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Abstract

In system-on-a-chip design, automating design reuse is one of the most important issues. Since most Intellectual Proper-
ties(IP) are provided by different vendors, they have different interface schemes. In order to automate design reuse, methods
for combining system components with incompatbile communication protocols must be developed because a large portion of
integration is devoted to designing the interfaces between interacting components. In this report, we propose the interface
architecture in which queues are used for data transfer between components with incompatible protocols and describe the
algorithm for generating syntheisizable RTL description of queues using arbitrary memories.
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Abstract

In system-on-a-chip design, automating design reuse is
one of the most important issues. Since most Intellectual
Properties(IP) are provided by different vendors, they have
different interface schemes. In order to automate design
reuse, methods for combining system components with in-
compatbile communication protocols must be developed be-
cause a large portion of integration is devoted to designing
the interfaces between interacting components. In this re-
port, we propose the interface architecture in which queues
are used for data transfer between components with incom-
patible protocols and describe the algorithm for generating
syntheisizable RTL description of queues using arbitrary
memories.

1. Introduction

Advances in the VLSI industry and design methodol-
ogy have allowed the complexity of a single chip to con-
tain more than millions of transistors. This increasing com-
plexity of VLSI design and time to market pressures on
the complex system-on-chip(SOC) have forced designers to
consider reuse of Intellectual Property(IP) blocks [Mis01].
Since most IPs are proivided by different vendors, and they
have different interface schemes, and different data rates,
the combining these components is an error-prone task and
the most important part of system integration.

The basic goal of an interface syntheis is to generate in-
terfaces between incompatible components. Data could be
transferred at different bit width, operating frequency, data
rates. In this report, we propose novel queue-based inter-
face scheme, which is general enough to accomodate any
component protocols.

In order to implement queue-based interface architec-
ture, the canonical model of a queue must be defined.
It will reduce the design space of implementing various
queues and interfaces. To define the canonical queue model
which can contain various memories, we take a look at at
timing constraints of various memory organization. Also,
we introduce an algorithm which generates synthesizable

RTL description from the protocol specification using the
canonical queue model.

The rest of this report is organized as follows: section 2
describes our interface architecture and canonical model of
queue. Section 3 takes a closer look at the queue architec-
ture for different types of memories and queue generation
algorithm. Section 4 shows the generated SpecC codes by
queue generation tool. Section 5 concludes this report with
a brief summary and future work.

2. The Interface Architecture

Our interface architecture is basically composed of syn-
chronous system interfaces as shown in Figure 1. The sys-
tem components(PE1 and PE2) may operate at different fre-
quencies and at different data rates. Our interface architec-
ture includes a buffer(FIFO queue) to smoothen the burst
data transfer requests and two FSMDs(Finite State Machine
with Data) to queue and unqueue data.

In our interface architecture, system components(PE1
and PE2) in Figure 1 are directly connected to its corre-
sponding state machines and will transfer data to other com-
ponent through the state machines. The state machines are
responsible for receiving(sending) data from(to) the corre-
sponding system components and writing(reading) the data
to(from) the queues. The operating frequency of the state
machine will be the same as the corresponding system com-
ponent so as to reduce synchronization overhead of proto-
cols which are operating at different frequencies.

2.1. Communication Scheme

Since all transactions between system components are
performed through queues which is controlled by state ma-
chines, we have to consider two inteface protocols, the pro-
tocol between state machines and queues and the protocol
between system components and state machines. In other
words, state machines should handle two interface proto-
cols: one for system components and the other for queues.
The state machines will write data to queue to which the
producer(system component which sends data) sends data

1
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Figure 1. The interface architecture of two imcompat-
ible components

which the consumer(system component which receives the
data which the producer sends) needs.

The bit width and depth of the queue should be deter-
mined for lossless data transfer. In order to reduce the num-
ber of transfers between state machines and the queue, the
bit width of the queue is determined as follows:

bwQ � max�bws�bwr�

where bws is bit width of the producer and bwr is bit width
of the consumer.

The depth of queue will be determined to minimize the
size of queue by following formula:

Qn � max�0�Qn�1 ��Pn�Cn��

where Qn is the depth of queue in time n. Pn represents the
amount of produced data in time n and Cn represents the
amount of consumed data in time n. The depth of queue
will be the maximum of Qn.

The state machines will be responsible for merging and
slicing the data to make suitable for the queue. During the
transfer, part of data will be temporarily stored in the state
machines, which means the state machines should contain
the internal register. The bit width of internal register will
be maximum bit width of two communication parties(same
as bit width of the queue, bwQ), which reduces the number
of data transfers between state machines and queue.

The interface protocol between state machines and
queues will be fixed because the queue interface is pre-
defined. But the interface protocol between system com-
ponents and state machines will be varied depending on the
protocol of system components.

Figure 2 shows interface communication scheme be-
tween the state machines and a queue with a single I/O port.
When two state machines share the same queue and data
can be transfered bi-directionally, the handshaking between
them is essential, because they share the same queue and
must have a way to resolve any contention. So, the pro-
ducer must generate a signal to let the consumer read the
data in the queue. Also, consumer must send signal to let
the producer know that it has read data. If two queues are

used for storing data, or data transfers occur in one direc-
tion, the hand-shaking protocol is no longer needed which
is shown in Figure 3. In addition, if queue with separate I/O
ports is selected for storing data, the handshaking between
FSMDs is not needed.
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Figure 2. The interface communication scheme using
one queue
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Figure 3. The interface communication scheme using
two queues

2.2. Queue Model

Queue is frequently used to smoothen bursts in the re-
quests for a service [Gaj97]. It stores the surplus data
which will eventually be read in the same order in which it
was written in. System components like processors, ASICs
which send data to each other, in the sense that when the
data production momentarily exceeds the data consumption,
queue must be inserted between the producer and the con-
sumer. Of course, in such cases the data production rate
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cannot exceed the consumption rate indefinitely, since that
would require an infinite queue. On the contrary, both rates
on an average, must be the same. However, production and
consumption bursts do occassionally occur, and the size of
the queue determines how large a burst can be tolerated.
To facilitate data transfer between system components, we

Queue
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(a) Queue with a single I/O port

Queue

ReadEnable

WriteEnable

Reset

CLK
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QReadReady

QWriteReadyQOut

QIn

(b) Queue with two I/O ports

Figure 4. Queue block diagram

make our own queues which are general enough to include
the specific queues, distributed by various vendors. Our im-
plemenation of a queues is shown in Figuire 4. In our im-
plemenation, a queue can have one or two I/O ports(QIO
or QIn and QOut) for data. It also has several input con-
trol signals: ReadEnable, WriteEnable, and Reset.
When ReadEnable is equal to 1, the queue will output
the data which has been stored the longest, taking it from
the front of queue. Similarly, when WriteEnable is
equal to 1, the data will be added to the back of the queue.
ReadEnable and WriteEnable are never equal to 1 at
the same time.

Queue also has several control outputs which are used to
control the producer and the consumer. When the queue is
full, the signal Fullwill have a value of 1, which will warn
the producer that any further data sent to the queue will be
discarded. When Empty becomes 1, it warns the consumer

that no data has yet arrived. When the producer(consumer)
starts writing(reading) the data in the queue, QReady be-
come 1, which warns the other can’t use the queue. For
queue with separate read and write port, QReadReady and
QWriteReady are needed to prevent mulitple producers
from accessing the queue at the same time.

Our queue is implemented with a memory to store large
amount of data. The clock period of the queue is frequently
less than the memory read access time. In this case, the
consumer does not know when it can read data from the
queue. To tackle this problem, DataReady signal is im-
plemented. When DataReady is equal to 1, the queue
has data for the consumer. Similarly, when memory write
time is longer than the clock period of the queue, the pro-
ducer does not know when it must deassert control signal
for writing data to queue. For this, WriteDone signal is
implemented. When the WriteDone is equal to 1, the data
are written to queue, and the consumer can deassert control
signals. If read/write operation can be performed in one
clock cycle, DataReady and WriteDone are not needed
for implementation because they are useful for only multi-
cycle read/write operation.

2.3. Memory Timing

Generally, a queue contains memory to store data inter-
nally [Gaj97]. The operation of the queue is determined by
memory organization and timing(Figure 5). There are many
memory timing parameters in a memory datasheet. For ex-
ample, the address lines will be set at t0 then followed by CS
at t1. Consequently, the memory data will become available
at t2. The delay time t2 � t0 is called the memory access
time(Tacc), since it would take t2 � t0 to obtain data from
memory. The delay time t2 � t1 is called the ouput-enable
time(Toe), since it represents the delay in enabling the output
drivers. After the value of the address lines has changed at
t3, the valid data will be available until time t5. This time in-
terval t5 � t3 is called the output hold time(Toh). Finally the
time difference t5� t4 is called the output-disable time(Tod),
since it represents the delay in the disabling of output data.
For write-cycle timing, the address line must be set some-
what earlier. The delay t1 � t0 is called the address setup
time(Tas). Data should be stable for some time before and
after the falling edge of the CS to ensure proper operation.
These times are called data setup time(Tds) and data hold
time(Tdh) and are defined by the time intervals t3 � t2 and
t4 � t3. CS or RW signals have to be asserted for a duration
equal to or longer than the write-pulse width(Twpw), defined
by the time t3� t1. Furthermore, an address must stay valid
for some time after the falling edge of CS or RW. This time,
called address-hold time(Tah), is defined by time interval
t5� t3.

Since some parameters are less than the others, some
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Figure 5. Timing diagram of a memory

parameters can be discarded. For example, output enable
time(Toe) is less than memory access time(Tacc) for read-
cycle operation, output enable time can be ignored. In the
same way, we can obtain 5 parameters, Tacc, Toh, Tas, Twpw,
and Tah, which are needed to be considered. Usually Tas

and Tah have 0 value, but we will consider them in order to
generalize the memory timing model.

Until now, we have considered only asynchronous im-
plementation of a memory. For the synchronous memory,
all timing is synchronized by the clock and read/write oper-
ation can be performed in one cycle. Our queue will be syn-
chrous implementation, the memory clock will be same as
that of queue, the generated queue will perform read/write
operation in a single cycle.

2.4. Queue timinig diagram

In order to generate a queue model from the memory tim-
ing constraints, we have to schedule the timing constraints
based on given the clock period of the queue. Given timing
constraints of the memory and the clock period of the queue,
queue generation can be considered as the task of gener-
ating a state machine which implements the queue func-
tionality and satisfies the timing constraints. This requires
scheduling of memory timing constraints into clock cycles
such that no constraint is violated. Therefore, the FSMD
implementation selects instances of the given timing ranges
based on the granularity given by the queue clock. Finally

the queue description will be generated for integration in
interface synthesis. Figure 6 shows the read/write tim-
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WriteEnable

CLK
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MEM/Addr

QIO

WriteDone

QReady

S1 S2 S2 S3 S3 S4 S4 S1
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DataReady

QReady

Tas/cp

Twpw/cp

Tah/cp

Toh/cp

Tacc/cp

Write Timing of Queue with 1 I/O port

Read Timing of Queue with 1 I/O port

Figure 6. Timing diagram of a Queue with a single I/O
port

ing diagram of queue with a single I/O port, which contains
a single port memory, which is shown in Figure 4(a). In
this figure the MEM/* denotes ports of memory. For exam-
ple MEM/Addr means the Addr port(Address port) of the
memory. Figure 7 shows the read/write timing diagram of
queue with two I/O ports which contains two port memory
which is shown in Figure 4(b).

2.5. Queue Implementaion

Figure 8 shows the internal architecture of a queue with a
single read/write port. The queue incorporate two counters,
Front and Back, pointing at the front and the back of the
queue. The Front counter contains the address of the ear-
liest written data. Whenever a read operation is requested,
the data in location addressed by the Front counter is read
to the I/O bus and the counter is incremented. The Back
counter contains the address of the first empty location in
the queue, and whenever a write operation is requested, the
data is written into empty location addressed by the Back
counter, at which point the counter is incremented. If data is
being read from the queue and the Front counter points to
the same location as the Back counter, it means the queue
is empty. On the other hand, if data is being written into the
queue, the Back counter points to the same location as the
Front counter, this means the queue is full.
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Figure 7. Timing diagram of a Queue with two I/O
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2.6. Clock Selection for Queue

As already mentioned, the depth of the queue can be
determined by the total amount of data sent and ratio of
sending rate and receiving rate of data in the producer and
consumer respectively. The clock selection for the queue is
also important and difficult to determine. During the clock
selection, the memory timing parameters and the clock of
communication parties(producer and consumer) should be
considered.

If the queue has two different clocks for read and write
cycle operation and the read/write clock period is long
enough to accomodate the memory timing, then the clock
of read operation will be that of the producer, and the
clock of write operation will be that of the receiver, which
makes interfaces between the queue and state machines syn-
chronous. But dual clock scheme could not be applied to
our queue implementation because it has only one clock.

The interface between the queue and the state machines
may be asynchrous, if the clocks of the state machines are
not harmonic to each other. Therefore, our queue imple-
mentation has the DataReady and WriteDone to acco-
modate asynchronous write/read operation between them,
which means any clock period can be selected for the queue.

Based on the selection of the clock, read/write latency
of the queue will be determined. If we select long clock
period, it will lead to a larger idle time per clock cycle.
For example, Table 1 shows the variation of the clock over-
heads with various clock selection. In this table, the larger

MEM
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Back
Counter

Addr
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OE

CS

Write
Enable

Read
Enable

QIO

DataReady
WriteDone

QFull
QEmpty

QReady

DIO

Figure 8. Internal architecture of a Queue

Table 1. clock selection for a queue
timing clock period

parameters 2 ns 5 ns 8 ns 15 ns
Tacc 15 ns 8 3 2 1
Toh 8 ns 4 2 1 1
Tas 7 ns 4 2 1 1

Twpw 23 ns 12 5 3 2
Tah 5 ns 3 1 1 1
sum 58 ns 62ns 65ns 64ns 70ns

overhead 4ns 7ns 6ns 12ns

is the clock period, the larger is the overhead. However, the
shorter clock period result in large number of states. Trade-
off between clock overhead and states becomes necessary
while selecting a clock.

3. The Queue Generation Algorithm

As we already mentioned, we have to schedule the tim-
ing constraints based on given the clock period of the queue
in order to generate a queue model from the memory timing
constraints. Therefore, the FSMD implementation selects
instances of the given timing ranges based on the granular-
ity given by the queue clock. Then we can make general
form of state machine of the queue as shown in Figure 9
and Figure 10. In Figure 9, state machine for queue with 1
read/write port which contains the 1 port memory is shown.
The number of states are dependent on the 5 memory tim-
ing parameters as earlier described. In the same way, gen-
eral form of state machine for the queue with 2 separate
read/write port can be defined as shown in Figure 10.
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Figure 9. FSMD of a Queue with a single I/O port

3.1. Problem Definition

Given:

1. Timing parameters Tacc, Toh, Tas, Twpw, and Tah for se-
lected memory

2. Size(bit width and depth) of the selected memory

3. Clock period Tclk of the queue

Determine:

1. Finite state machine with data model for the queue.

Condition:

1. memory timing constraints are satisfied.

Algoritm 1 describes the queue generation algorithm
from given memory timing constraints and clock pe-
riod of the queue. In this algorithm, there are gen-
eration function calls like GenerateResetState(),
GenerateInitialState(), and so on, which gen-
erates FSMD description of each state in Figure 9

and Figure 10. The function AddState(FSMD, S)
adds state S into state machine(FSMD). First, function
GenerateResetState() generates reset state(S0), in
which every output singal and internal variables for the
memory and counters are initialized. Whenever re-
set is asserted, the state of queue is in this state.
Function GenerateInitialState() generates initial
state(S1), in which all output signals are deasserted until
ReadEnable or WriteEnable gets asserted by exter-
nal producer and consumer.

For read cycle operation, memory access state(S2) is
generated according to memory access time Tacc in func-
tion GenerateMemAccessState(), and data ready
state(S3) by function GenerateDataReadyState().
Finally, function GenerateMemOutputHoldState()
generates memory output hold state(S4) based on output
hold time Toh.

For write cycle operation, memory ad-
dress setup state(S2) is generated according
to memory address setup time Tas in function
GenerateMemAddressSetupState(). Function
GenerateMemWriteState() generates the memory
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Figure 10. FSMD of a Queue with two I/O port

write state(S3) according to write pulse width time Twpw.
Function GenerateMemAddressHoldState() gen-
erates memory address hold state(S4), based on output hold
time Tah. Finally, the memory write done state(S5) is gener-
ated by function GenerateMemWriteDoneState().

4. Examples

We implemented the queue generation algorithm in
SpecC system. The tool takes the port description of the
queue and timing parameter description of a memory as in-
put and generates the SpecC [GZD�00] description for the
queue model. We will use two memory types for gener-
ating the queues. The one is 1 port asynchronous mem-
ory, which has the following timing constraints: Tclk � 2�0,
Tacc � 5�0, Toh � 1�0, Tas � 1�0, Twpw � 3�0, Tah � 1�0,
and the other is 2 port asynchronous memory, which has
Tclk � 2�0, Tacc � 2�0, Toh � 0�0, Tas � 0�0, Twpw � 2�0,
Tah � 0�0. The size of the first is 8x32 and the other is
32x32. The generated queue models in SpecC are shown in
Appendix A.1 and Appendix A.2.

5. Conclusion and Future Works

This report has shown our queue-based interface archi-
tecture, which is general enough to accomodate any target
interface. In our architecture, queues are used to smoothen
the burst data transfer requests and to interface incompatible
protocols. The proposed queue generation algorithm can
deal with any types of memories and timing constraints. Us-
ing two memory models with different I/O ports and timing
constraints, queue models has been generated. In the future,
we expect to develop an algorithm to synthesize our inter-
face architecture from protocol description. The described
queue algorithm will then be integrated into the interface
architecture.
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A. Queue model in SpecC language

A.1. Queue with shared read/write port using 1 port asynchrous memory

/*********************************************************
* SpecC code generated by ’genQ’
* Date: Wed Apr 10 10:49:32 2002
* User: dongwans

5 *********************************************************/

behavior queue(in event clk, in bit[0:0] rst, in bit[0:0] ReadEnable,
10 in bit[0:0] WriteEnable, out bit[0:0] DataReady, out bit[0:0] WriteDone,

out bit[0:0] QReady, out bit[0:0] Empty, out bit[0:0] Full,
inout bit[31:0] QInOut)

{

15 bit[2:0] Front, Back;
bit[31:0] Mem[8];

void main(void)
{

20 enum state { S0, S1, R1, R2, R3, R4, R5, W1, W2, W3, W4, W5 } state;
while (1)
{

wait(clk);
if (rst)

25 {
state = S0;

}
switch (state)
{

30 case S0 :
{

DataReady = 0b;
WriteDone = 0b;
QReady = 1b;

35 Empty = 1b;
Full = 0b;
Front = Back = 0;
state = S1;
break;

40 }
case S1 :
{

DataReady = 0b;
WriteDone = 0b;

45 QReady = 1b;
if (WriteEnable == 1b)
{

state = W1;
}
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50 else if (WriteEnable != 1b && ReadEnable == 1b)
{

state = R1;
}
else

55 {
state = S1;

}
break;

}
60 case R1 :

{
DataReady = 0b;
QReady = 0b;
state = R2;

65 break;
}
case R2 :
{

DataReady = 0b;
70 QReady = 0b;

state = R3;
break;

}
case R3 :

75 {
DataReady = 0b;
QReady = 0b;
state = R4;
break;

80 }
case R4 :
{

QInOut = Mem[Front];
DataReady = 1b;

85 QReady = 0b;
if (ReadEnable == 0b)
{

state = R5;
}

90 else
{

state = R4;
}
break;

95 }
case R5 :
{

DataReady = 1b;
QReady = 0b;

100 Front = Front + 1;
if (Front == Back)
{
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Empty = 1b;
Full = 0b;

105 }
else
{

Empty = 0b;
Full = 0b;

110 }
state = S1;
break;

}
case W1 :

115 {
WriteDone = 0b;
QReady = 0b;
state = W2;
break;

120 }
case W2 :
{

Mem[Back] = QInOut;
WriteDone = 1b;

125 QReady = 0b;
state = W3;
break;

}
case W3 :

130 {
Mem[Back] = QInOut;
WriteDone = 1b;
QReady = 0b;
state = W4;

135 break;
}
case W4 :
{

WriteDone = 1b;
140 QReady = 0b;

state = W5;
break;

}
case W5 :

145 {
WriteDone = 1b;
QReady = 0b;
Back = Back + 1;
if (Front == Back)

150 {
Empty = 0b;
Full = 1b;

}
else

155 {
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Empty = 0b;
Full = 0b;

}
if (WriteEnable == 0b)

160 {
state = S1;

}
else
{

165 state = W5;
}
break;

}
}

170 }
}

};

A.2. Queue with separate read/write port using 2 port asynchrous memory

/*********************************************************
* SpecC code generated by ’genQ’
* Date: Thu Jan 10 13:01:24 2002
* User: dongwans

5 *********************************************************/
behavior QRead(in event Clk, in bit[0:0] RST, in bit[0:0] ReadEnable,

in bit[0:0] WriteEnable, out bit[0:0] DataReady, out bit[0:0] WriteDone,
out bit[0:0] QReadReady, out bit[0:0] QWriteReady, out bit[0:0] Empty,
out bit[0:0] Full, in bit[31:0] QIn, out bit[31:0] QOut, inout bit[4:0] Front,

10 inout bit[4:0] Back, inout bit[31:0] Mem[32])
{

void main(void)
{

enum state { R0, R1, R2, R3 } state;
15 while (1)

{
wait(clk);
if (rst)
{

20 state = R0;
}
switch (state)
{

case R0 :
25 {

DataReady = 0b;
QReadReady = 1b;
Empty = 1b;
Full = 0b;

30 Front = Back = 0;
state = R1;
break;

}
case R1 :
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35 {
DataReady = 0b;
QReadReady = 1b;
if (ReadEnable == 1b)
{

40 state = R2;
}
else
{

state = R1;
45 }

break;
}
case R2 :
{

50 DataReady = 0b;
QReadReady = 0b;
state = R3;
break;

}
55 case R3 :

{
QOut = MEM[Front];
DataReady = 1b;
QReadReady = 0b;

60 Front = Front + 1;
if (Front == Back)
{

Empty = 1b;
Full = 0b;

65 }
else
{

Empty = 0b;
Full = 0b;

70 }
state = R1;
break;

}
}

75 }
}

};

behavior QWrite(in event Clk, in bit[0:0] RST, in bit[0:0] ReadEnable,
80 in bit[0:0] WriteEnable, out bit[0:0] DataReady, out bit[0:0] WriteDone,

out bit[0:0] QReadReady, out bit[0:0] QWriteReady, out bit[0:0] Empty,
out bit[0:0] Full, in bit[31:0] QIn, out bit[31:0] QOut, inout bit[4:0] Front,
inout bit[4:0] Back, inout bit[31:0] Mem[32])

{
85 void main(void)

{
enum state { W0, W1, W2 } state;
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while (1)
{

90 wait(clk);
if (rst)
{

state = W0;
}

95 switch (state)
{

case W0 :
{

WriteDone = 0b;
100 QWriteReady = 1b;

Empty = 1b;
Full = 0b;
Front = Back = 0;
state = W1;

105 break;
}
case W1 :
{

WriteDone = 0b;
110 QWriteReady = 1b;

if (WriteEnable == 1b)
{

state = W2;
}

115 else
{

state = W1;
}
break;

120 }
case W2 :
{

MEM[Back] = QIn;
WriteDone = 1b;

125 QWriteReady = 0b;
Back = Back + 1;
if (Front == Back)
{

Empty = 0b;
130 Full = 1b;

}
else
{

Empty = 0b;
135 Full = 0b;

}
if (WriteEnable == 0b)
{

state = W1;
140 }
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else
{

state = W2;
}

145 break;
}

}
}

}
150 };

behavior queue(in event Clk, in bit[0:0] RST, in bit[0:0] ReadEnable,
in bit[0:0] WriteEnable, out bit[0:0] DataReady, out bit[0:0] WriteDone,
out bit[0:0] QReadReady, out bit[0:0] QWriteReady, out bit[0:0] Empty,

155 out bit[0:0] Full, in bit[31:0] QIn, out bit[31:0] QOut)
{

bit[4:0] Front, Back;
bit[31:0] Mem[32];

160 U00 QRead(Clk, RST, ReadEnable, WriteEnable, DataReady, WriteDone, QReadReady,
QWriteReady, Empty, Full, QIn, QOut, Back, Front, Mem);

U01 QWrite(Clk, RST, ReadEnable, WriteEnable, DataReady, WriteDone, QReadReady,
QWriteReady, Empty, Full, QIn, QOut, Back, Front, Mem);

165 void main(void)
{

par
{

U00.main();
170 U01.main();

}
}

};
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