
An Algorithm to Avoid Power Command Jitter in
Middleware-Based Distributed Embedded Systems

Bita Gorjiara, Pai Chou, Nader Bagherzadeh

Technical Report CECS-03-47

July 2003

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425

(949) 824- 2481

{bgorjiar, chou, nader}@ece.uci.edu

An Algorithm to Avoid Power Command Jitter in
Middleware-Based Distributed Embedded Systems

Bita Gorjiara, Pai Chou, Nader Bagherzadeh

Technical Report CECS-03-47

July 2003

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425

(949) 824- 2481

{bgorjiar, chou, nader}@ece.uci.edu

Abstract
Middleware such as CORBA provides a software architecture that supports integration

of legacy software components with new software in a way that is modular, scalable, and
evolvable. However, these benefits come with high run-time overhead. In dynamic hard real-
time distributed embedded systems, usually a central power manager calculates and issues all
the power commands. The power manager must communicate with different modules to
transparently perform mode transitions. Due to inherent communication overhead of
middleware based embedded systems, issuing each power command will have considerable
overhead for the power manager. This overhead limits the rate of issuing power commands
and may cause a shift in their schedule. This paper has two contributions; first, it introduces
the Power Command Jitter (PCJ) problem in middleware based embedded systems; second,
it proposes an effective Power Command Adjustment algorithm (PCA) that re-orders and
reschedules the power commands so that the correctness of the schedule is maintained while
minimizing the energy loss. Our experimental results on a commercial software defined radio
system (JTRS) shows PCJ can cause violation of real-time deadlines and unreliability of the
system. Moreover, in presence of power command issue overhead, even as low as 3ms, the
power manager can lose 25% of its energy savings.

Contents
1 Introduction ..5

2 Background...7

2.1 Middleware-Based Embedded Systems ..7

2.2 Power Management Techniques ..7

3 Motivating Example ..8

3.1 Example System under Power Management...8

4 Problem Formulation..10

5 Power Command Adjustment Algorithm..11

6 Experimental Setup ...12

6.1 Modeling..13

6.2 Simulation and Profiling...13

6.3 Experimental Results ..13

6.3.1 Impact of PCIO on energy consumption...14

6.3.2 Impact of system scale on energy savings of non-ideal power managers...........15

7 Conclusion...16

8 References ...16

List of Figures
Figure 1: System architecture and the process of issuing a power command6

Figure 2: (a) Processor modes (b) Application Task Graphs...8

Figure 3: Task and power schedule...9

Figure 4. Arbitrarily serialized power commands..9

Figure 5:Schedule after removing (3), (4), (8)..10

Figure 6: Pseudo code of Power Command Adjustment Algorithm ..12

Figure 7: The block diagram of a software defined radio system ...13

Figure 8: Send and receive task graphs for one channel ..13

Figure 9. Comparing the energy consumption of the testbenches when PCIO=0 vs.

PCIO=50µs..15

Figure 10. Comparing the energy consumption of TB-2000 for different values of PCIO.....15

Figure 11. Comparing the energy consumption of the testbenches for different values of

PCIO..15

Figure 12. energy consumption of the system for different number of channels.....................16

An Algorithm to Avoid Power Command Jitter in
Middleware-Based Distributed Embedded Systems

Bita Gorjiara, Pai Chou, Nader Bagherzadeh
University of California, Irvine

Irvine, CA 92697-3425
(949) 824- 2481

{bgorjiar, chou, nader}@ece.uci.edu

Abstract
Middleware such as CORBA provides a software architecture that supports integration

of legacy software components with new software in a way that is modular, scalable, and
evolvable. However, these benefits come with high run-time overhead. In dynamic hard real-
time distributed embedded systems, usually a central power manager calculates and issues all
the power commands. The power manager must communicate with different modules to
transparently perform mode transitions. Due to inherent communication overhead of
middleware based embedded systems, issuing each power command will have considerable
overhead for the power manager. This overhead limits the rate of issuing power commands
and may cause a shift in their schedule. This paper has two contributions; first, it introduces
the Power Command Jitter (PCJ) problem in middleware based embedded systems; second,
it proposes an effective Power Command Adjustment algorithm (PCA) that re-orders and
reschedules the power commands so that the correctness of the schedule is maintained while
minimizing the energy loss. Our experimental results on a commercial software defined radio
system (JTRS) shows PCJ can cause violation of real-time deadlines and unreliability of the
system. Moreover, in presence of power command issue overhead, even as low as 3ms, the
power manager can lose 25% of its energy savings.

1 Introduction
Distributed embedded systems are becoming more complex due to the demands for

more features and performance. Since these systems usually contain several processing
elements, developing software for them is challenging and expensive. To develop reusable
and platform independent software modules, some system designers have incorporated more
software layers, or middleware, to these distributed embedded systems [1][2]. Currently new
middleware technology is under development that can provide real-time services, software
fault tolerance, software re-configurability and mobility [3][4][5][6]. There is a growing trend
towards using middleware services in different application domains, such as telecom,
aerospace, military testing and training ranges.

To manage power in hard real-time distributed embedded systems, usually a central
power manager calculates and issues all the power commands. In order to make the mode
transitions transparent to the running software modules, the power manager must also issue
commands to save and restore configuration and data, before or after each power command.
For example, Figure 1 shows the process of issuing a shutdown command in a middleware-
based distributed system, proposed in [10]. First, a shutdown command is sent to the
processor. Next, the processor saves its current status. The mode transition overhead includes

the overhead of saving the status. Finally, the power manager communicates with device
manager to turn off the power supply. As shown, it takes several communications to perform
a successful resource shutdown. Note that each middleware-based communication has
overhead on the processors at both ends [7][8][9], due to the extra data checking and
processing. Therefore, it takes a considerable amount of time for the power manager to issue
each command. We call this overhead Power Command Issue Overhead (PCIO). In Figure 1,
PCIO includes the delay of (1), (4) and (5). If PCIO is not considered in the scheduling of the
commands, the power manager will arbitrarily serialize and shift them, which can cause
missing real-time deadlines. Even if no real-time deadline is missed, it can cause system
failure or unreliable behavior, which is due to wrong assumptions about the current mode of
the resources. In presence of PCIO, every two consecutive commands will have a minimum
time separation and as a result, PCIO limits the rate of issuing power commands. To correctly
schedule a power command, PCIO, mode transition overhead and network transmission
overhead must be considered. We call the overall delay Power Command Delay (PCD).

This paper introduces the Power Command Jitter (PCJ) problem in middleware-based
hard real-time distributed embedded systems and proposes a Power Command Adjustment
(PCA) algorithm to fix this problem. The algorithm reschedules or removes the proper power
commands in order to keep the resources ON during their scheduled busy intervals. It also
minimizes the energy loss by prioritizing the power commands. Our experimental results on
a commercial software defined radio system shows that in presence of power command issue
overhead (PCIO), even as low as 30µs, the power manager can loose 25% of its energy
saving.

Figure 1. System architecture and the process of issuing a power command

The rest of the paper is organized as follows. Section 2 presents an introduction to
middleware based embedded systems as well as previous work on system level power
management. Section 3 introduces power command jitter problem using an example. Section
4 formulates this problem followed by the PCA algorithm described in Section 5. Section 6
shows the experimental results and Section 7 concludes the paper.

Middleware

 Data Bus

Power Manager Device manager

OS

Power
Controller

CORBA-based
 software

Middleware

OS

Drivers Drivers

Bus (Ethernet/CAN/VME)

(1)

(4)

(3)

(5)

(7)

(2)

Other Processors

 Power Control Bus

Power Manager Processor

Memory

(6)

2 Background

2.1 Middleware-Based Embedded Systems
Middleware refers to a layer of software above the operating system and below the

application. Its purpose is to provide a software architecture for integration of software
components. Originally developed for general-purpose distributed computing, in recent
years, middleware such as CORBA has been adopted in implementation of embedded
systems including network routers, laser printers, software-defined radios, and other complex
systems. The main benefits of middleware are modularity, evolvability, and scalability.
Modularity comes from the inter-component communication services provided by the
middleware, which decouples the object’s calling interface from its implementation.
Evolvability means parts of the software, including the power manager itself, may be
upgraded smoothly without requiring a reboot. As software complexity increases, the ability
to integrate legacy software quickly with an upgrade path has also motivated the adaptation
of middleware in these systems.

A main challenge with such middleware has always been the high run-time overhead.
This is because the middleware must perform many tasks in order to support the high-level
abstraction. Communication between objects can be expensive because it involves a lookup
for the object’s location and packaging the parameters in a message. It is a challenge to make
real-time guarantees, because the middleware operations can dominate the processor
utilization, leaving much less time for application execution. Although advances in
microprocessors have made it less of a problem, incorporating middleware still means higher
power than without middleware. As a result, power management becomes particularly
important for middleware-based embedded systems.

2.2 Power Management Techniques
Dynamic Power Management (DPM) and Dynamic Voltage Scaling (DVS) for parallel

and distributed real-time systems have been studied by different researchers [11][12][13][14].
DPM usually means turning off (shutdown) or putting devices in non-operational low power
modes (standby) when they are not in use; DVS means lowering the voltage (and frequency)
of a component for higher energy efficiency when it does not need to run at its full speed.
Stochastic DPM approaches are also applicable for non-real-time systems. However, they
cannot be used in hard real-time systems due to their unreliable nature. Many approaches
consider mode transition overhead and Power Command Delay (PCD) in scheduling of
power commands. However, all of them assume that there is no PCIO, and the central power
manager can issue as many commands as needed. Hong et al [15] takes into account the
inherent limitation on the rates at which the voltage and clock frequency of a component can
be changed by the power supply controllers and clock generators. However, they do not
consider the system level constraint on power command rate caused by middleware
overhead. The difference between these two constraints is that the first only limits the number
of commands issued for one controllable resource and the second limits the total number of
commands that can be issued for the entire system. As a result the second constraint
(discussed in this paper) is sensitive to the size of the system. To the best of our knowledge,
none of the previous researchers have considered this practical issue.

3 Motivating Example
In this example we show that how PCIO can invalidate a schedule or limit the amount of

energy saving achievable by DVS and DPM. We also show the importance of choosing and
issuing the right set of commands.

3.1 Example System under Power Management
Assume we have a system composed of four processors for running tasks, and a separate

control unit for changing the power state of processors at run time. The system supports both
DVS and DPM and it has three DVS modes and one shutdown mode without any transition
overhead. Figure 2(a) shows the power level of each mode. The application running on the
system is represented as a set of periodic task graphs shown in Figure 2(b). The task graphs
capture data dependencies between the tasks.

Modes Power (mW)
DVS_m1 400
DVS_m2 200
DVS_m3 100
Shutdown 0

(a) (b)

Figure 2. (a) Processor modes (b) Application Task Graphs

Figure 3 shows the schedule of tasks on four processors, where the height represents the
power consumption of each processor. The period is 70ms and the same schedule is repeated
in each period. In this case, 10 commands are needed to do both DVS and DPM, which is
shown by up and down arrows. However, given a PCIO of 10ms, the power manager cannot
issue the power commands at their scheduled time, because every two commands are
separated at least by 10ms. Figure 4 shows the schedule of Arbitrarily Serialized Power
Commands (ASPC) where, some commands are shifted to the next period and as a result the
real-time deadline is missed. We refer to this schedule shift as Power Command Jitter. To
avoid this problem the power manager must be limited to issuing up to seven power
commands in each period. We define a Command Slot (CS) as the time interval in which
only one command may be issued. In the example of Figure 3, the period (70ms) is divided
into seven command slots (10ms each). Without power management, the system consumes
112000mJ (i.e. 4×70×400) for an entire iteration of the schedule. If all power commands
could be issued at their scheduled time, then the amount of energy saving would be 49%
compared to no power management (100 - 100*(Σk

i=a Areai)÷112000).

a b c

d

g

h

i j

e f

k

Figure 3. Task and power schedule Figure 4. Arbitrarily serialized power commands

Since the amount of power and energy savings achieved by various power commands
are different, an optimization algorithm is needed to select and keep the most beneficial
commands. Moreover, these commands cannot just be dropped randomly, because a task
cannot execute if we drop a command to wake up its associated resource. In order to maintain
a valid schedule of tasks, removing one command may require adjustments to or removal of
several other commands. Table 1 shows an example of required adjustments to commands
when one of them is removed. It also shows the corresponding reduction in energy saving.
For example removing command (8) disables execution of task j, because the processor is
OFF. To fix this problem, we have to also remove command (3). As a result of removing
both (3) and (8), the processor p2 will be ON during the entire execution time. In that case,
the achieved energy saving is reduced by 10.7% (i.e. (5+20+5)×400÷112000). Removing
command (4) is rather more complex because, it is an ON command coupled with the OFF
command (10). To prevent elimination of task f, the command (10) should change from a
shut-down command to a slow down command. Note that both the start and the end of a
period should be in the same power mode, in order to make the schedule repeatable. Figure 5
shows the schedule after eliminating commands (3), (4), (8). Table 2 shows all the solutions
and the amount of saving achieved by each. As one can see, a PCIO of 10ms can decrease the
amount of energy saving from 49% down to 8.8% (solution 11) in this example.

Removed
commands

required
command
changes

required
command
elimination

added energy
overhead %

(2) or (6) (6) or (2) 13.4
(3) or (8) (8) or (3) 10.7

(5) (1) 1.8
(9) (5) 3.57
(1) (5) 5.36

(1),(5) (9) 8.93
(1),(9) (5) 8.93
(9),(5) (1) 8.93

(4) (10) 2.68
(7) (4) 5.36

(7),(4) (10) 16.1

No
Removed

Commands
Total amount
of saving %

1 1, 4, 5, 7, 9, 10 24.9
2 1, 4, 5, 7, 10 21.32
3 1, 4, 5, 9, 10 15.96
4 1, 4, 5, 10 22.21
5 1, 5, 7, 9, 10 18.64
6 1, 2, 5, 7, 10 22.21
7 1, 2, 5, 6, 9 18.64
8 1, 2, 5, 6 22.21
9 1, 5, 7, 9, 10 22.21
10 1, 3, 5, 7, 8, 10 29.36
11 1, 5, 9 8.821

Table 1. Energy overhead of removing each command
and the required changes

Table 2. All possible solutions and the
amount of energy saving

(3)

(1) (5)

(6)

f i

(8)

(2)

(4)

(9)

(10)

d g

b

a

c
e h

k

P4

P3

P2

P1

j

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
100ms

(8)

f
i

(4) (7) (10)

(5)

c e h
k

(1)
(9)

(3)

off/on on/off

b j

P4

P3

P2

P1

S1 S2 S3 S4 S5 S6 S7

(2)

LH

70ms

HL

d

g a

(6)

Figure 5. Schedule after removing (3), (4), (8)

Instead of eliminating conflicting commands, we may be able to schedule them in their
neighboring empty slots. For sake of simplicity, in this paper, we consider only standby and
shutdown commands. A similar approach is applicable in presence of DVS commands.

4 Problem Formulation
In this section, we formulate the problem of scheduling power commands in presence of

PCIO. Assume that we have n idle intervals in the period P and the power manager can issue
N commands (one in each slot). Each idle interval ωi is associated with a processing element
proc(ωi) and is represented by (si, ei) pairs, where,

• si ∈ [0,P): start time of the idle interval, and
• ei ∈ [0,P): end time of the idle duration
where, si < ei. The power command issue overhead is denoted by PCIO. Also, the

command slot, in which an event η is scheduled, is denoted by CS(η)∈[1, N]. Moreover, the
status of each command slot k is captured in SL[k]∈{0,1}, where 0 means the slot is available
and 1 means it is already taken by another event.

Corresponding to each idle interval ωi, we define a standby interval µi during which the
proc(ωi) may be shutdown. In addition to shutdown, other standby modes can also be used
depending on the size of the µi. The standby interval µi is represented by:

• vi∈ {0,1}: to indicate whether the associated power commands are scheduled (1) or not
(0). If not, the resource stays ON during the interval.
• s′i∈ [0,P): start of standby interval µi (OFF/Standby command)
• e′i ∈ [1,P]: end of standby duration µi (ON command)
To ensure the correctness of the scheduled tasks, the idle intervals must envelope the

standby intervals. That is,
si ≤ s′i < e′i ≤ ei (2)

Also, none of the scheduled commands share the same command slot. That is,
CS(s′i) ≠ CS(s′j), CS(e′i) ≠ CS(e′j) ∀i ≠ j, vi = vj = 1 (3)

The objective is to schedule the standby intervals so that the total consumed energy is
minimized, while none of the power commands is conflicting with others. The total energy is
the sum of energy consumed during task execution, idle time and standby time.

E = Eexec+Eidle+Estby (4)
Or

(1)

LH

g a

h
k

f
i

(2) (6)

(5)

(7) (10)

P4

P3

P2

P1

(9)

j

S1 S2 S3 S4 S5 S6 S7

d

b

c
e

∑∑ == 










′−+
′′+

−′
⋅+−⋅−+= n

i

iiidle

iistby

iiidle

i

n

i iiidleiexec

eeE

seE

ssE

vseEvEE
11

)(

),(

)(

)()1((5)

Eidle and Estby are two functions that calculate the amount of consumed energy for a

specified interval, assuming the corresponding resource is in idle and standby modes,
respectively. Estby also includes the transition energy of ON to the selected standby mode as
well as of standby to ON mode. The standby mode transition cannot take place for small idle
intervals, because the amount of energy saving will be less than transition energy. The
smallest possible standby interval for mode change is denoted by minST.

5 Power Command Adjustment Algorithm
Figure 6 shows the pseudo code of the proposed Power Command Adjustment (PCA)

algorithm for finding an optimized solution for the problem. The algorithm inputs a list of
idle intervals IIL_List and then creates and initializes a list of standby intervals SI_List. Next,
it pushes them to a priority queue pQueue that sorts the standby intervals based on their
energy saving. Here, the intuition is to schedule the most energy saving standby intervals first
and then schedule the rest if possible. The algorithm checks for schedulability of each
standby interval. Whenever the command slot is not available to schedule s′ and e′, then the
algorithm tries to resize the interval by checking the slots between the two (see RESIZE()). As
the standby interval µ is resized, it should be re-prioritized and re-queued, and this can be
repeated until an available command slot is found for both s′ and e′. If no available slot is
found or the standby interval is very short after resize, it will not be scheduled.

POWERCOMMANDADJUSTMENTALG(IIL_List, N, PCIO)
 for each i in 1 to N
 SL.ADD(0) //all slots are initially available
 Create SI_List
 for each i in 1 to n
 SI_List[i].s′ = IIL_List[i].s // initialize the start and end of standby interval
 SI_List[i].e′ = IIL_List[i].e
 SI_List[i].v = 0 // initially no standby mode transition is done
 Create priority queue pQueue // energy saving is the key value
 for each i in 1 to n
 key = CALCULATEENERGYSAVING(SI_List[i])
 pQueue.PUSH(SI_List[i], key) // sorts based on energy saving
 while (pQueue.SIZE() > 0)
 � = pQueue.POP() // selects the most beneficiary interval
 if (SCHEDULABLE(SL, �))
 SCHEDULE(SL, �)
 �.v = 1 // the power commands are scheduled for interval �
 else if (RESIZE(SL, �))
 key = CALCULATEENERGYSAVING(�) // recalculate the key after resize
 pQueue.PUSH(�, key)
 else
 �.v = 0 // no power command is scheduled for �
 totalEnergy = Calculate total energy using Equation (5)
 return totalEnergy, SI_List

SCHEDULABLE(SL, �) // checks if both start and end of interval � can be scheduled
 if(CS(�.s′) = 0 and CS(�.e′) = 0)
 return true
 return false

RESIZE(SL, �) // relocates start and end event to available slots
 if (CS(�.s′) = CS(�.e′)) // if no further resize is possible, returns false
 return false
 while(CS(�.s′) != CS(�.e′) and SL[CS(�.s′)] =1) // relocates start
 �.s′ = �.s′ + PCIO
 while(CS(�.s′) != CS(�.e′) and SL[CS(�.e′)] =1) // relocates end
 �.e′ = �.e′ − PCIO
 if(�.e′ − �.s′ < minST) // checks the minimum size condition
 return false
 return true

SCHEDULE(SL, �) // allocate two slots corresponding to the start and end of �
 SL[CS(�.s′)] = 1
 SL[CS(�.e′)] = 1

Figure 6. Pseudo code of Power Command Adjustment Algorithm

6 Experimental Setup
To investigate the effect of Power Command Issue Overhead (PCIO) on different

systems and applications, we have developed a high-level system simulator that simulates
application execution and identifies the idle intervals of all the resources. Since we just need
to extract resource utilization information, there is no need for a low-level simulator. As a
result, the application model can be simplified to a set of dependent tasks with a fixed

mapping to the resources. We also consider the communication delay in order to get a more
precise timing. This section first explains our approach to modeling, simulation, and profiling
of different system elements, and then presents experimental results.

6.1 Modeling
The system is modeled as a set of resources, communication channels and application.

The resources include general-purpose processors, DSP processors, FPGAs and ASICs. Each
resource model consists of a set of standby (power) modes as well as the specification of a
local scheduling algorithm. The standby modes are represented by their power consumption
and the delay of entering and exiting from them. The local scheduling algorithm of a resource
defines the order of task execution whenever multiple tasks are simultaneously ready to be
executed on that resource. Simple resources can use a First-In-First-Out (FIFO) algorithm,
while complex resources can use Earliest Deadline First (EDF), Rate Monotonic, or other
algorithms. Communication channels include both point-to-point connection and shared
buses and they are represented by their bandwidth, and their energy per bit characteristics.
The application is represented as a set of periodic Task Graphs (TG). Task graphs represent
the order and the duration of resource contribution to accomplish a system-level task. Each
node of the graph contains the execution time, and a reference to the mapped resource. The
edges show the amount of the data that must be transferred between the tasks.

6.2 Simulation and Profiling
The simulator starts by loading system components and application information. It

calculates the Least Common Multiple (LCM) of all the task graphs’ periods and generates a
set of TG objects that should be executed during the simulation. When a TG reaches its
arrival time, the simulator initiates its execution by putting its first task in the ready list of the
mapped resource. Resources choose the tasks from their ready list based on their local
scheduling policy. After finishing execution of a task, the resource initiates a communication
request, which is followed by putting the dependent tasks in the ready list of their own
corresponding resources. At the end of the simulation, a list of idle intervals is generated.

6.3 Experimental Results
In this section, we present two sets of experiments. The first experiment shows the

impact of PCIO on energy consumption of a three-channel software defined radio system.
The second experiment shows the effect of system scale on energy consumption in presence
of PCIO. We use the software defined radio system for the second experiment too. However,
we change the number of activated channels, to vary number of controllable devices.

Figure 7. The block diagram of a software defined radio
system

Figure 8. Send and receive task graphs for one
channel

PA Trans Modem IO Proc

Proc

PA Trans Modem IO Proc

Proc

PA
0

Trans
0

Modem
0

Proc
0

IO
Proc

PA
1

Trans
1

Modem
1

Proc
1

PA
2

Trans
2

Modem
2

Proc
2

Figure 7 shows the block diagram of a CORBA-based software defined radio system
[1]. The system has three communication channels for sending and receiving messages. It is
also capable of generating different waveforms and can communicate with different stations
simultaneously. Each channel consists of four elements (processor, modem, transceiver and
Power Amplifier (PA)). The power modes of the resources are presented in Table 3. Note
that the PA has different power values, which will be selected by the application based on the
distance of the receiver station. Each resource has two standby modes (stdby1 and stdby2)
that are controlled by power manager (Table 4). The PA has an extra standby mode (stdby0)
that does not have any transition overhead and is controlled by the PA itself. During mode
transitions, the resources are considered ON. Figure 8 shows the task graphs for sending a
message to or receiving it from an external station using one of the channels. We have
randomly generated 20 testbenches of 10s length. The distance between every two
consecutive messages is bounded by maxDistance value that varies in range 200µs to 4000µs
in different testbenches. In this section, the testbenches are referred using their maxDistance
value (e.g. TB-maxDistance).

 Proc Modem Trans PA IO Proc

ON mode 6W 4W 25W 9, 40, 200 W 5W

Table 3. Power consumption of different resources in their ON mode

Standby Modes Power(W) Entering Ov (�s) Exiting Ov(�s) minST(�s)
Stdby0 (PA only) 5 0 0 1

stdby1 (all) 1 45 45 100
stdby2 (all) 0.1 120 120 1000

Table 4. Standby modes of the resources

6.3.1 Impact of PCIO on energy consumption
In this experiment we show energy consumption of the testbenches for different values

of PCIO. In general, the value of PCIO is dependent on the designed API for power
commands, the number of CORBA objects that are involved in issuing power commands and
the way they communicate with each other. It is also dependent on the speed of the machine
that runs power manager as well as the efficiency of the utilized middleware. PCIO is usually
proportional to collocation delay [7] and scheduler service overhead [8]. Collocation delay is
mainly due to CORBA inter-object calls and is related to extra data processing required for
CORBA compliant communications. The delay of scheduler service is due to the additional
middleware code that should be executed on top of real-time scheduling of the OS and is OS-
specific [5]. For a typical controlling API, like the one proposed in [10], and a Linux based
CORBA platform, PCIO can be as high as a few milliseconds. In this experiment, PCIO is
considered in the range of 30µs to 900µs. Figure 9 compares the energy consumption of all
testbenches for a system with a non-ideal power manager (non-IPM) vs. one with an ideal
power manager (IPM). The non-IPM has a PCIO of 50µs, while the IPM has a PCIO of 0.
The horizontal axis shows different testbenches represented by their maxDistance value. In
both curves, the energy gradually drops due to the increase in size of idle intervals, which
provides more opportunity for power saving. However non-IPM cannot benefit from idle
intervals as much as IPM does, because it can issue one power command in every 50µs, and
as a result some commands will conflict with each other. The conflicting commands are
removed or rescheduled using PCA algorithm.

0

200

400

600

800

1000

1200

1400

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

maxDistance

E
n

er
g

y
(J

)

non-IPM IPM

0

200

400

600

800

1000

1200

1400

30 90 15
0

21
0

27
0

33
0

39
0

45
0

51
0

57
0

63
0

69
0

75
0

81
0

87
0

PCIO (u-sec)

E
n

er
g

y
(J

)

IPM non-IPM no-PM

Figure 9. Comparing the energy consumption of the
testbenches when PCIO=0 vs. PCIO=50�s

Figure 10. Comparing the energy consumption of
TB-2000 for different values of PCIO

20
0

12
00

22
00

32
00

30 12
0 21

0 30
0 39

0 48
0 57
0 66

0 75
0 84
0

0

200

400

600

800

1000

1200

1400

maxDistance PCIO (u-sec)

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200

Figure 11. Comparing the energy consumption of the testbenches for different values of PCIO

Figure 10 shows the sensitivity of the result to the value of PCIO. In this case, testbench
TB-2000 is simulated with different PCIOs. The amount of energy consumption rapidly goes
up by increasing PCIO, because all idle intervals smaller than PCIO are discarded and the
conflicting ones are resolved. Note that a PCIO as low as 30µs can increase the energy
consumption by 25%. Figure 11 shows the energy consumption of all testbenches for
different values of PCIO. Note that for testbenches with short idle intervals, the amount of
energy consumption increases with a higher trend.

6.3.2 Impact of system scale on energy savings of non-ideal power
managers

In this experiment we change the number of controllable resources in the software
defined radio system by activating different numbers of channels. When only one channel is
active, the power manager controls five resources. However, when all channels are active, the
power manager must control 13 resources. Figure 12 shows the energy consumption of the

activated channels. The results are shown for different cases: (1) ideal power management
(IPM), (2) non-ideal power manager with a PCIO of 50µs (uses PCA algorithm), and (3)
without any power management (no-PM). Testbench TB-2000 is selected for this
experiment. Compared to ideal power manager, the system with non-ideal power manager
consumes 22%, 24% and 27% more energy when one, two and three channels are activated
respectively. Note when more resources are controlled the non-ideal power manager looses
more energy.

0

200

400

600

800

1000

1200

1400

Channel 0 Channel 0,1 Channel 0,1,2

E
n

er
g

y
(J

)

no-PM non-IPM IPM

Figure 12. energy consumption of the system for different number of channels

noPM: no power manager is used, PCA: non-ideal power manager, IPM: ideal power manager

7 Conclusion
This paper introduced the Power Command Jitter problem in middleware based

distributed real-time embedded systems. In such systems, the Power Command Issue
Overhead (PCIO), caused by inherent middleware overhead, limits the rate of issuing power
commands and therefore changes their schedule. We proposed an effective Power Command
Adjustment (PCA) algorithm that re-orders, reschedules or removes the power commands so
that the correctness of the schedule is maintained while minimizing the corresponding energy
loss. Power command overhead can significantly affect the amount of energy saving
achievable by power manager. Our experimental results on a commercial software defined
radio system shows that in presence of power command issue overhead, even as low as 30µs,
the power manager can loose 25% of its energy saving. Therefore, it is important to estimate
the amount of PCIO and consider it in the scheduling of power commands. Also, designing
and developing techniques to minimize PCIO is necessary for reducing the energy loss.

8 References
[1] Joint tactical radio system. http://jtrs.army.mil.
[2] Real-time and embedded CORBA forum. http://www.realtime- corba.com/.
[3] D. Sharp. Real-time distributed object computing: Ready for mission-critical embedded

system applications. In IEEE Proceedings of the Third International Symposium on
Distributed-Objects and Applications (DOA’01), 2001.

[4] C. Gill and R. Cytron. Extending real-time CORBA for next generation distributed real-
time mission-critical systems. In OMG Second Workshop on Real-Time and Embedded
Systems, 2001.

[5] D. Levine, S. Flores-Gaitan, and D. Schmidt. An empirical evaluation of OS support for
real-time CORBA object request brokers. In Real-Time Technology and Applications
Symposium (RTAS ’99), 1999.

[6] R. Noseworthy. IKE 2-implementing the stateful distributed object paradigm. In Fifth
IEEE International Symposium on Object-Oriented Real-Time Distributed Computing,
2002.

[7] I. Pyarali, C. O’Ryan, D. Schmidt, N. Wang, V. Kachroo, and A. Gokhale. Applying
optimization principle patterns to real-time ORBs. IEEE Concurrency Magazine,
January-March 2000.

[8] D. Schmidt, D. Levine, and S. Mungee. The design and performance of real-time object
request brokers. Computer Communications, pages 294–324, April 1998.

[9] CORBA performance and overheads. http://www.ois.com/resources/ corb-10.asp.
[10] D. Haverkamp, D. Jensen, and S. Koenck. CORBA interfaces for power management /

CORBA for low power embedded devices. In OMG Workshop on Distributed Object
Computing for Real-time and Embedded Systems, 2003.

[11] Neal K. Bambha, Shuvra S. Bhattacharyya, Juergen Teich, and Eckart Zitzler. Hybrid
global/local search strategies for dynamic voltage scaling in embedded multiprocessors.
In Proc. International Workshop on Hardware/Software Codesign (CODES/CACHE),
page 243, 2001.

[12] Y. Zang, X. Hu, and D. Chen. Task scheduling and voltage selection for energy
minimization. In Proc. DAC, 2002.

[13] Marcus Schmitz, Bashir Al-Hashimi, and Petru Eles. Energy efficient mapping and
scheduling for DVS enabled distributed embedded systems. In Proc. Design, Automation
and Test in Europe - DATE, 2002.

[14] J. Luo and N. K. Jha. Power-conscious joint scheduling of periodic task graphs and
aperiodic tasks in distributed realtime embedded systems. In Proc. Int. Conf. Computer-
Aided Design, pages 357–364, 2000.

[15] Inki Hong, Gang Qu, Miodrag Potkonjak, and Mani B. Srivastava. Synthesis techniques
for low-power hard real-time systems on variable voltage processor. In IEEE Real-Time
Systems Symposium (RTSS ’98), 1998.

