	Row Numbers	Variable Values		Function Values		<i>F</i> ₁ (<i>x</i> , <i>y</i> , <i>z</i>)	=	$\Pi(0, 1, 2, 4) M_0 M_1 M_2 M_4 (x + y + z)(x + y)$	
		x	y	Z	F_1	F ₁ '			$(\lambda + y + 2)(\lambda + y)$
	0	0	0	0	0	1	$F_{1}'(x, y, z)$		П(3, 5, 6, 7)
	1	0	0	1	0	1			$M_3 M_5 M_6 M_7$ (x + y' + z')(x' +
	2	0	1	0	0	1	Decideration for		
	3	0	1	1	1	0			terms can also the sum-of-mir
	4	1	0	0	0	1	$(\mathbf{F})^{\prime}$	_	(adam I ama'm I am
	5	1	0	1	1	0	(r ₁)		(x'yz + xy'z + xy'z + xy'z + xy'z + xy'z + xy'z + z')(x' + z')(x
	6	1	1	0	1	0			$M_3 M_5 M_6 M_7$
	7				1	0	F_1	=	(<i>F</i> ₁ ')'
		Equ	ation			(x'y'z' + x'y'z + z)			
	1	=xy	•			(x+y+z)(x+y)			
	$F_1' = (x' +$	y')(x	y' + y	y + z'	(x + y')	+ z')	07	=	$M_0 M_1 M_2 M_4$
ght © 20	04-2005 by Daniel D. Ga	ıjski					27		:

$$= M_0 M_1 M_2 M_4$$

= $(x + y + z)(x + y + z')(x + y' + z)(x' + y' + z)$
 $(x, y, z) = \Pi(3, 5, 6, 7)$
= $M_3 M_5 M_6 M_7$

$$= (x + y' + z')(x' + y + z')(x' + y' + z)(x' + y' + z')$$

be obtained by nterms

$$(F_1)' = (x'yz + xy'z + xyz' + xyz)' = (x + y' + z')(x' + y + z')(x' + y' + z)(x' + y' + z') = M_3M_5M_6M_7$$

$$F_{1} = (F_{1}')'$$

$$= (x'y'z' + x'y'z + x'yz' + xyz')'$$

$$= (x + y + z)(x + y + z')(x + y' + z)(x' + y' + z)$$

$$= M_{0}M_{1}M_{2}M_{4}$$

Copyrig

Expansion to Product-of-Maxterms

• Any Boolean function can be expanded into a product-of-maxterms form be expanding each term with *xx*' for each missing variable *x*.

Example: Convert

$$\vec{x}' = x'y' + xz$$

$$= (x'y' + x)(x'y' + z)$$

$$= (x' + x)(y' + x)(x' + z)(y' + z)$$

$$= (x + y')(x' + z)(y' + z)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
missing missing missing
 $x_i \qquad y_i \qquad c_i$

Expand

$$\begin{array}{rcl} x+y' &=& x+y'+zz' &=& (x+y'+z)(x+y'+z') \\ x'+z &=& x'+z+yy' &=& (x'+y+z)(x'+y'+z) \\ y'+z &=& y'+z+xx' &=& (x+y'+z)(x'+y'+z) \end{array}$$

Combine

$$F = (x + y' + z)(x + y' + z')(x' + y + z)(x' + y' + z)$$

= $M_2 M_3 M_4 M_6 = \prod (2, 3, 4, 6)$

Conversion to Product-of-Maxterms

 Any Boolean expression can be converted into a sum-ofmaxterms by generating the truth table and listing all the 0maxterms.

• Example:
$$F = x'y' + xz$$

	_							
	x	y	Z	F				
	0	0	0	1				
	0	0	1	1				
	0	1	0	0				
	0	1	1	0				
	1	0	0	0				
	1	0	1	1				
	1	1	0	0				
	1	1	1	1				
$Y(x, y, z) = \Sigma(0, 1, 5,$								
$T(x, y, z) = \Pi(2, 3, 4, $								

7)

6)

F

F

Canonical Forms

• Two canonical forms:

- Sum-of-minterms
- Product-of-maxterms
- Canonical forms are unique.

Conversion between canonical forms is achieved by:

- Exchanging Σ and Π
- Listing all the missing indices

Standard Forms

Two standard forms

- Sum-of-products
- Product-of-sums
- Standard forms are not unique.

 Sum-of-products is an OR expression with product terms that may have less literals than minterms
 Example:

$$F = xy + x'yz + xy'z$$

Standard Forms

• Product-of-sums is an AND expression with sum terms that may have less literals than maxterms

Example:

F = (x' + y')(x + y' + z')(x' + y + z')

- Standard forms have fewer operators (literals) than canonical forms
- Standard forms can be derived from canonical forms by combining terms that differ in one variable (this is, terms at distance 1)

Example:

$$F_{1} = xyz + xyz' + xy'z + x'yz = xyz + xyz' + xyz + xy'z + xyz + x'yz = xy(z + z') + x(y + y')z + (x + x')yz = xy + xz + yz$$

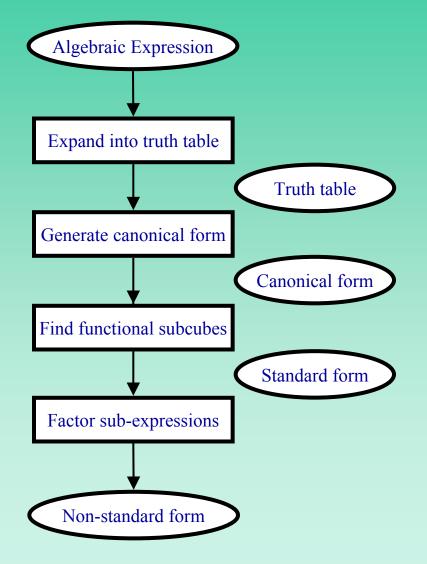
Non-standard Forms

 Non-standard forms have fewer operators (literals) than standard forms.

• They are obtained by factoring variables.

Example: xy + xy'z + xy'w = x(y + y'z + y'w) = x(y + y'(z + w))

Strategy for Operator (Literal) Reduction in Boolean Expressions



34

Binary Logic Operations

- There are 2^{2^n} Boolean functions for *n* binary variables
- Therefore, 16 Boolean functions for n = 2. They are

Name	Operator Symbol	Functional Values for <i>x</i> , <i>y</i> =				Algebraic Expression	Comment	
	Cymzer	00	01	10	11			
Zero		0	0	0	0	$F_{0} = 0$	Binary constant 0	
AND	$x \cdot y$	0	0	0	1	$F_1 = xy$	x and y	
Inhibition	x / y	0	0	1	0	$F_2 = xy'$	x but not y	
Transfer		0	0	1	1	$\overline{F_3} = x$	X	
Inhibition	y/x	0	1	0	0	$F_4 = x'y$	y but not x	
Transfer		0	1	0	1	$F_5 = y$	у	
XOR	$x \oplus y$	0	1	1	0	$F_6 = xy' + x'y$	x or y but not both	
OR	x + y	0	1	1		$F_7 = x + y$		
NOR	$x \downarrow y$	1	0	0		$F_8 = (x + y)'$	Not-OR	
Equivalence	$x \odot y$	1	0			$F_9 = xy + x'y'$	x equals y	
Complement	<i>Y</i> ′	1	0	1	0	$F_{10} = y'$	Not <i>y</i>	
Implication	$x \subset y$	1	0	1	1	$F_{11} = x + y'$	If y, then x	
Complement	<i>x'</i>	1	1	0	0	$F_{12} = x'$	Not <i>x</i>	
Implication	$x \supset y$	1	1	0	1	$F_{13}^{12} = x' + y$	If <i>x</i> , then <i>y</i>	
NAND	$x \uparrow y$	1	1	1		$F_{14}^{13} = (xy)'$		
One	-	1	1	1	1	$F_{15} = 1$		

- There are two functions that generate constants: Zero and One. For every combination of variable values, the Zero function will return to 0, whereas the One function will return to 1.
- There are four functions of one variable, which indicate *Complement* and *Transfer* operations. Specifically, the *Complement* function will produce the complement of one of the binary variables. The *Transfer* functions by contrast will reproduce one of the binary variables at the output.
- There are ten functions that define eight specific binary operations: *AND*, Inhibition, *XOR*, *OR*, *NOR*, Equivalence, Implication, and *NAND*.

Digital Logic Gates

Name	Graphic Symbol	Functional Expression	Number of transistors	Delay in <i>ns</i>
Inverter	xF	F = x'	2	1
Driver	x	F = x	4	2
AND	x- y	F = xy	6	2.4
OR		F = x + y	6	2.4
NAND	x- y-D-F	F = (xy)'	4	1.4
NOR	x y y	F = (xy)' $F = (x + y)'$	4	1.4
XOR		$F = x \oplus y$	14	4.2
XNOR	x y	$F = x \odot y$	12	3.2

Basic Logic Library (CMOS Technology Implementations)

Multiple-Input Gates

Name	Graphic Symbol	Functional Expression	Number of transistors	Delay in <i>ns</i>
3–input AND	ž Ž	F = xyz	8	2.8
4–input AND		F = xyzw	10	3.2
3–input OR	ž – F	F = x + y + z	8	2.8
4–input OR		F = x + y + z + w	10	3.2
3–input NAND	¥ ₹ ₹	F = (xyz)'	6	1.8
4–input NAND	₩ ¥ ¥	F = (xyzw)'	8	2.2
3–input NOR	X Y Y	F = (x + y + z)'	6	1.8
4–input NOR	₩ ¥ ¥	F = xyz $F = xyzw$ $F = x + y + z$ $F = x + y + z + w$ $F = (xyz)'$ $F = (xyzw)'$ $F = (x + y + z)'$ $F = (x + y + z + w)'$	8	2.2

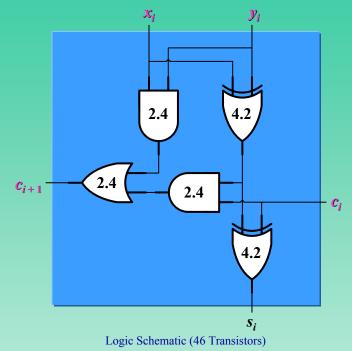
Multiple-Input Standard Logic Gates

Multiple-Operator (Complex) Gates

Name	Graphic Symbol	Functional Expression	Number of transistors	Delay in <i>ns</i>	
2–wide, 2–input AOI		F = (wx + yz)'	8	2.0	
3–wide, 2–input AOI	$ \begin{array}{c} $	F = (uv + wx + yz)'	12	2.4	
2–wide, 3–input AOI		F = (uvw + xyz)'	12	2.2	
2–wide,2–inputOAI		F = ((w+x)(y+z))'	8	2.0	
3–wide, 2–input OAI		F = ((u+v)(w+x)(y+z))'	12	2.2	
2–wide, 3–input OAI		F = ((u + v + w)(x + y + z))'	12	2.4	
Multiple-Operator Standard Logic Gates					

Copyright © 2004-2005 by Daniel D. Gajski

Full-adder Design Using XOR Gates



Input/Output Path	Delay (ns)
c_i to c_{i+1}	4.8 ns
c_i to s_i	4.2 ns
x_i, y_i to c_{i+1}	9.0 ns
x_i, y_i to s_i	8.4 ns

Ful	l–add	ler d	lela	ys
-----	-------	-------	------	----

x_i	y_i	c _i	c_{i+1}	s _i	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	
Truth table					

$$s_{i} = x_{i}'y_{i}'c_{i} + x_{i}'y_{i}c_{i}' + x_{i}y_{i}'c_{i}' + x_{i}y_{i}c_{i}$$

$$= (x_{i}'y_{i} + x_{i}y_{i}')c_{i}' + (x_{i}'y_{i}' + x_{i}y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})c_{i}' + (x_{i} \odot y_{i})c_{i}$$

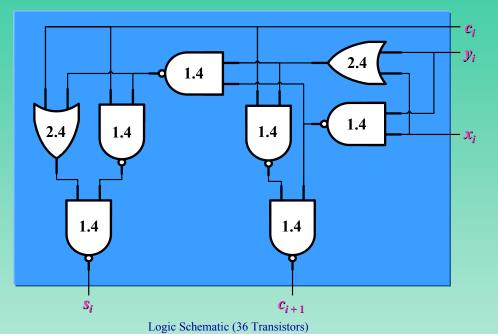
$$= (x_{i} \oplus y_{i})c_{i}' + (x_{i} \oplus y_{i})'c_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

$$c_{i+1} = x_i y_i c_i' + x_i y_i c_i + x_i' y_i c_i + x_i y_i' c_i$$

= $x_i y_i (c_i' + c_i) + c_i (x_i' y_i + x_i y_i')$
= $x_i y_i + c_i (x_i \oplus y_i)$
Full-adder equation

Full-adder Design Using Fast Gates



Input/Output Path	Delay (ns)			
c_i to c_{i+1}	2.8 ns			
c_i to s_i	3.8 ns			
x_i, y_i to c_{i+1}	5.2 ns			
x_i, y_i to s_i	7.6 ns			
Full-adder delays				

x_i	y_i	c _i	$c_{i+1}^{}$	s _i	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	
Truth table					

$$\begin{array}{rcl} x_i \odot y_i &=& x_i y_i + x_i' y_i' \\ &=& ((x_i y_i)' (x_i' y_i')')' \\ &=& ((x_i y_i)' (x_i + y_i))' \end{array}$$

$$s_i = (x_i \oplus y_i)c_i' + (x_i \odot y_i)c_i$$

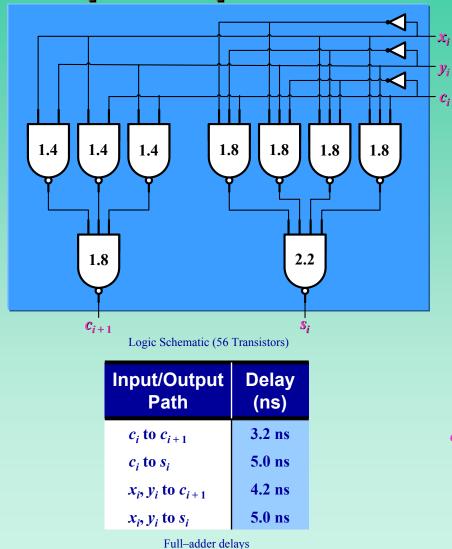
= $(x_i \odot y_i)'c_i' + (x_i \odot y_i)c_i$
= $(x_i \odot y_i) \odot c_i$

$$c_{i+1} = x_i y_i + c_i (x_i + y_i)$$

=
$$((x_i y_i)' (c_i (x_i + y_i))')'$$

Full-adder equation

Full-adder Design with Multiple-input Gates



x_i	y_i	c _i	c_{i+1}	s _i	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	
Truth table					

$$s_{i} = x_{i}'y_{i}'c_{i} + x_{i}'y_{i}c_{i}' + x_{i}y_{i}'c_{i}' + x_{i}y_{i}c_{i}$$

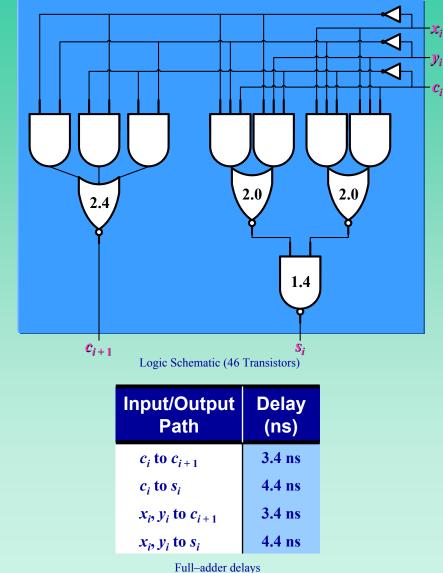
= $((x_{i}'y_{i}'c_{i})'(x_{i}'y_{i}c_{i}')'(x_{i}y_{i}c_{i}')'(x_{i}y_{i}c_{i}))'$

$$= x_i y_i + c_i x_i + c_i y_i = ((x_i y_i)' (c_i x_i)' (c_i y_i)')'$$

Full-adder equation

C

Full-adder Design with Complex Gates



x_i	y_i	c _i	$c_{i+1}^{}$	s _i	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	
Truth table					

$$s_{i} = x_{i}'y_{i}'c_{i} + x_{i}'y_{i}c_{i}' + x_{i}y_{i}'c_{i}' + x_{i}y_{i}c_{i}$$

= $((x_{i}'y_{i}'c_{i} + x_{i}'y_{i}c_{i}')'(x_{i}y_{i}'c_{i}' + x_{i}y_{i}c_{i})')'$

$$c_{i+1} = x_i y_i + c_i x_i + c_i y_i$$

= $((x_i y_i)' (c_i x_i)' (c_i y_i)')'$
= $((x_i' + y_i')(c_i' + x_i')(c_i' + y_i'))'$
= $(x_i' y_i' + c_i' x_i' + c_i' y_i')'$

Full-adder equation

VLSI Technology

Small-scale integration (SSI)

10 gates/package

Medium-scale integration (MSI)

10 – 100 gates/package (2 – 4 bit slices)

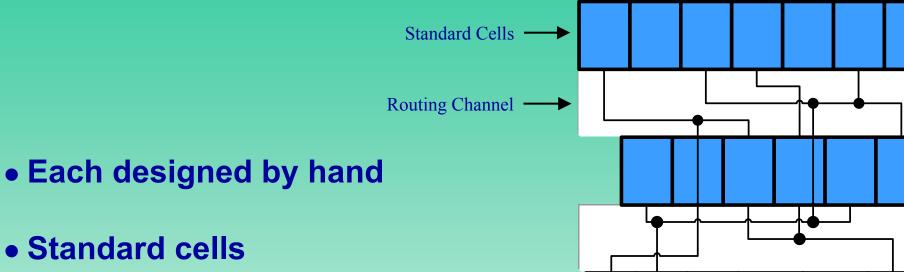
• Large-scale integration (LSI)

100 – 1000 gates/package (controllers, datapaths, bit slices)

• Very-large-scale integration (VLSI)

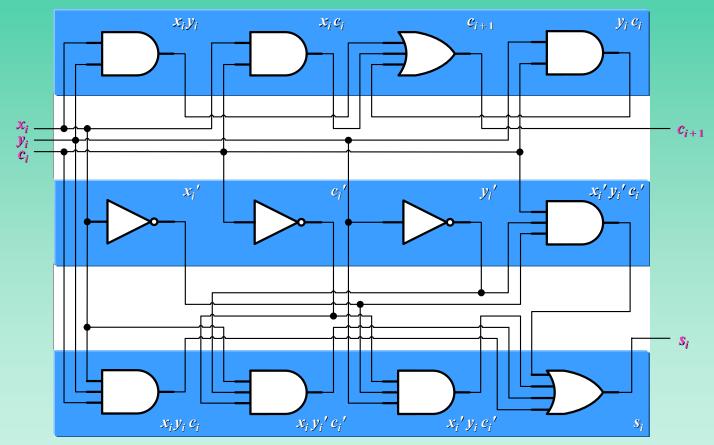
- 1000+ gates/package (systems on a chip)
 - Custom designs (Standard cells)
 - Gate arrays (GAs)
 - Field-programmable (FPGAs)

Custom Design



- Same height, different widths
- Routing in channels and over the cells
- Two or more metal layers

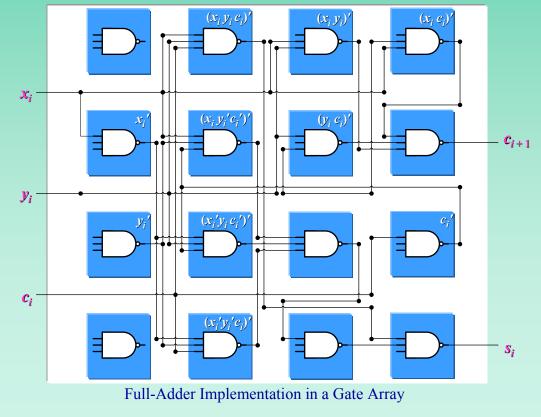
Example of Custom Design



Full-Adder Implementation with Standard Cells

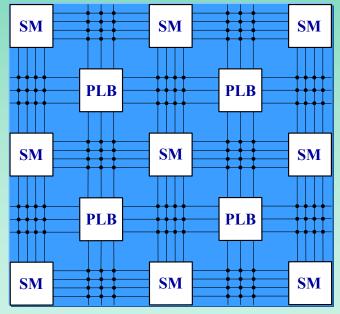
Semi-Custom Approach with Gate Arrays

- Gate arrays are prefabricated arrays of interconnected gates
- All gates are the same type (3-input NAND, for example)
- Two or more metal layers used to connect gates

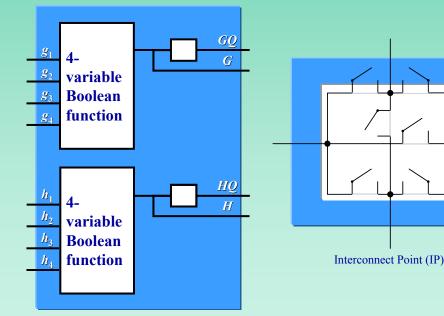


Field–Programmable Approach with FPGA

- FPGAs are programmed by loading data into internal memory
- Excellent for rapid prototyping
- Low density and low speed



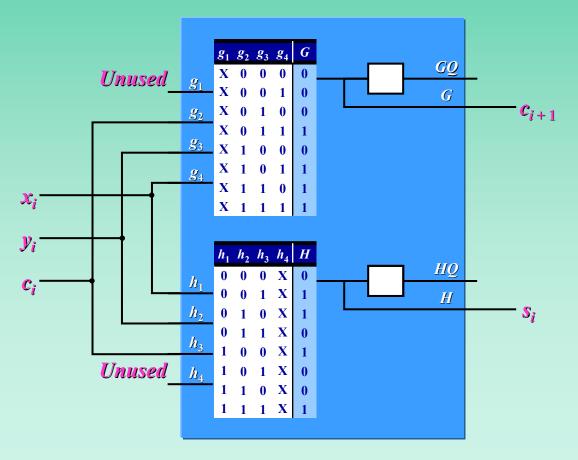
Array Structure



Programmable Logic Blocks (PLB)

Full-adder Implemented with FPGA

- 1 programmable logic block for each full-adder
- 3 out of 4 inputs are used for each Boolean function



Chapter Summary

Boolean Algebra

- Axioms
- Basic theorems
- Boolean Functions

Specification of Boolean Functions

- Truth tables
- Algebraic expressions
 - Canonical forms
 - Standard forms
 - Non-standard forms

Algebraic Manipulation of Boolean Expressions

Logic Gates

- Simple gates
- Multiple-input gates

Complex gates Implementation Technology

- SSI (Small-scale integration)
 MSI (Medium-scale integration)
 LSI (Large-scale integration)
 VLSI (Very-large-scale integration) *Custom designs*

 - Semi-custom designs
 - Field-programmable