
Principles OfPrinciples Of

Digital DesignDigital Design
Chapter 3Chapter 3

Boolean Algebra and Logic Design

Boolean Algebra
Logic Gates
Digital Design
Implementation Technology

ASICsASICs
Gate ArraysGate Arrays

2Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

A set is a collection of objects with a common property
IfIf S S is a set and is a set and x x is a member of the set is a member of the set SS, then , then x x ∈∈ SS

A = A = {1, 2, 3, 4} {1, 2, 3, 4} denotes the set denotes the set AA, whose elements are , whose elements are 1, 2, 3, 41, 2, 3, 4

A binary operator on a set S is a rule that assigns to each
pair of elements in S another element that is in S

Axioms are assumption that are valid without proof

Basic Algebraic PropertiesBasic Algebraic Properties

3Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Closure
A setA set S S is closed with respect to a binary operator is closed with respect to a binary operator ●● iffiff for all for all x, yx, y ∈∈ SS, ,
((x x ●● yy)) ∈∈ SS

ZZ++ == {1, 2, 3, {1, 2, 3, ……}} is closed to addition, because positive numbers are in is closed to addition, because positive numbers are in ZZ++

Associativity
A binary operator A binary operator ●● defined on a set defined on a set S S is associative is associative iffiff for allfor all
x, y, zx, y, z ∈∈ SS

((x x •• yy)) •• z = x z = x •• ((y y •• zz))

Identity Element
A set A set S S has an identity element has an identity element e e for every for every xx ∈∈ SS

e e •• x = x x = x •• e = xe = x
xx ++ 00 = = 0 + 0 + x = xx = x

Examples of AxiomsExamples of Axioms

4Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Commutativity
A binary operator A binary operator ●● is commutative is commutative iffiff for all for all x, yx, y ∈∈ SS

x x •• yy = y = y •• xx

Inverse Element
A A set set S S has an inverse has an inverse iffiff for every for every x x ∈∈ SS , there exists an element , there exists an element
y y ∈∈ SS such thatsuch that

x x •• yy = e= e

Distributivity
If If ●● and and □□ are two binary operators on a are two binary operators on a set set SS, , ●● is said to be is said to be
distributive over distributive over □□ if, for allif, for all x, y, zx, y, z ∈∈ SS

x x •• ((yy □□ zz)) = = ((x x •• yy)) □□ ((x x •• zz))

Examples of AxiomsExamples of Axioms

5Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Axiom 1 (Closure Property): (a) B is closed with respect to the operator +; (b) B is also
closed with respect to the operator ·

Axiom 2 (Identity Element): (a) B has an identity element with respect to +, designated
by 0; (b) B also has an identity element with respect · , designated by 1

Axiom 3 (Commutativity Property): (a) B is commutative with respect to +; (b) B is also
commutative with respect to ·

Axiom 4 (Distributivity Property): (a) The operator · is distributive over +; (b) similarly,
the operator + is distributive over ·

Axiom 5 (Complement Element): For every x ∈ B, there exists an element x′ ∈ B such
that (a) x + x′ = 1 and (b) x · x′ = 0
This second element x′, is called the complement of x

Axiom 6 (Lower Cardinality Bound): There are at least two elements x, y ∈ B such that
x ≠ y

Axiomatic Definition of Boolean AlgebraAxiomatic Definition of Boolean Algebra
Boolean algebra is a set of elements Boolean algebra is a set of elements BB with two binary operators,with two binary operators, ++ and and ··, which , which
satisfies the following six axioms:satisfies the following six axioms:

6Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

In ordinary algebra, + is not distributive ·

Boolean algebra does not have inverses with respect to + and · ;
therefore, there are no subtraction or division operations in Boolean
algebra

Complements are available in Boolean algebra, but not in ordinary
algebra

Boolean algebra applies to a finite set of elements, whereas ordinary
algebra would apply to the infinite sets of real numbers

The definition above for Boolean algebra does not include
associativity, since it can be derived from the other axioms

Axiomatic Definition of Boolean AlgebraAxiomatic Definition of Boolean Algebra
Differences between Boolean algebra and ordinary algebraDifferences between Boolean algebra and ordinary algebra

7Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

TwoTwo--valued Boolean Algebravalued Boolean Algebra

Set B has two elements: 0 and 1

Algebra has two operators: AND and OR

1

1

0

0

x

11

00

01

00

x · yy

AND Operator

1

1

0

0

x

11

10

11

00

x + yy

OR Operator

8Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

TwoTwo--valued Boolean Algebravalued Boolean Algebra

Axiom 1 (Closure Property): Closure is evident in the AND/OR
tables, since the result of each operation is an element of B.

Axiom 2 (Identity Element): The identity elements in this algebra are
0 for the operator + and 1 for the operator ·. From the AND/OR
tables, we see that:

0 + 0 = 0, 0 + 0 = 0, andand 0 + 1 = 1 + 0 = 10 + 1 = 1 + 0 = 1
1 1 ·· 1 = 1, 1 = 1, andand 1 1 ·· 0 = 0 0 = 0 ·· 1 = 01 = 0

Axiom 3 (Commutativity Property): The commutativity laws follow
from the symmetry of the operator tables.

TwoTwo--valued Boolean algebra satisfies Huntington axiomsvalued Boolean algebra satisfies Huntington axioms

9Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

TwoTwo--valued Boolean Algebravalued Boolean Algebra

Axiom 4 (Distributivity): The distributivity of this algebra can be
demonstrated by checking both sides of the equation.

1

1

0

0

0

0

0

0

xy

0001100

0001010

0001110

0000001

1

1

1

0

x · (y + z)

1

0

1

0

xz

1

1

1

0

y + z

1

1

0

0

y

111

1

1

0

x

11

10

00

(xy) + (xz)z

Proof of distributivity of ·

1

1

1

1

1

1

0

0

x + y

0100100

0000010

1111110

1110001

1

1

1

0

x + (yz)

1

1

1

0

x + z

1

0

0

0

yz

1

1

0

0

y

111

1

1

0

x

11

10

00

(x + y)(x + z)z

Proof of distributivity of +

x · (y + z) = (x · y) + (x · z) x + (y · z) = (x + y)(x + z).

10Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

TwoTwo--valued Boolean Algebravalued Boolean Algebra

Axiom 5 (Complement): 0 and 1 are complements of each other, since
0 + 0′ = 0 + 1 = 1 and 1 + 1′ = 1 + 0 = 1; furthermore,
0 · 0′ = 0 · 1 = 0 and 1 · 1′ = 1 · 0 = 0.

Axiom 6 (Cardinality): The cardinality axiom is satisfied, since this
two-valued Boolean algebra has two distinct elements, 1 and 0, and
1 ≠ 0.

01

10

x′x

NOT Operator

11Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Boolean Operator ProcedureBoolean Operator Procedure

Boolean operators are applied in the following order.

ParenthesesParentheses ()()
NOTNOT ′′
ANDAND ··
OROR ++

Example: Evaluate expressionExample: Evaluate expression ((xx + + xyxy))′′ for for xx = 1= 1 andand yy = 0= 0::

(1 + 1(1 + 1··0)0)′′ = = (1 + 0)(1 + 0)′′ = = (1)(1)′′ = 0= 0

12Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Duality PrincipleDuality Principle
Any algebraic expression derived from axioms stays valid
when

OROR and and ANDAND
00 and and 11

are interchanged.

Example: Example:

IfIf

XX + 1+ 1 = 1= 1

thenthen

X X ·· 0 = 00 = 0

by the duality principleby the duality principle

13Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Theorem of Boolean AlgebraTheorem of Boolean Algebra

(De Morgan’s Law)

Theorem 6

(Associativity)

Theorem 5

(Involution)

Theorem 4

(Absorption)

Theorem 3

Theorem 2

(Idempotency)

Theorem 1

1=x · 0(b)

1=x + 1(a)

x=xx(b)

x=x + x(a)

(xy)′
(x + y)′

x(yz)
(x + y) + z

(x′)′
(y + x)x

yx + x
x=(b)

x=

x + (y + z)=(a)

=
=
=

=

(xy)z(b)

x′ + y′(b)

x′y′(a)

x(a)

Basic Theorems of Boolean Algebra

14Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Theorem Theorem Proofs in Boolean AlgebraProofs in Boolean Algebra
Theorems can be proved by transformations based on axioms
and theorems

Duality

Example: Example:
Theorem 1(a) Idempotency:Theorem 1(a) Idempotency: xx + + x = x = xx..

Proof:Proof:
x + xx + x == ((x + xx + x)) ·· 11 by identity (Ax. 2b)by identity (Ax. 2b)

== ((x + xx + x) () (x + xx + x′′)) by complement (Ax. 5a)by complement (Ax. 5a)
== x + xxx + xx′′ by distributivity (Ax. 4b)by distributivity (Ax. 4b)
== x + x + 00 by complement (Ax. 5b)by complement (Ax. 5b)
== xx by identity (Ax. 2a)by identity (Ax. 2a)

Example: Example:
Theorem 1(b) Idempotency:Theorem 1(b) Idempotency: xx ·· x = x = xx..

Proof:Proof:
x + xx + x == xx by Theorem 1(a)by Theorem 1(a)
x x ·· xx == xx by Duality principleby Duality principle

15Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Theorem Theorem Proofs in Boolean AlgebraProofs in Boolean Algebra

Checking theorems for every combinations of variable value
Example: Example:
Theorem 6(a) DeMorganTheorem 6(a) DeMorgan’’s Law: s Law: ((xx + + yy))′′ = = xx′′yy′′

0

0

1

1

x′

000110

010101

000111

1

(x + y)′
1

y′
0

x + y
0

x
10

x′y′y

Proof of Demorgan’s First Theorem

16Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Note 1: When we evaluate Boolean expressions, we must follow a Note 1: When we evaluate Boolean expressions, we must follow a
specific order of operations, namely, (1) parentheses, (2) NOT, specific order of operations, namely, (1) parentheses, (2) NOT, (3) AND, (3) AND,
(4) OR.(4) OR.

Note 2: A primed or unprimed variable is usually called a literaNote 2: A primed or unprimed variable is usually called a literal.l.

Boolean FunctionsBoolean Functions
Algebraic expression, which are formed from binary
variables and Boolean operators AND, OR and NOT.

Example: Example:
FF11 = = xyxy + + xyxy′′zz + + xx′′yzyz

This function would be equal to This function would be equal to 1 1 if if x x == 1 1 andand y y == 11, or, or
if if x x == 1 1 andand y y == 0 0 andand z z == 11, or, or
if if x x == 0 0 andand y y == 1 1 andand z z == 11;;

otherwise, otherwise, FF11 = 0= 0..

17Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Boolean FunctionsBoolean Functions

Truth tables which list the functional value for all
combinations of variable values.

Example: Example:
FF11 = = xyxy + + xyxy′′zz + + xx′′yzyz

1
1
1
0
1
0
0
0

F1

Function
Values

Variable
Values

Row
Numbers

1
1
0
0
1
1
0
0
y

1
1
1
1
0
0
0
0
x

11
02
13
04
15

7
6

0

1
0

0
z

18Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Complement of a FunctionComplement of a Function
Complement of function F is function F′, where F′ can be
obtained by:

Interchanging Interchanging 00 and and 11 in the truth table.in the truth table.

1
1
1
0
1
0
0
0

F1

Function
Values

Variable
Values

Row
Numbers

1
1
0
0
1
1
0
0
y

1
1
1
1
0
0
0
0
x

111
102
013
104

0
0
0

1
F1′

15

7
6

0

1
0

0
z

Example: Example:
FF11 = = xyxy + + xyxy′′zz + + xx′′yzyz

19Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Complement of a FunctionComplement of a Function

Complement of function F is function F′, where F′ can be
obtained by:

Repeatedly applying DeMorganRepeatedly applying DeMorgan’’s theoremss theorems..

Duality PrincipleDuality Principle

Example:Example: FF11′′ == ((xyxy + xy+ xy′′z + xz + x′′yzyz))′′ by definition of by definition of FF
== ((xyxy))′′ ((xyxy′′zz))′′ ((xx′′yzyz))′′ by DeMorganby DeMorgan’’s Th.s Th.
== ((xx′′ + + yy′′))((xx′′ + y + + y + zz′′))((xx + y+ y′′ + z+ z′′)) by DeMorganby DeMorgan’’s Th.s Th.

Example:Example: FF11 == ((x x ·· yy)) + + ((x x ·· yy′′ ·· zz)) + + ((xx′′ ·· y y ·· zz))

FF11′′ == ((xx′′ + y+ y′′)) ·· ((xx′′ + y + z+ y + z′′)) ·· ((x + yx + y′′ + z+ z′′))

20Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Graphic Representation of Graphic Representation of
Boolean FunctionsBoolean Functions

′ ′

+
+

+
+

+
+

+

′ ′ ′

′

·

·

·
·

·
·

·

AND-OR Expression OR-AND Expression
FF sizesize == 5 5 ANDsANDs

2 2 ORsORs
2 2 NOTsNOTs

FF sizesize == 2 2 ANDsANDs
5 5 ORsORs
4 4 NOTsNOTs

zz

FF FF

FF′′

yyxx zzyyxx

Two different expressions have different sizes

21Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

We can prove expression equivalence by algebraic
manipulation in which each transformation uses an axiom
or a theorem of Boolean algebra.

Expression EquivalenceExpression Equivalence

requires

requires

and

2

2

ANDs

ANDs

ANDs

2

3

5

Difference:

xy + xz + yz
xy + xy′z + x′yz

NOTs2

ORs

NOTs2ORs

Example:Example: FF11 == xyxy + xy+ xy′′z + xz + x′′yzyz
== xyxy + xz + yz+ xz + yz

Proof:Proof:
xyxy + xy+ xy′′z + xz + x′′yzyz == xyxy + xyz + xy+ xyz + xy′′z + xz + x′′yzyz by absorptionby absorption

== xyxy + + xx((yy + + yy′′))zz + x+ x′′yzyz by distributivityby distributivity
== xyxy + x+ x11z + xz + x′′yzyz by complementby complement
== xyxy + xz + x+ xz + x′′yzyz by identity by identity
== xyxy + xyz + xz + x+ xyz + xz + x′′yzyz by absorption by absorption
== xyxy + xz + + xz + ((x + x + xx′′))yzyz by distributivityby distributivity
== xyxy + xz + + xz + 11yzyz by complementby complement
== xyxy + xz + yz+ xz + yz by identityby identity

22Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

MintermsMinterms

Minterms for Three Binary Variables

Minterm definition
If If ii = = bbnn –– 11……bb00 is a binary number between is a binary number between 00 and and 22nn –– 11, then a , then a
minterm of minterm of nn variables variables xxnn –– 11, , xxnn –– 22……,,xx00, could be represented as:, could be represented as:

mmii ((xxnn –– 11, , xxnn –– 22……,,xx00) =) = yynn –– 11……yy00
where for all where for all kk such that such that 0 0 ≤≤ kk ≤≤ n n –– 11,,

yykk == {{xxkk ifif bbkk = 1= 1
xxkk′′ ifif bbkk = 0= 0

m1x′y′z100

m2x′yz′010

m3x′yz110

m4xy′z′001

m7

m6

m5

m0

Designation

xyz

xyz′

xy′z

x′y′z′

Minterms

1

1

0

0

y

11

1

1

0

x

1

0

0

z

23Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

SumSum--ofof--MintermsMinterms
Any Boolean function can be expressed as a sum (OR) of
its 1-minterms:

F(list of variables) = Σ(list of 1-minterm indices)

1
1
1
0
1
0
0
0

F1

Function
Values

Variable
Values

Row
Numbers

1
1
0
0
1
1
0
0
y

1
1
1
1
0
0
0
0
x

111
102
013
104

0
0
0

1
F1′

15

7
6

0

1
0

0
z

Example: Example:

Equation Table
F1 = xy + xy′z + x′yz

F1′ = (x′ + y′)(x′ + y + z′)(x + y′ + z′)

FF11((x, y, zx, y, z)) == ΣΣ(3, 5, 6, 7) (3, 5, 6, 7)
== mm33 + + mm55 + + mm66 + + mm77
== xx′′yz + xyyz + xy′′z + xyzz + xyz′′ + xyz+ xyz

FF11′′((x, y, zx, y, z)) == ΣΣ(0(0, 1, 2, 4), 1, 2, 4)
== mm00 + + mm11 + + mm22 + + mm44
== xx′′yy′′zz′′ + + xx′′yy′′zz + x+ x′′yzyz′′ + + xyxy′′zz′′

24Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Expansion to SumExpansion to Sum--ofof--MintermsMinterms

Any Boolean function can be expanded into a sum-of-
minterms form be expanding each term with (x + x′) for each
missing variable x.

Example:Example:
F F = = x + yzx + yz

== xx((yy + + yy′′)()(zz + z+ z′′)) + + ((x + x + xx′′))yzyz
== xyz + xyxyz + xy′′z + xyzz + xyz′′ + xy+ xy′′zz′′ + xyz + x+ xyz + x′′yzyz

After removing duplicates and rearranging the minterms in After removing duplicates and rearranging the minterms in
ascending order:ascending order:

F F = = xx′′yzyz + xy+ xy′′zz′′ + + xyxy′′z + xyzz + xyz′′ + xyz+ xyz
== mm33 + m+ m44 + m+ m55 + m+ m66 + m+ m77
== ΣΣ(3, 4, 5, 6, 7)(3, 4, 5, 6, 7)

25Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Conversion to SumConversion to Sum--ofof--MintermsMinterms

FF = = mm33 + + mm44 + + mm55 + + mm66 + + mm77

Each Boolean function can be converted into a sum-of-
minterms form by generating the truth table and identifying
1-minterms.

Example: Example: FF = = xx + + yzyz

0100
0010
1110
1001

1
1
1

0
F

1
1
0

0
y

11

1
1

0
x

1
0

0
z

26Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

MaxtermsMaxterms

Maxterms can be defined as the complement of minterms:
MMii == mmii′′ and and MMii′′ = = mmii

Maxterms for Three Binary Variables

M1x + y + z′100

M2x + y′ + z010

M3x + y′ + z′110

M4x′ + y + z001

M7

M6

M5

M0

Designation

x′ + y′ + z′

x′ + y′ + z

x′ + y + z′

x + y + z

Maxterms

1

1

0

0

y

11

1

1

0

x

1

0

0

z

27Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

ProductProduct--ofof--MaxtermsMaxterms
Any Boolean function can be expressed as a product (AND)
of its 0-maxterms:

F(list of variables) = Π(list of 0-maxterm indices)

1
1
1
0
1
0
0
0

F1

Function
Values

Variable
Values

Row
Numbers

1
1
0
0
1
1
0
0
y

1
1
1
1
0
0
0
0
x

111
102
013
104

0
0
0

1
F1′

15

7
6

0

1
0

0
z

Example: Example:

Equation Table
F1 = xy + xy′z + x′yz

F1′ = (x′ + y′)(x′ + y + z′)(x + y′ + z′)

FF11((x, y, zx, y, z)) == ΠΠ(0(0, 1, 2, 4), 1, 2, 4)
== MM0 0 MM1 1 MM2 2 MM44
== ((x + y + x + y + zz))((xx + y + + y + zz′′))((xx + y+ y′′ + + zz))((xx′′ + y+ y′′ + z+ z))

FF11′′((x, y, zx, y, z)) == ΠΠ(3, 5, 6, 7)(3, 5, 6, 7)
== MM3 3 MM5 5 MM6 6 MM77
== ((x + yx + y′′ + + zz′′))((xx′′ + y + + y + zz′′))((xx′′ + y+ y′′ + + zz))((xx′′ + y+ y′′ + z+ z′′))

ProductProduct--ofof--maxterms can also be obtained by maxterms can also be obtained by
complementing the sumcomplementing the sum--ofof--minterms minterms

((FF11))′′ == ((xx′′yz + xyyz + xy′′z + xyzz + xyz′′ + xyz+ xyz))′′
== ((x + yx + y′′ + + zz′′))((xx′′ + y + + y + zz′′))((xx′′ + y+ y′′ + + zz))((xx′′ + y+ y′′ + z+ z′′))
== MM3 3 MM5 5 MM6 6 MM77

FF11 == ((FF11′′))′′
== ((xx′′yy′′zz′′ + + xx′′yy′′zz + x+ x′′yzyz′′ + xyz+ xyz′′))′′
== ((x + y + x + y + zz))((xx + y + + y + zz′′))((xx + y+ y′′ + + zz))((xx′′ + y+ y′′ + z+ z))
== MM0 0 MM1 1 MM2 2 MM4 4

28Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Expansion to ProductExpansion to Product--ofof--MaxtermsMaxterms
Any Boolean function can be expanded into a product-of-maxterms
form be expanding each term with xx′ for each missing variable x.

Example: Example:
ConvertConvert

F F == xx′′yy′′ + xz+ xz
== ((xx′′yy′′ + + xx)()(xx′′yy′′ + z+ z))
== ((xx′′ + + xx)()(yy′′ + + xx)()(xx′′ + + zz)()(yy′′ + z+ z))
== ((xx ++ yy′′)()(xx′′ + + zz)()(yy′′ + z+ z))

ExpandExpand
xx ++ yy′′ == x + yx + y′′ + + zzzz′′ == ((x + yx + y′′ + + zz)()(xx + y+ y′′ + + zz′′))
xx′′ + z+ z == xx′′ + z + + z + yyyy′′ == ((xx′′ + y + y + + zz)()(xx′′ + y+ y′′ + + zz))
yy′′ + z+ z == yy′′ + z + xx+ z + xx′′ == ((x + yx + y′′ + + zz)()(xx′′ + y+ y′′ + + zz))

CombineCombine
FF == ((x + yx + y′′ + + zz)()(xx + y+ y′′ + + zz′′)()(xx′′ + y + y + + zz)()(xx′′ + y+ y′′ + + zz))

== MM2 2 MM3 3 MM4 4 MM66 == ∏∏(2, 3, 4, 6)(2, 3, 4, 6)

missingmissing
xxii

missingmissing
yyii

missingmissing
ccii

29Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Conversion to ProductConversion to Product--ofof--Maxterms Maxterms
Any Boolean expression can be converted into a sum-of-
maxterms by generating the truth table and listing all the 0-
maxterms.

Example: Example: FF = = xx′′yy′′ + + xzxz

1100
0010
0110
0001

1
0
1

1
F

1
1
0

0
y

11

1
1

0
x

1
0

0
z

FF((xx, y, z, y, z)) == ΣΣ(0, 1, 5, 7)(0, 1, 5, 7)

FF((xx, y, z, y, z)) == ΠΠ(2, 3, 4, 6)(2, 3, 4, 6)

30Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Canonical FormsCanonical Forms

Two canonical forms:
SumSum--ofof--minterms minterms
PProductroduct--ofof--maxtermsmaxterms

Canonical forms are unique.

Conversion between canonical forms is achieved by:
Exchanging Exchanging ΣΣ and and ΠΠ
Listing all the missing indicesListing all the missing indices

31Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Standard FormsStandard Forms

Two standard forms
SumSum--ofof--products products
ProductProduct--ofof--sums sums

Standard forms are not unique.

Sum-of-products is an OR expression with product terms
that may have less literals than minterms

Example: Example:
F = F = xyxy + x+ x′′yz + xyyz + xy′′z z

32Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Standard FormsStandard Forms
Product-of-sums is an AND expression with sum terms that
may have less literals than maxterms

Standard forms have fewer operators (literals) than
canonical forms

Standard forms can be derived from canonical forms by
combining terms that differ in one variable (this is, terms at
distance 1)

Example: Example:
F = F = ((xx′′ + + yy′′))((xx + y+ y′′ + + zz′′))((xx′′ + y + z+ y + z′′))

Example: Example:
FF11 == xyz + xyzxyz + xyz′′ + xy+ xy′′z + xz + x′′yzyz

== xyz + xyzxyz + xyz′′ + xyz + xy+ xyz + xy′′z + xyz + xz + xyz + x′′yzyz
== xyxy((zz + z+ z′′)) + + xx((yy + + yy′′))zz + + ((x + x + xx′′))yzyz
== xyxy + xz + yz+ xz + yz

33Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

NonNon--standard Formsstandard Forms

Non-standard forms have fewer operators (literals) than
standard forms.

They are obtained by factoring variables.

Example: Example:
xyxy + xy+ xy′′z + z + xyxy′′ww == xx((yy + + yy′′zz + + yy′′ww))

== xx((yy + + yy′′((zz + w+ w))))

34Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Strategy for Operator (Literal) Strategy for Operator (Literal)
Reduction in Boolean ExpressionsReduction in Boolean Expressions

Algebraic Expression

Generate canonical form

Expand into truth table

Find functional subcubes

Factor sub-expressions

Non-standard form

Truth table

Canonical form

Standard form

35Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Binary Logic OperationsBinary Logic Operations
There are 22n Boolean functions for n binary variables
Therefore, 16 Boolean functions for n = 2. They are

0
1

11 1
1
1

1
0

0
0
0
0
1
1
1
1
0

0
1
0
1
0
1
0
1
0
1
01 0

1
1
0
0
1
1
0
0
1

0 1
10 0
00 0
1101

Functional
Values for x,y =

10

x or yF7 = x + y0x + yOR
x or y but not bothF6 = xy′ + x′y0x ⊕ yXOR
yF5 = y0Transfer
y but not xF4 = x′y0y / xInhibition

If y, then xF11 = x + y′1x ⊂ yImplication
Not yF10 = y′1y′Complement
x equals yF9 = xy + x′y′1x yEquivalence
Not-ORF8 = (x + y)′1x ↓ yNOR

Not xF12 = x′1x′Complement
If x, then yF13 = x′ + y1x ⊃ yImplication

F15 = 1
F14 = (xy)′

F3 = x
F2 = xy′
F1 = xy
F0 = 0

Algebraic
Expression

Binary constant 1
Not-AND

x
x but not y
x and y
Binary constant 0

Comment

1
1

0
0
0
0
00

Operator
SymbolName

x ↑ y

x / y
x · yAND

Inhibition
Transfer

NAND
One

Zero

There are two functions that
generate constants: Zero and
One. For every combination
of variable values, the Zero
function will return to 0,
whereas the One function
will return to 1.
There are four functions of
one variable, which indicate
Complement and Transfer
operations. Specifically, the
Complement function will
produce the complement of
one of the binary variables.
The Transfer functions by
contrast will reproduce one
of the binary variables at the
output.
There are ten functions that
define eight specific binary
operations: AND, Inhibition,
XOR, OR, NOR, Equivalence,
Implication, and NAND.

36Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Digital Logic GatesDigital Logic Gates

12

14

4

4

6

6

4

2

Number of
transistors

3.2

4.2

1.4

1.4

2.4

2.4

2

1

Delay
in ns

F = x y

F = x ⊕ y

F = (x + y)′

F = (xy)′

F = x + y

F = xy

F = x

F = x′

Functional
Expression

Graphic
SymbolName

Driver

AND

OR

NAND

NOR

XNOR

XOR

Inverter xx FF

xx FF

xx
yy

xx
yy

FF

FF

FF

FF

FF

FF

Basic Logic Library
(CMOS Technology Implementations)

xx
yy

xx
yy

xx
yy

xx
yy

37Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

MultipleMultiple--Input GatesInput Gates

8

6

8

6

10

8

10

8

Number of
transistors

2.2

1.8

2.2

1.8

3.2

2.8

3.2

2.8

Delay
in ns

F = (x + y + z + w)′

F = (x + y + z)′

F = (xyzw)′

F = (xyz)′

F = x + y + z + w

F = x + y + z

F = xyzw

F = xyz

Functional
Expression

Graphic
SymbolName

4–input AND

3–input OR

4–input OR

3–input NAND

4–input NAND

4–input NOR

3–input NOR

3–input AND xxyy
zz FF

xx
yy
zz

FF
ww

xx
yyzz

xx
yy
zz

ww

xxyy
zz

xx
yy
zz

ww

xx
yyzz

xx
yy
zz

ww

FF

FF

FF

FF

FF

FF

Multiple-Input Standard Logic Gates

38Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

MultipleMultiple--Operator (Complex) GatesOperator (Complex) Gates

12

12

8

12

12

8

Number of
transistors

2.4

2.2

2.0

2.2

2.4

2.0

Delay
in ns

F = ((u + v + w)(x + y + z))′

F = ((u + v)(w + x)(y + z))′

F = ((w + x)(y + z))′

F = (uvw + xyz)′

F = (uv + wx + yz)′

F = (wx + yz)′

Functional
Expression

Graphic
SymbolName

3–wide,
2–input
AOI
2–wide,
3–input
AOI
2–wide,
2–input
OAI
3–wide,
2–input
OAI
2–wide,
3–input
OAI

2–wide,
2–input
AOI

FF

FF

xx
yy
zz

ww

FF

FF

FF

FF

Multiple-Operator Standard Logic Gates

xx
yy
zz

ww

xx
yy
zz

ww

uu
vv

xx
yy
zz

ww

uu
vv

xxyy
zz

uuvv
ww

xxyy
zz

uuvv
ww

39Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

FullFull--adder Design Using XOR Gatesadder Design Using XOR Gates

1
1
1
1
0
0
0
0

xi

1
1
0
0
1
1
0
0

yi

1
0
1
0
1
0
1
0

ci sici + 1

00
10

11
01
01
10
01
10

Truth table

ssii == xxii′′yyii′′ccii + + xxii′′yyiiccii′′ + + xxiiyyii′′ccii′′ + + xxiiyyiiccii
== ((xxii′′yyii + + xxiiyyii′′))ccii′′ + (+ (xxii′′yyii′′ + + xxiiyyii))ccii
== ((xxii ⊕⊕ yyii))ccii′′ + (+ (xxii yyii))ccii
= = ((xxii ⊕⊕ yyii))ccii′′ + (+ (xxii ⊕⊕ yyii))′′ccii
== ((xxii ⊕⊕ yyii)) ⊕⊕ ccii

ccii + 1+ 1 = = xxiiyyiiccii′′ + + xxiiyyiiccii + + xxii′′yyiiccii + + xxiiyyii′′ccii
== xxiiyyii((ccii′′ + + ccii) +) + ccii((xxii′′yyii + + xxiiyyii′′))
== xxi i yyii + + ccii((xxii ⊕⊕ yyii))

Full–adder equation

xxii yyii

ccii

si

ccii + 1+ 1

2.4 4.2

4.2

2.42.4

Logic Schematic (46 Transistors)

xi, yi to si

xi, yi to ci + 1

ci to si

ci to ci + 1

Input/Output
Path

Delay
(ns)
4.8 ns

4.2 ns

8.4 ns

9.0 ns

Full–adder delays

40Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

FullFull--adder Design Using Fast Gatesadder Design Using Fast Gates

xxi i yyii == xxi i yyii + + xxii′′yyii′′
== ((((xxi i yyii))′′ ((xxii′′yyii′′))′′))′′
== ((((xxi i yyii))′′ ((xxii ++ yyii))))′′

ssii == ((xxii ⊕ ⊕ yyii))ccii′′ + (+ (xxii yyii))ccii
== ((xxii yyii))′′ccii′′ + (+ (xxii yyii))ccii
== ((xxii yyii)) ccii

ccii + 1+ 1 = = xxi i yyii + + ccii((xxii ++ yyii))
== ((((xxi i yyii))′′ ((ccii((xxii ++ yyii))))′′))′′

Full–adder equation

1
1
1
1
0
0
0
0

xi

1
1
0
0
1
1
0
0

yi

1
0
1
0
1
0
1
0

ci sici + 1

00
10

11
01
01
10
01
10

Truth table

Logic Schematic (36 Transistors)

xi, yi to si

xi, yi to ci + 1

ci to si

ci to ci + 1

Input/Output
Path

Delay
(ns)
2.8 ns

3.8 ns

7.6 ns

5.2 ns

Full–adder delays

xxii

yyii

ccii

ssii ccii + 1+ 1

2.4

1.41.41.4

1.4

1.4

2.4

1.4

41Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

FullFull--adder Design with adder Design with
MultipleMultiple--input Gatesinput Gates

1
1
1
1
0
0
0
0

xi

1
1
0
0
1
1
0
0

yi

1
0
1
0
1
0
1
0

ci sici + 1

00
10

11
01
01
10
01
10

Truth table

Full–adder equation

Logic Schematic (56 Transistors)

xxii

yyii

ccii

ssiiccii + 1+ 1

2.21.8

1.4 1.4 1.4 1.8 1.8 1.8 1.8

xi, yi to si

xi, yi to ci + 1

ci to si

ci to ci + 1

Input/Output
Path

Delay
(ns)
3.2 ns

5.0 ns

5.0 ns

4.2 ns

Full–adder delays

ssii == xxii′′yyii′′ccii + + xxii′′yyiiccii′′ + + xxiiyyii′′ccii′′ + + xxiiyyiiccii
== ((((xxii′′yyii′′ccii))′′ ((xxii′′yyiiccii′′))′′ ((xxiiyyii′′ccii′′))′′ ((xxiiyyiiccii))))′′

ccii + 1+ 1 = = xxiiyyii + + cciixxii + + cciiyyii
== ((((xxiiyyii))′′ ((cciixxii))′′ ((cciiyyii))′′))′′

42Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

FullFull--adder Design with Complex Gatesadder Design with Complex Gates

Full–adder equation

1
1
1
1
0
0
0
0

xi

1
1
0
0
1
1
0
0

yi

1
0
1
0
1
0
1
0

ci sici + 1

00
10

11
01
01
10
01
10

Truth table

xi, yi to si

xi, yi to ci + 1

ci to si

ci to ci + 1

Input/Output
Path

Delay
(ns)
3.4 ns

4.4 ns

4.4 ns

3.4 ns

Full–adder delays

Logic Schematic (46 Transistors)
ssiiccii + 1+ 1

xxii

yyii

ccii

1.4

2.4 2.0 2.0

ssii == xxii′′yyii′′ccii + + xxii′′yyiiccii′′ + + xxiiyyii′′ccii′′ + + xxiiyyiiccii
== ((((xxii′′yyii′′ccii++ xxii′′yyiiccii′′))′′ ((xxiiyyii′′ccii′′ ++ xxiiyyiiccii))′′))′′

ccii + 1+ 1 = = xxiiyyii + + cciixxii + + cciiyyii
== ((((xxiiyyii))′′ ((cciixxii))′′ ((cciiyyii))′′))′′
== ((((xxii′′ + + yyii′′)()(ccii′′ + + xxii′′)()(ccii′′ + + yyii′′))))′′
== ((xxii′′ yyii′′ + + ccii′′ xxii′′ + + ccii′′ yyii′′))′′

43Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

VLSI TechnologyVLSI Technology

Small-scale integration (SSI)
10 gates/package10 gates/package

Medium-scale integration (MSI)
10 10 –– 100 gates/package (2 100 gates/package (2 –– 4 bit slices)4 bit slices)

Large-scale integration (LSI)
100 100 –– 1000 gates/package (controllers, datapaths, bit slices)1000 gates/package (controllers, datapaths, bit slices)

Very-large-scale integration (VLSI)
1000+ gates/package (systems on a chip)1000+ gates/package (systems on a chip)

Custom designs (Standard cells)
Gate arrays (GAs)
Field-programmable (FPGAs)

44Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Custom DesignCustom Design

Each designed by hand

Standard cells
Same height, different widthsSame height, different widths
Routing in channels and over the cellsRouting in channels and over the cells
Two or more metal layersTwo or more metal layers

Standard Cell Approach

Standard Cells

Routing Channel

45Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Example of Custom DesignExample of Custom Design

Full-Adder Implementation with Standard Cells

ssii

ccii + 1+ 1
xxii
yyii
ccii

yyii cciiccii + 1+ 1xxi i cciixxi i yyii

xxii′′ yyii′′ ccii′′yyii′′ccii′′xxii′′

ssiixxii′′ yyii ccii′′xxii yyii′′ ccii′′xxi i yyii ccii

46Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

SemiSemi--Custom Approach withCustom Approach with
Gate Arrays Gate Arrays
Gate arrays are prefabricated arrays of interconnected gates

All gates are the same type (3–input NAND, for example)

Two or more metal layers used to connect gates

Full-Adder Implementation in a Gate Array

xxii

yyii

ccii

ssii

ccii + 1+ 1

((xxii yyii))′′

yyii′′ ccii′′

xxii′′ ((yyii ccii))′′

((xxii ccii))′′((xxii yyii ccii))′′

((xxii yyii′′ccii′′))′′

((xxii′′yyii ccii′′))′′

((xxii′′yyii′′ccii))′′

47Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

FieldField––Programmable Approach with Programmable Approach with
FPGAFPGA
FPGAs are programmed by loading data into internal memory

Excellent for rapid prototyping

Low density and low speed

4-
variable
Boolean
function

GQGQ
GG

HQHQ
HH

gg11

gg22

gg33

gg44

hh11

hh22

hh33

hh44

4-
variable
Boolean
function

SM SM SM

SM SM

SMSMSM

PLB

PLBPLB

PLB

SM

Array Structure Programmable Logic Blocks (PLB)

Interconnect Point (IP)

48Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

FullFull--adder Implemented with FPGAadder Implemented with FPGA
1 programmable logic block for each full-adder
3 out of 4 inputs are used for each Boolean function

1
1
0
0
1
1
0
0
h2

1
1
1
1
0
0
0
0
h1

1
0
1
0
1
0
1
0
h3

X
X
X
X
X
X
X
X
h4 H

0
1

1
0
0
1
0
1

1
1
1
1
0
0
0
0
g2

X
X
X
X
X
X
X
X
g1

1
1
0
0
1
1
0
0
g3

1
0
1
0
1
0
1
0
g4 G

0
0

1
1
1
0
1
0 ccii + 1+ 1

GQGQ

GG

HQHQ

HH ssii

gg11

gg22

gg33

gg44

hh11

hh22

hh33

hh44

UnusedUnused

UnusedUnused

ccii

xxii

yyii

49Copyright © 2004-2005 by Daniel D. Gajski Slides by Philip Pham, University of California, Irvine

Chapter SummaryChapter Summary
Boolean Algebra

AxiomsAxioms
Basic Basic ttheoremsheorems

Boolean Functions
Specification of Boolean Functions

Truth tablesTruth tables
Algebraic expressionsAlgebraic expressions

Canonical forms
Standard forms
Non-standard forms

Algebraic Manipulation of Boolean Expressions
Logic Gates

Simple gatesSimple gates
MultipleMultiple--input gatesinput gates
Complex gatesComplex gates

Implementation Technology
SSI (SmallSSI (Small--scale integration)scale integration)
MSI (MediumMSI (Medium--scale integration)scale integration)
LSI (LargeLSI (Large--scale integration)scale integration)
VLSI (VeryVLSI (Very--largelarge--scale integration)scale integration)

Custom designs
Semi-custom designs
Field-programmable

