
Introducing Preemptive Scheduling in Abstract RTOS Models
using Result Oriented Modeling

Gunar Schirner, Rainer Dömer
Center of Embedded Computer Systems, University of California Irvine

E-mail: {hschirne, doemer}@uci.edu

Abstract
With the increasing SW content of modern SoC designs,

modeling and development of Hardware Dependent Soft-
ware (HDS) become critical. Previous work addressed this
by introducing abstract RTOS modeling [6], which exposes
dynamic scheduling effects early in the system design flow.
However, such models insufficiently capture preemption. In
particular, the accuracy of preemption depends on the gran-
ularity of the timing annotation. For an accurately modeled
interrupt response time, very fine-grained timing annotation
is necessary, which contradicts the RTOS abstraction idea
and is detrimental to simulation performance.

In this paper, we eliminate the granularity dependency
by applying the Result Oriented Modeling (ROM) tech-
nique previously used only for communication modeling.
Our ROM approach allows precise preemptive scheduling,
while retaining all the benefits of abstract RTOS model-
ing. Our experimental results demonstrate tremendous im-
provements. While the traditional model simulated an in-
terrupt response time with a severe inaccuracy (12x longer
in average and 40x longer for 96th percentile), our ROM-
based model was accurate within 8% (average and 50th

percentile) using identical timing annotations.

1. Introduction
Current research work has addressed the increasing soft-

ware content in modern MPSoC designs by utilizing soft-
ware generation and abstract modeling of software. Ab-
stract RTOS and processor models have been proposed [6].
They expose the effects of dynamic scheduling on a soft-
ware processor already in early phases of the design. They
have deemed crucial for design space exploration, e.g. for
task distribution and priority assignment.

However, current RTOS models poorly support preemp-
tion. An RTOS model executing in a discrete event simu-
lation environment uses timing annotation to emulate target
specific time progress (i.e. via wait-for-time statements).
Scheduling decisions are made at the boundaries of these
wait-for-time statements, very similar to cooperative multi-
tasking. Hence, the accuracy of preemption depends on the
granularity of the timing annotations (Figure 1).

A real CPU provides the finest granularity, checking at
each clock cycle for incoming interrupts. Abstract models
can annotate each C-instruction, basic block, function, or
coarsely grained each task. However, accurate emulation
of preemption requires fine grained annotation (e.g. at C-
statement level). On the other hand, using fine grained an-
notation has two drawbacks. It (a) slows down simulation
speed, and (b) fine grained annotation information may not
easily be available for a given application.

CPU Cycle
C-I n s t r u ct i o n
B a s i c B lo ck
F u n ct i o n
T a s k

Figure 1. Granularity of timing annotation.

2. Problem Definition
In current modeling of abstract software execution (ab-

stract RTOS on an abstract processor), preemption model-
ing highly depends on the timing annotation granularity.
Scheduling decisions are made at the boundaries of wait-
for-time statements. Hence, preemptive scheduling in an
abstract model (e.g. after an interrupt) may be delayed by
up to the longest time annotation in the whole application.
Minimizing this error by using finer grained timing anno-
tation, however, is undesirable due to a slower simulation
with the dramatically increased number of wait-for-time
statements, and the difficulty to obtain accurate fine-grained
timing information. Therefore, preemption is inaccurately
emulated in TLM, resulting in intolerable errors e.g. when
simulating interrupt response times.

In this paper, we introduce (simulation of) preemption in
an abstract model and consequently improve dramatically
the accuracy of the interrupt response time without increas-
ing the number of wait-for-time statements.

3. Related Work
Abstract RTOS models have been developed that execute

on top of System Level Design Languages (SLDLs) (e.g.
SystemC [7], SpecC [4]). [3] proposes SoCOS, a high-level
RTOS model. It interprets a proprietary language, describ-
ing RTOS characteristics, using a specialized simulation en-

978-3-9810801-3-1/DATE08 © 2008 EDAA

gine. Our proposed solution uses a standard unmodified
discrete event simulator. [17] presents modeling of fixed-
priority preemptive multi-tasking systems. However, it uses
SpecC specific concurrency and exception mechanisms and
is limited in inter-task communication. In contrast, our pro-
posed solution, does not rely on SpecC specific primitives
and provides full inter-task communication.

[6] introduces abstract scheduling on top of SpecC, pro-
viding scheduling primitives found in a typical RTOS and
allows modeling of target-specific execution timing. How-
ever, it emulates preemption only at the granularity of the
timing annotation. In this paper, we will eliminate this re-
striction. [10] describes an RTOS centric cosimulator, using
a host compiled RTOS. However, it does not include target
execution time simulation.

[15] presents an abstract RTOS model with a POSIX API
on top of SystemC. It uses a comparable approach, but dif-
fers in several aspects. First, it overloads each basic opera-
tor to dynamically estimate target execution timing. This
introduces overhead and reduces performance. ROM, in
contrast, statically determines target timing, avoiding that
overhead. Second, the approach of interrupt handling dif-
fers. In case of an unexpected interrupt, [15] splits the cur-
rent wait statement and immediately queues up a new wait
statement with the remaining time. ROM, in contrast, col-
lects all interrupts during the wait statement, and then issues
a new one, combining all occurred preemptions. Hence, a
performance advantage can be expected under high inter-
rupt load. Properly synchronized access to global variables
is supported in both approaches. [15] also provides special
handling for unprotected global variables.

[9, 8] provide interrupt modeling by predicting future in-
terrupts. [9], however, uses a simplistic single thread as-
sumption and [8] relies on additional user input for the pre-
diction. Conversely, ROM exhibits neither limitation.

Previously, ROM was successfully introduced modeling
communication [16]. We now apply and extend it to model
software execution, improving preemption modeling.

4. Abstract RTOS Modeling
We will first describe a current approach of ab-

stract RTOS modeling [6] (subsequently called TLM-based
RTOS) and reveal the limitations in preemption modeling.
Second, we will introduce the novel ROM-based abstract
RTOS and show how it overcomes the TLM limitations.

4.1. TLM-based Abstract RTOS
The TLM-based abstract RTOS maintains a task state

machine for each module/behavior as shown simplified in
Figure 2. Each action, which potentially changes schedul-
ing, is wrapped to interact with the abstract RTOS model
(e.g. task create, - suspend, - resume, semaphore acquire,
- release). For example, if a running task starts pending on

a non-available semaphore, its state changes from RUN to
WAIT (as in a regular RTOS). The abstract RTOS [6], keeps
track of all task states and dispatches tasks using primitives
of the underlying SLDL (e.g. events). It sequentializes the
task execution according to the selected scheduling policy.

In addition to typical RTOS primitives, an abstract RTOS
provides an interface to emulate time progression. The
wait-for-time statement represents execution time: the time
needed to execute a set of instructions on the target CPU
[11]. Scheduling decisions are made at the boundaries of
wait-for-time statements (i.e. at fixed points similar to co-
operative multitasking). Interrupt Service Routines (ISRs)
are modeled as highest priority tasks, which are suspended
at startup and later released by an IRQ for execution.

A preemption, as a result of an external interrupt, can oc-
cur at any point in time. Since a wait-for-time increases sim-
ulation time, a preemption will occur while executing this
statement. With the scheduling decision being made only at
the end of the time increase, the preemption (dispatch of the
selected ISR task) takes effect after the wait-for-time state-
ment. This delays preemption scheduling and subsequently
increases the latency for an ISR. Figure 3 shows a preemp-
tion situation handled by different approaches. We use line
styles to indicate task states: a solid line represents RUN-
NING, dashed line READY and no line indicates the WAIT
state. The empty flag indicates pending on a semaphore (or
event), a filled flag its release.

First, Figure 3(a) depicts preemption on a real processor
as a reference. While the low priority task Tlow executes,
an interrupt preempts at t1 and triggers the ISR. The ISR
activates Thigh at t2 and finishes. Thigh computes until t3
when acquiring a semaphore. Subsequently, the preempted
Tlow resumes and finishes the section of computation at t6.

Figure 3(b) shows preemption in the TLM-based RTOS.
The section executed by Tlow is annotated with a single
wait-for-time statement (from t0 to t4 – depicted by an arc).
Since the TLM-based RTOS evaluates scheduling at bound-
aries of wait-for-time statements, the interrupt occurring at
t2, is evaluated only at t4. Then, it schedules first the ISR,
then Thigh. Note that the TLM-based RTOS is highly inac-
curate. Thigh finishes late at t6 (instead of t3). Analogous,
Tlow finishes early at t4 (instead of t6).

Note that the duration for this preemption scheduling de-
lay depends on the granularity of the timing annotation. It
is application dependent, and hence does not have a fixed

Preemption

sem_
r el ea se

sem_
a q c u i r e

r esu me

su sp en d

S c h ed u l er
d i sp a t c h

READY

RU N

S u s p e n d e dW AI T

Figure 2. Abstract RTOS task state diagram.

2

Thigh

Interrupt

timet0 t1 t6t4

I S R

T l o w
t2 t3 t5

∆ISR ∆ H i g h

(a) Processor

Thigh

Interrupt
I S R

T l o w
timet0 t1 t6t4t2 t3 t5

∆Preemption Scheduling Delay

(b) TLM

Thigh

Interrupt
I S R

T l o w
timet0 t1 t6t4t2 t3 t5

∆ISR ∆ H i g h

(c) ROM
Figure 3. Interrupt execution in priority scheduling.

bound. This delay can be as long as the longest wait-for-
time period in the whole application. To estimate the pre-
emption scheduling delay, we statically analyzed five appli-
cations with function level annotations in Section 5. The
delay is significant with up to 75,000 CPU cycles. For two
applications, 50% of the preemptions will be delayed for
at least 5,000 cycles. In this paper, we propose a ROM-
enhanced model to remove this inaccuracy.

4.2. Result Oriented Modeling (ROM)
ROM is a general concept for abstract yet accurate mod-

eling of a process that was demonstrated for communica-
tion modeling [16]. ROM assumes a limited observability
of internal state changes of the modeled process. It is not
necessary to show intermediate results of the process to the
user, as in a ”black box” approach. The only goal of ROM
is to produce the end result of the process fast. Hiding of in-
termediate states gives ROM the opportunity for optimiza-
tion. Often, intermediate states can be entirely eliminated.
Instead, ROM utilizes an optimistic predicts approach to de-
termine the outcome (e.g. termination time and final state)
of the process already at the time the process is started.

While the predicted time passes, ROM records any dis-
turbing influence that may alter the predicted outcome. In
the end, it validates the prediction and takes corrective mea-
sures to ensure accuracy.

4.3. ROM-enhanced Abstract RTOS
Our ROM-enhanced abstract RTOS is based on the

same principles as the earlier described TLM-based ab-
stract RTOS. It extends all primitives, which potentially
trigger scheduling, to interact with a centralized abstract
RTOS model. However, ROM differs in the implementa-
tion of three crucial elements: (a) integration of interrupts,
(b) wait-for-time statements, and (c) dispatch implementa-
tion. As a result, the ROM-based RTOS handles preemp-
tions with higher accuracy by allowing preemption of wait-
for-time statements.

The most important aspect is the wait-for-time imple-
mentation. While in the TLM-based version, a transition
from RUN to READY (Figure 2) was only possible at the
end of such a statement, ROM relaxes this assumption. It
allows the scheduler to change the task state while wait-for-

time is running. For proper timing, this demands keeping
track of the time spend in execution and preemption.

The ROM-based wait-for-time implementation treats the
requested wait time as an initial prediction. This is the dura-
tion the process will execute if no preemption occurs while
waiting. It is an optimistic prediction since it marks the ear-
liest time this section of computation may finish. During
the progress of time, ROM collects the disturbing influence
of preemptions. At the end of the wait period, ROM val-
idates the initial prediction. In case of a preemption, the
preempted task will have a preemption record in its virtual
task control block (TCB). It then updates the wait period
reflecting the preemption and waits again.

The dispatcher of the ROM scheduler updates the pre-
emption record of preempted tasks, noting start and finish
of a preemption period. An external interrupt to a modeled
processor can trigger preemption. The interrupt detection
logic executes in parallel to all tasks in the processor. Upon
detection of an interrupt signal, it uses the ROM scheduler
to update the task states and start the preemption chain.

4.3.1 Single Preemption
We will now return to the earlier described example to bet-
ter explain the interactions within ROM. Figure 3(c) de-
picts how ROM handles the preemption. As before, Tlow

starts execution of a new section of code at t0. Its time
progress is simulated by a wait-for-time statement. ROM
uses the annotated time as an initial prediction. Thus, the
module/behavior of Tlow starts waiting until t4, as indicated
by the arc. The interrupt detection detects an interrupt at
t1, and triggers the dispatcher to virtually preempt execu-
tion of Tlow. It sets Tlow’s state to READY and records the
start time of preemption. The scheduler then dispatches the
ISR1. Note that although Tlow still executes the wait-for-
time, it is no longer in the RUNNING state.

The ISR wakes up Thigh at t2 and finishes its execution.
The scheduler then dispatches Thigh as the highest priority
READY task. Thigh accurately executes until acquiring a
semaphore at t3. At this time, the scheduler attempts to
dispatch Tlow. Since Tlow was preempted, the scheduler
updates the preemption record for Tlow and calculates the

1To simplify, we do not show the difference between system and user
interrupt handler, which our implementation actually distinguishes.

3

Thigh

Interrupt
I S R

T l o w
timet0 t1 t2 t3

∆ISR ∆ H i g h

t4 t5

Figure 4. Preemption exceeding prediction.

total preemption duration as tNow − tFirstPreemption =
t3 − t1, which matches ∆ISR +∆high. At t4, Tlow finishes
the initial prediction. It detects the completed preemption
record and waits for the preemption duration until t6. In
contrast to the TLM, with ROM all time stamps match the
execution on the actual processor (Figure 3(a)).

4.3.2 Preemption Exceeding Initial Prediction
A more complex scenario occurs when the preemption ex-
ceeds the initial predicted time, as depicted in Figure 4.
Here, the preemption duration (disturbing influence) is not
known at the end of the first prediction.

In this example, Tlow’s initially predicted time for the
section extends to t3. At t1 an interrupt preempts Tlow,
thus the scheduler records the preemption start and changes
Tlow’s state to READY. At t3, however, the preemption is
not completed. Thigh still occupies the CPU. Nevertheless,
Tlow wakes up, since the initial predicted time has passed.
Here, ROM’s wait-for-time detects the incomplete preemp-
tion record. It computes the current preemption amount
(tNow − tPreemptionStart = t3 − t1) and clears the pre-
emption record. Tlow then suspends and waits until being
dispatched by the scheduler.

Thigh finishes execution at t4. Subsequently, the sched-
uler dispatches Tlow, which wakes up and then waits for the
previously calculated duration (until t5). As a result of the
preemption, this section of annotated code (i.e. by wait-for-
time statement) finishes at t5. Note that the preemption du-
ration is composed of two portions: (a) the time while Tlow

was waiting (t1 to t3), and (b) the time while Tlow suspends
until being dispatched (t3 to t4). Only the first portion (a)
extends the wait duration.

4.3.3 Cascaded Interrupts.
Besides improving timing accuracy, a ROM-enhanced ab-
stract processor model may also improve accuracy in terms
of execution order over a TLM-based RTOS. Again, in the
TLM-based version, the decisions are made at the bound-
ary of the wait-for-time. Hence all scheduling inputs (i.e.
interrupts) are collected during this time and processed at
the end. As a result, a TLM-based RTOS model can show
an incorrect execution order on a processor with multiple
interrupts (e.g. an ARM7 has two interrupt inputs, an IRQ
and higher priority FIQ). Figure 5 shows such a situation,

Tmed

I S R L o w

T l o w
timet0 t1 t6t2 t4

I S R H i g h

T h i g h

t5

I R Q F I Q

Tmed

I S R L o w

T l o w
timet0 t1 t6t2 t4

I S R H i g h

T h i g h

t5

I R Q F I Q

Tmed

I S R L o w

T l o w
timet0 t1 t6t2 t4

I S R H i g h

T h i g h

t5

I R Q F I Q

(a)
 R
ea
l

Pr
oc

es
so

r
(b)

 TL
M

Sc
he

du
le

(c)
 R
OM

Sc
he

du
le

t3

t3

t3
Figure 5. Cascaded interrupts

where two interrupts arrive in a section annotated by one
wait-for-time statement.

During an execution segment of Tlow (from t0 to t3), two
interrupts arrive: first the lower priority interrupt IRQ at t1,
and second the higher priority FIQ at t2. On the real pro-
cessor (a) the corresponding ISRs are executed in sequence
(first ISRLow then ISRHigh). With a traditional TLM (b),
however, the execution order is reversed. Since a scheduling
decision is done at the end of the wait-for-time statement,
the events are accumulated (and cannot be distinguished in
their arrival order). As a result, at t3, the scheduler picks
the higher priority FIQ first, creating an incorrect execu-
tion order. ROM (c), on the other hand, is able to simulate
the correct execution order. Since, it allows a preemption
within a wait-for-time statement, the earlier arriving IRQ is
properly scheduled first.

5. Analysis of Potential Benefits
In order to quantify the benefits of our ROM-based

model, we first statically analyze five applications with
function level timing annotations. In a second step, we mea-
sure one application.

Our analysis metric is the ISR response time (from sig-
naling the interrupt to start of the ISR). The response time
consists of the annotated time and the delay in preemptive
scheduling when using a TLM. As stated before, this delay
depends on the granularity of the timing annotation. When
an interrupt is triggered, the preemptive scheduling delay is
equal to the remaining time of the currently running wait-
for-time statement. The probability of incurring a delay of
Tdel is the number of all wait-for-time invocations with a
delay of at least Tdel over the total execution duration.

4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

Interrupt latency [cycles]

Jpeg.Sw
Mp3.Sw
Mp3.Hw

Mp3.Hw2
Mp3Jpeg.Hw2

Figure 6. Statically analyzed TLM ISR latency.
More formally, the execution duration (busy time) of an

application is captured in N wait-for-time statements, each
annotates a duration of Wi and is executed Ci times. With
this definition, the application execution time can be com-
puted as Texec =

∑N

i=1
Ci ∗ Wi. The probability P (Tdel)

of incurring a delay of Tdel is then2:

P (Tdel) =

∑N

i=1
CiDi(Tdel)

Texec

, (1)

where Di(Tdel) =

{

1 : Wi ≥ Tdel

0 : Wi < Tdel

Figure 6 depicts the cumulative probability of an ISR la-
tency for a busy CPU. The logarithmic x-axis denotes la-
tency in CPU cycles. Table 1 shows the numeric results.

Table 1. Statically analyzed TLM ISR latency.
Specified 50%tile 96%tile Max

Jpeg.Sw 366 1734 7434 75693
Mp3.Sw 366 5146 17750 55190
Mp3.Hw 366 5710 17810 55255

Mp3.Hw2 366 910 21538 38911
Mp3Jpeg.Hw2 366 1629 16291 75932

The preemption scheduling delay, thus the error in ISR
latency, has a significant spread in a TLM. For our analyzed
applications, 50% of ISRs will be delayed by up to 5,710 cy-
cles. For the Mp3.Hw example 46% of ISRs will be delayed
between 5,710 and 17,810 CPU cycles. In comparison to
the specified delay of 366 cycles, our analysis indicates a
potential improvement in the order of two magnitudes. In
general, the actual improvement will depend on the appli-
cation and its timing granularity.

6. Experimental Results
In order to demonstrate the benefits of our ROM-based

abstract RTOS model on a real-world design example (Fig-
ure 7), we have implemented it on top of SCE [1] using the
SpecC SLDL. We realized the ROM-based RTOS without
any change in the simulation engine, it only uses standard

2For simplification, we assume that the CPU is busy at the time of in-
terrupt and that no other interrupt is currently running.

ARM7T D MI

MP 3
J P E G IRQ

F IQ

C o n t r o l

AMB A AH B

P I C

C u s t . H WC u s t . H W C u s t . H W
MP 3 B MP J P E G

C u s t . H W
K e y b o a r d

C u s t . H W
D i s p l a y

C u s t . H W
L e f t

S Y N T H
C u s t . H W
Ri g h t
S Y N T H

C u s t .
H W

MAD
O u p u t

AC 9 7
C o n t r o l l e r

I N T 0

IN T 3 1
. . .

T i m e r D H S

D H S1 00M H z
AC 9 7
C o d e c

A C L i n kI S R

Figure 7. MP3 JPEG media example.
primitives (events and wait-for-time statements). Note that
the ROM concept is generic and can be directly applied to
other SLDLs such as SystemC as well.

To measure the improvements, we use the ROM-based
abstract RTOS in an industrial sized example as outlined in
Figure 7. An ARM7TDMI running µC/OS-II [13] concur-
rently decodes a MP3 stream and encodes a JPEG picture.
The processor is assisted by 3 HW accelerators, an addi-
tional set of HW units perform input and output. We focus
in this simulation on the audio output. The ARM writes
the decoded samples into the AC97 controller, which feeds
them via an AC-Link to an AC97 codec [12]. Upon a half-
filled FIFO, the AC97 controller triggers an interrupt to the
ARM which then writes additional samples into the FIFO.

Using a TLM-based RTOS model with function level an-
notations was not sufficient for this example. The AC97
FIFO frequently ran empty, since the ISR violates its dead-
line. Therefore, we analyzed the interrupt latency for the
ISR filling the FIFO. For this paper, we define the ISR la-
tency as the time period from which the AC97 controller
releases the interrupt until the execution of the first instruc-
tion in the user ISR3.

Figure 8 shows the ISR latency for three solutions: ex-
ecution on a cycle accurate ISS [2], simulation using the
TLM-based RTOS, and using our ROM-based solution. The
logarithmic x-axis denotes the ISR latency in CPU cycles.
The y-axis denotes the cumulative probability. As an exam-
ple, the TLM line reads 0.41 at 1000 cycles, indicating that
41% of the ISR invocations will be delayed by 1000 cycles
or less. Table 2 shows the same data in numerical form.

When executing on the ISS, 50% of invocations will only
be delayed by up to 392 cycles. The latency has a tight dis-
tribution. It has some variance due to critical sections dis-
abling interrupts, and the current instruction’s cycle length.

The measurements document that the TLM produces a
highly inaccurate interrupt latency. 50% of invocations are
delayed by up to 2,218 cycles (5 times higher than actual).
The average latency is with 5,062 cycles over 12 times
longer than observed on the CPU. The 96th percentile is
40x larger. Hence, the TLM is not suited to simulate an
application that depends on the interrupt response time.

3Please note, we use a programmable interrupt controller. Hence, the
system interrupt handler will first determine the interrupt source, and then
invoke the user interrupt handler, which we include in the latency.

5

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

Interrupt latency [cycles]

ISS
TLM

ROM

Figure 8. Measured interrupt latency.

Our ROM-based abstract RTOS model, on the other
hand, shows a very tight distribution. The minimal latency
and the 96th percentile are only 2 cycles apart. Interestingly,
the maximum observed latency reached almost 10,000 cy-
cles. Here, the interrupt occurred while the CPU just started
another ISR. Since both interrupts use the same priority
level, no preemption occurred and the measured ISR started
late. The ROM ISR latency distribution matches the CPU
within 8% in terms of average and 50th percentile. At this
point, we do not model RTOS critical sections, hence ROM
does not show the same variation the CPU does.

Table 2. Measured interrupt latency.
Min Avg 50%tile 96%tile Max

CPU 213 403 392 525 2247
TLM 367 5062 2218 21298 81789
ROM 366 436 367 368 9744

Moreover, ROM achieves these improvements using
identical timing annotations as used for the TLM. In ad-
dition, simulation performance is not affected. The TLM
simulated in 22.50 seconds and ROM in 22.56 seconds.

7. Conclusion
In this paper, we have presented a novel approach for

modeling preemption in an abstract RTOS model. Our so-
lution is based on the Result Oriented Modeling technique,
previously applied only to communication modeling. While
a TLM-based RTOS model relies on fine-grained timing an-
notations to emulate preemptions, our ROM-based model
allows accurate preemption at any point. ROM signifi-
cantly increases the timing accuracy of preemption simu-
lation without demanding fine-grained timing information
and without reducing simulation performance.

Our experiments with a real-world example demonstrate
tremendous improvements in accuracy. In a TLM, an inter-
rupt response time was on average 12x longer (40x longer
for 50th percentile) when comparing to an ISS simulation.
ROM, on the other hand, is accurate within 8% for average
and 50th percentile. With this accuracy improvement, ROM
is an enabler to further expand the use of abstract modeling.

This work is the first to show that the ROM concept is
applicable outside of the communication domain. Where in
communication modeling it is tied to a particular bus model,
here the ROM approach is not application specific. Any
application scheduled on the ROM-based RTOS will benefit
from the enhanced accuracy.

Acknowledgments. We thank Andreas Gerstlauer for
providing the initial abstract RTOS. Additionally, we thank
the SCE research team for their support.

References
[1] CECS, UC Irvine. SoC Environment (SCE). http://

www.cecs.uci.edu/˜cad/sce.html.
[2] M. Dales. SWARM 0.44 Documentation. Department of

Computer Science, University of Glasgow, Nov. 2000.
[3] D. Desmet, D. Verkest, and H. D. Man. Operating system

based software generation for system-on-chip. In DAC, Los
Angeles, CA, June 2000.

[4] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao.
SpecC: Specification Language and Design Methodology.
Kluwer Academic Publishers, 2000.

[5] A. Gerstlauer and W. Mueller. OS Modeling. In HdS Work-
shop at DAC, San Diego, CA, Sept. 2007.

[6] A. Gerstlauer, H. Yu, and D. Gajski. RTOS Modeling for
System Level Design. In DATE, Munich, March 2003.

[7] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic Publishers, 2002.

[8] Z. He, A. Mok, and C. Peng. Timed RTOS Modeling for
Embedded System Design. In RTAS, San Francisco, 2005.

[9] K. Hines and G. Borriello. A Geographically Distributed
Framework for Embedded System Design and Validation. In
DAC, San Francisco, CA, June 1998.

[10] S. Honda et al. RTOS-Centric Hardware/Software Cosimula-
tor for Embedded System Design. In CODES+ISSS, Stock-
holm, Sweden, Sept. 2004.

[11] Y. Hwang, S. Abdi, and D. Gajski. Cycle Approximate Re-
targettable Performance Estimation at the Transaction Level.
In DATE, Munich, Germany, Mar. 2008.

[12] Intel Corporation. Audio Codec ’97 Component Specifica-
tion, Sept. 2000.

[13] J. J. Labrosse. MicroC/OS-II: The Real-Time Kernel. CMP
Books, 2002.

[14] J. Madsen et al. Abstract RTOS modeling for multiprocessor
system-on-chip. In In Proceedings of International Sympo-
sium on System-on-Chip, Tampere, Finland, Nov. 2003.

[15] H. Posadas et al. RTOS modeling in SystemC for real-time
embedded SW simulation: A POSIX model. Design Au-
tomation for Embedded Systems, 10(4):209–227, Dec. 2005.

[16] G. Schirner and R. Dömer. Result Oriented Modeling a
Novel Technique for Fast and Accurate TLM. IEEE TCAD,
26(9):1688–1699, Sept. 2007.

[17] H. Tomiyama et al. Modeling fixed-priority preemptive
multi-task systems in SpecC. In SASIMI, Nara, Oct. 2001.

[18] S. Yoo, G. Nicolescu, L. Gauthier, and A. Jerraya. Automatic
Generation of Fast Timed Simulation Models for Operating
Systems in SoC Design. In DATE, Paris, March 2002.

6

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

