An Algorithm to Avoid Power Command Jitter in
Middleware-Based Distributed Embedded Systems

Bita Gorjiara, Pai Chou, Nader Bagherzadeh

Technical Report CECS-03-47
July 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425
(949) 824- 2481
{bgorjiar, chou, nader}@ece.uci.edu

An Algorithm to Avoid Power Command Jitter in
Middleware-Based Distributed Embedded Systems

Bita Gorjiara, Pai Chou, Nader Bagherzadeh

Technical Report CECS-03-47
July 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425
(949) 824- 2481
{bgorjiar, chou, nader}@ece.uci.edu

Abstract

Middleware such as CORBA provides a software achite that supports integration
of legacy software components with new softwara way that is modular, scalable, and
evolvable. However, these benefits come with hightime overhead. In dynamic hard real-
time distributed embedded systems, usually a centwampmanager calculates and issues all
the power commands. The power manager must comatenath different modules to
transparently perform mode transitions. Due to nehie communication overhead of
middleware based embedded systems, issuing eadr pommand will have considerable
overhead for the power manager. This overheadslithé rate of issuing power commands
and may cause a shift in their schedule. This pagetwo contributions; first, it introduces
the Power Command Jitter (PCJ) problem in middlevised embedded systems; second,
it proposes an effective Power Command Adjustmbgarithm (PCA) that re-orders and
reschedules the power commands so that the carssatri the schedule is maintained while
minimizing the energy loss. Our experimental resuita gommercial software defined radio
system (JTRS) shows PCJ can cause violation cfirealdeadlines and unreliability of the
system. Moreover, in presence of power commane isgarhead, even as low as 3ms, the
power manager can lose 25% of its energy savings.

Contents

IR g 11 0 o L8 [o: A o IS0
PN = - 0 (o 010] o [N
2.1 Middleware-Based Embedded Systems.........ccccoeceeiceiiiennne

2.2 Power Management TECHNIQUEScceerreree et e

3 Motivating EXamPIe......ccrnrrrnreee e

3.1 Example System under POWer ManagemMENt wmme «veeereeerreeerseeesueessessnssm
4 Problem FOrmulation ... sesesesesesees
5 Power Command Adjustment AIQorithm.........cccccoennnnnnnnnenenens

6 EXPErimental SELUP ..ottt

6.3 Experimental RESUILScoceviiieeeeeee e,
6.3.1 Impact of PCIO on energy CONSUMPLION . cooeeecvvveeieeeiieesieeeeeeeseeeesnees s

6.3.2 Impact of system scale on energy savingsmideal power managers

A ©Xo ¢ U 1= o] o SRR

6.1 AV [oT0 (=2 1 0o RPN

6.2 Simulation and Profiling................o e ceennienniie e

List of Figures

Figure 1: System architecture and the processwoihig a power commandccocceeevuenne 6
Figure 2: (a) Processor modes (b) Application TAKINS..........ccceeiieiiieiiie e e 8
Figure 3: Task and powWer SChEAUIEooceeeee e v e 9

Figure 4. Arbitrarily serialized power COMMEAaNUS e ...vveerieeriereieeniee e s 9

Figure 5:Schedule after removing (3), (4), (8)eeeauveeereeerieeiiieeieee e s e 10
Figure 6: Pseudo code of Power Command Adjustmigiarfimcccceeevevieeicincceens 12
Figure 7: The block diagram of a software defirgla Systemcccevvveriieeeiee e o 13
Figure 8: Send and receive task graphs for onenghan.............ccccoooeiiiiin e, 13

Figure 9. Comparing the energy consumption of tbgtbenches when PCIO=0 vs.
O [T (SRS 15
Figure 10. Comparing the energy consumption of TB&or different values of PCIO.....15
Figure 11. Comparing the energy consumption oftéstbenches for different values of

An Algorithm to Avoid Power Command Jitter in
Middleware-Based Distributed Embedded Systems

Bita Gorjiara, Pai Chou, Nader Bagherzadeh
University of California, Irvine
Irvine, CA 92697-3425
(949) 824- 2481
{bgorjiar, chou, nader}@ece.uci.edu

Abstract

Middleware such as CORBA provides a software agchite that supports integration
of legacy software components with new softwar@ way that is modular, scalable, and
evolvable. However, these benefits come with hightime overhead. In dynamic hard real-
time distributed embedded systems, usually a centvapmanager calculates and issues all
the power commands. The power manager must comatenath different modules to
transparently perform mode transitions. Due to nehe communication overhead of
middleware based embedded systems, issuing eaar pommand will have considerable
overhead for the power manager. This overheadslith& rate of issuing power commands
and may cause a shift in their schedule. This pageitwo contributions; first, it introduces
the Power Command Jitter (PCJ) problem in middleviiased embedded systems; second,
it proposes an effective Power Command Adjustméarithm (PCA) that re-orders and
reschedules the power commands so that the cassotri the schedule is maintained while
minimizing the energy loss. Our experimental resuita gommercial software defined radio
system (JTRS) shows PCJ can cause violation ofirealdeadlines and unreliability of the
system. Moreover, in presence of power commana issarhead, even as low as 3ms, the
power manager can lose 25% of its energy savings.

1 Introduction

Distributed embedded systems are becoming more legndpie to the demands for
more features and performance. Since these sysisualy contain several processing
elements, developing software for them is challegmgind expensive. To develop reusable
and platform independent software modules, sonmersydesigners have incorporated more
software layers, or middleware, to these distrih@ebedded systems [1][2]. Currently new
middleware technology is under development thatpramide real-time services, software
fault tolerance, software re-configurability and ntigb[3][4][5][6]. There is a growing trend
towards using middleware services in different @pgbn domains, such as telecom,
aerospace, military testing and training ranges.

To manage power in hard real-time distributed embddsystems, usually a central
power manager calculates and issues all the pasvemands. In order to make the mode
transitions transparent to the running software utes] the power manager must also issue
commands to save and restore configuration and loisfiare or after each power command.
For example, Figure 1 shows the process of issuisigutdown command in a middleware-
based distributed system, proposed in [10]. Faisshutdown command is sent to the
processor. Next, the processor saves its currenssidiemode transition overheadcludes

the overhead of saving the status. Finally, theguawanager communicates with device
manager to turn off the power supply. As showtgkes several communications to perform
a successful resource shutdown. Note that eachlewidce-based communication has
overhead on the processors at both ends [7][8#[@¢ to the extra data checking and
processing. Therefore, it takes a considerable atrauime for the power manager to issue
each command. We call this overhead Power Commanrel @grhead (PCIO). In Figure 1,
PCIO includes the delay of (1), (4) and (5). If PClOdsceonsidered in the scheduling of the
commands, the power manager will arbitrarily seséaland shift them, which can cause
missing real-time deadlines. Even if no real-tineadline is missed, it can cause system
failure or unreliable behavior, which is due to mgaassumptions about the current mode of
the resources. In presence of PCIO, every two catige commands will have a minimum
time separation and as a result, PCIO limits theafaissuing power commands. To correctly
schedule a power command, PCIO, mode transitiomhead and network transmission
overhead must be considered. We call the overalydwer Command Delay (PCD).

This paper introduces the Power Command Jitter)(B@blem in middleware-based
hard real-time distributed embedded systems angbpes a Power Command Adjustment
(PCA) algorithm to fix this problem. The algorithm rescheslwr removes the proper power
commands in order to keep the resources ON dunieig $cheduled busy intervals. It also
minimizes the energy loss by prioritizing the powemmands. Our experimental results on
a commercial software defined radio system shouisitipresence of power command issue
overhead (PCIO), even as low au80the power manager can loose 25% of its energy
saving.

Othe Processo

Power Manager Processor
- 6
Power Managgr Device manag CORBA-based ©
software
A 3 v
iddleware | | .. | |~~~ 77 i Memory
@) Middleware) Middleware
os | | | 0s T
Drivers Power Drivers
Controller
(] A
VL @ 4
Data Bus Bus (Ethernet/CAN/VME)
Y

\ 4

Power Control Bus

@)
Figure 1. System ar chitecture and the process of issuing a power command

The rest of the paper is organized as follows.i@e@ presents an introduction to
middleware based embedded systems as well as gsework on system level power
management. Section 3 introduces power commaadpitbblem using an example. Section
4 formulates this problem followed by the PCA altfori described in Section 5. Section 6
shows the experimental results and Section 7 cdeslthe paper.

2 Background

2.1 Middleware-Based Embedded Systems

Middleware refers to a layer of software above dperating system and below the
application. Its purpose is to provide a softwarehigecture for integration of software
components. Originally developed for general-pugpdsstributed computing, in recent
years, middleware such as CORBA has been adoptashglementation of embedded
systems including network routers, laser printersywswé-defined radios, and other complex
systems. The main benefits of middleware are matylavolvability, and scalability.
Modularity comes from the inter-component commuioca services provided by the
middleware, which decouples the object's callingerface from its implementation.
Evolvability means parts of the software, includitige power manager itself, may be
upgraded smoothly without requiring a reboot. Avare complexity increases, the ability
to integrate legacy software quickly with an upgrgath has also motivated the adaptation
of middleware in these systems.

A main challenge with such middleware has alwaysnkee high run-time overhead.
This is because the middleware must perform maskstan order to support the high-level
abstraction. Communication between objects carxpensive because it involves a lookup
for the object’s location and packaging the parametasiessage. It is a challenge to make
real-time guarantees, because the middleware apeyatan dominate the processor
utilization, leaving much less time for applicati@xecution. Although advances in
microprocessors have made it less of a problerarpocating middleware still means higher
power than without middleware. As a result, poweanagement becomes particularly
important for middleware-based embedded systems.

2.2 Power Management Techniques

Dynamic Power Management (DPM) and Dynamic Voltagaling (DVS) for parallel
and distributed real-time systems have been studiddfbyent researchers [11][12][13][14].
DPM usually means turning off (shutdown) or puttdeyices in non-operational low power
modes (standby) when they are not in use; DVS nleamsing the voltage (and frequency)
of a component for higher energy efficiency whedags not need to run at its full speed.
Stochastic DPM approaches are also applicable dofreal-time systems. However, they
cannot be used in hard real-time systems due touheeliable nature. Many approaches
consider mode transition overhead and Power Comriatay (PCD) in scheduling of
power commands. However, all of them assume tleat is no PCIO, and the central power
manager can issue as many commands as needed. Halnfl® takes into account the
inherent limitation on the rates at which the \gétand clock frequency of a component can
be changed by the power supply controllers and ctgamerators. However, they do not
consider the system level constraint on power camimeate caused by middleware
overhead. The difference between these two contstigithat the first only limits the number
of commands issued for one controllable resourdetia® second limits the total number of
commands that can be issued for the entire systama result the second constraint
(discussed in this paper) is sensitive to the gizbe system. To the best of our knowledge,
none of the previous researchers have considdaseprtittical issue.

3 Motivating Example

In this example we show that how PCIO can invalidaehadule or limit the amount of
energy saving achievable by DVS and DPM. We alsaghe importance of choosing and
issuing the right set of commands.

3.1 Example System under Power Management

Assume we have a system composed of four processomnfong tasks, and a separate
control unit for changing the power state of preoes at run time. The system supports both
DVS and DPM and it has three DVS modes and on@svat mode without any transition
overhead. Figure 2(a) shows the power level of @aotie. The application running on the
system is represented as a set of periodic taghgshown in Figure 2(b). The task graphs
capture data dependencies between the tasks.

Modes Power (mW) e Q e

DVS_ml 400

DVS_m2 200 0 ° 0 e

DVS_m3 100

Shutdown 0 0 ° ‘ 9
(b)

@
Figure 2. (a) Processor modes (b) Application Task Graphs

Figure 3 shows the schedule of tasks on four psocgswhere the height represents the
power consumption of each processor. The peri@@nss and the same schedule is repeated
in each period. In this case, 10 commands are ddeddo both DVS and DPM, which is
shown by up and down arrows. However, given a PGIDms, the power manager cannot
issue the power commands at their scheduled tireeause every two commands are
separated at least by 10ms. Figure 4 shows the idehefl Arbitrarily Serialized Power
Commands (ASPC) where, some commands are shifted text period and as a result the
real-time deadline is missed. We refer to this daleeshift as Power Command Jitter. To
avoid this problem the power manager must be ldnite issuing up to seven power
commands in each period. We define a Command SB} &s the time interval in which
only one command may be issued. In the examplegofd-3, the period (70ms) is divided
into seven command slots (10ms each). Without pomaragement, the system consumes
112000mJ (i.e. 4x70x400) for an entire iteratiorth&f schedule. If all power commands
could be issued at their scheduled time, then theuat of energy saving would be 49%
compared to no power management (100 - I%(Area)+112000).

LH HL
A 6 Y T
@ d v(@ d i g y (6
3 . g b8 ! AL AL AT
on/off offfon & Wy 1
o |® ® b iﬁ//% @ J J
Ny | ©
9)
—l(l) ®) —l(l of 7
f Lk . e, 7
pat €, h] pyt € I ! [
'y A
(4) 7 _ (10) T :’/;“17?" (10)
pa 0 Ly b Gt I 7 A/::r
70ms 9 100ms
S1 S2 S3 sS4 S5 S6 S7 S1 S2 S3 sS4 S5 S6 S7 S8 S9 S10
Figure 3. Task and power schedule Figure 4. Arbitrarily serialized power commands

Since the amount of power and energy savings asthiby various power commands
are different, an optimization algorithm is neededselect and keep the most beneficial
commands. Moreover, these commands cannot justdppet randomly, because a task
cannot execute if we drop a command to wake wgséeciated resource. In order to maintain
a valid schedule of tasks, removing one commandnegyire adjustments to or removal of
several other commands. Table 1 shows an exampkgoired adjustments to commands
when one of them is removed. It also shows theespanding reduction in energy saving.
For example removing command (8) disables executidaskj, because the processor is
OFF. To fix this problem, we have to also removeie@nd (3). As a result of removing
both (3) and (8), the procesga will be ON during the entire execution time. hat case,
the achieved energy saving is reduced by 10.7% (§#20+5)x400+112000). Removing
command (4) is rather more complex because, it © command coupled with the OFF
command (10). To prevent elimination of tdskhe command (10) should change from a
shut-down command to a slow down command. Notelibtt the start and the end of a
period should be in the same power mode, in order to makehbdule repeatable. Figure 5
shows the schedule after eliminating commandg43)(8). Table 2 shows all the solutions
and the amount of saving achieved by each. As aneesg a PCIO of 10ms can decrease the
amount of energy saving from 49% down to 8.8% (smiuL1) in this example.

Remove(cisrequired required |added ener N Removed | Total amount
commandsomman(command overhead ¢ 0 Commands | of saving %
changeseliminatior) 1] 14,5709,10 24.9
(2) or (6) 6)or (2 134 2 1,4,5710 21.32
(3) or (8) (8)or (3) 10.7 3 | 1,4,5910 15.96
5) ® 1.8 4 1,4,5,10 22.21
9 (5) 357 5 | 1,5,7,9,10 18.64
(€H) 5) 5.36 6 1,2,5710 2221
(1),(5) 9 8.93 7 1,2,56,9 18.64
(1),9) (5) 8.93 8 1,2,5,6 22.21
9),5) () 8.93 9 1,57910 22.21
4 (10) 2.68 10 | 1,3,5,7,8,1(29.36
) 4 5.36 11 1,509 8.821
(M.,4 (10) 16.1
Table 1. Energy over head of removing each command Table 2. All possible solutionsand the

and therequired changes amount of ener gy saving

P1

—1(1)
CI
A
o kl)
L i Y

f

_*@
j

P4

S1 S2 S3 S4 S5 S6 | S7

Figure5. Schedule after removing (3), (4), (8)

Instead of eliminating conflicting commands, we nhayable to schedule them in their
neighboring empty slots. For sake of simplicitythis paper, we consider only standby and
shutdown commands. A similar approach is applicaigteesence of DVS commands.

4 Problem Formulation

In this section, we formulate the problem of schiedyoower commands in presence of
PCIO. Assume that we hawadle intervals in the perio® and the power manager can issue
N commands (one in each slot). Each idle intemyas associated with a processing element
prodw;) and is represented by, @) pairs, where,

5 0 [0,P): start time of the idle interval, and
* g [[0,P): end time of the idle duration

where,s < . The power command issue overhead is denoteBQGIQ. Also, the
command slot, in which an evepts scheduled, is denoted 6¥5#)J[1, N]. Moreover, the
status of each command skas captured irSL{K][{0,1}, where 0 means the slot is available
and 1 means it is already taken by another event.

Corresponding to each idle interval we define a standby intervalduring which the
proc(;) may be shutdown. In addition to shutdown, otlt@ndby modes can also be used
depending on the size of the The standby intervai is represented by:

* vi[J {0,1}: to indicate whether the associated poweanegw@mnds are scheduled (1) or not

(0). If not, the resource stays ON during the irgerv

* 51 [0,P): start of standby interval (OFF/Standby command)

* €;[0[1,P]: end of standby duratiga (ON command)

To ensure the correctness of the scheduled tdsksdle intervals must envelope the
standby intervals. That is,

S§<S;<€j<eg)
Also, none of the scheduled commands share the amaand slot. That is,
CSsi) #CSs)), C9e) #CYep) Ui #j,vi=v =1 3)

The objective is to schedule the standby intenalthat the total consumed energy is
minimized, while none of the power commands is conilictvith others. The total energy is
the sum of energy consumed during task executi@time and standby time.

E = Eexedr Eidle+Estby (4)

Or

Eue(S —S)
E= Eexec+ Zi=1 (1_ V|) |:IEidIe (q - S) + Zi::LVi + Estby(q" SI) (5)
+Ege (Q - Q')

Eigle and Esiy are two functions that calculate the amount of eorexi energy for a
specified interval, assuming the corresponding uresois in idle and standby modes,
respectivelyEqpy also includes the transition energy of ON to #lected standby mode as
well as of standby to ON mode. The standby modtesitian cannot take place for small idle
intervals, because the amount of energy saving bellless than transition energy. The
smallest possible standby interval for mode chandenoted byninST

5 Power Command Adjustment Algorithm

Figure 6 shows the pseudo code of the proposedrRomramand Adjustment (PCA)
algorithm for finding an optimized solution for tipeoblem. The algorithm inputs a list of
idle intervalsliL_List and then creates and initializes a list of standteyvalsSI_List Next,
it pushes them to a priority quepQueuethat sorts the standby intervals based on their
energy saving. Here, the intuition is to scheduerhost energy saving standby intervals first
and then schedule the rest if possible. The algorichecks for schedulability of each
standby interval. Whenever the command slot isamallable to schedulg andé€, then the
algorithm tries to resize the interval by checking slots between the two (seeskRK)). As
the standby intervat is resized, it should be re-prioritized and retgpge and this can be
repeated until an available command slot is foundobths and€. If no available slot is
found or the standby interval is very short afesize, it will not be scheduled.

POWERCOMMAND ADJUSTMENTALG(IIL_List, N, PCIO
for eachiin1toN

SL.ADD(0) /fall slots are initially available
CreateS|_List
for eachiin1lton
SI_Lisfi].s =IIL_List[i].s /linitialize the start and end of standby interval
SI_Lisfi].€ =IIL_List[i].e
SI_Lisfil.v=0 /linitially no standby mode transition is done
Create priority queugQueue /lenergy saving is the key value

for eachiinlton
key = Q\LCULATE ENERGYSAVING (SI_Lisfi])

pQueuePusH(SI_Lisfi], key) /Isorts based on energy saving
while (pQueueSze() > 0)
1 =pQueuePor) /I selects the most beneficiary interval
if (SCHEDULABLE(SL, p))
SCHEDULE(SL, 1)
uv=1 /lthe power commands are scheduled for intgrval
deeif (RESIZHSL 1))
key = Q\LCULATE ENERGYSAVING (1) Il recalculate the key after resize
pQueudPusH(u, key)
dse
uv=0 /Ino power command is scheduledfor

totalEnergy= Calculate total energy using Equation (5)
return totalEnergy SI_List

SCHEDULABLE(SL,) /I checks if both start and end of interyadan be scheduled
if(Cqu.s) =0and Cqu.€) = 0)
return true
return false

ReSIZHSL 1) /I relocates start and end event to available slots
if (Cu.8)=CSu.€)) Il'if no further resize is possible, returns false
return false
while(Cqu.s) 1= CSu.€) and SCSw.s)] =1) /I relocates start
u.S =u.s +PCIO
while(Cqw.s) = CSu.€) and S{Cu.€)] =1) /I relocates end
u€ =ue -PCIO
if(u.€ —p.s <MinST /I checks the minimum size condition
return false
returntrue

SCHEDULE(SL, u) Il allocate two slots corresponding to the start and efu
SUCu.s)=1
SUCu.e)]=1

Figure 6. Pseudo code of Power Command Adjustment Algorithm

6 Experimental Setup

To investigate the effect of Power Command Issueriad (PCIO) on different
systems and applications, we have developed aldéwghsystem simulator that simulates
application execution and identifies the idle m&s of all the resources. Since we just need
to extract resource utilization information, th&seno need for a low-level simulator. As a
result, the application model can be simplifiedatset of dependent tasks with a fixed

mapping to the resources. We also consider the comeation delay in order to get a more
precise timing. This section first explains our@ggeh to modeling, simulation, and profiling
of different system elements, and then presen@rigmental results.

6.1 Modeling

The system is modeled as a set of resources, coatian channels and application.
The resources include general-purpose process8k pibbcessors, FPGAs and ASICs. Each
resource model consists of a set of standby (powedes as well as the specification of a
local scheduling algorithm. The standby modes epeesented by their power consumption
and the delay of entering and exiting from thene Tdcal scheduling algorithm of a resource
defines the order of task execution whenever meltgsks are simultaneously ready to be
executed on that resource. Simple resources caa &gst-In-First-Out (FIFO) algorithm,
while complex resources can use Earliest Deadliret fEDF), Rate Monotonic, or other
algorithms. Communication channels include both point-to-paiohnection and shared
buses and they are represented by their bandveidththeir energy per bit characteristics.
The application is represented as a set of peribas& Graphs (TG). Task graphs represent
the order and the duration of resource contribuitoaccomplish a system-level task. Each
node of the graph contains the execution time,aareference to the mapped resource. The
edges show the amount of the data that must beféreed between the tasks.

6.2 Simulation and Profiling

The simulator starts by loading system components application information. It
calculates the Least Common Multiple (LCM) of akkttask graphs’ periods and generates a
set of TG objects that should be executed duriegstmulation. When a TG reaches its
arrival time, the simulator initiates its executlmyputting its first task in the ready list of the
mapped resource. Resources choose the tasks feimready list based on their local
scheduling policy. After finishing execution ofask, the resource initiates a communication
request, which is followed by putting the dependasks in the ready list of their own
corresponding resources. At the end of the sinauma4 list of idle intervals is generated.

6.3 Experimental Results

In this section, we present two sets of experimefte first experiment shows the
impact of PCIO on energy consumption of a threexwbhsoftware defined radio system.
The second experiment shows the effect of systahe so energy consumption in presence
of PCIO. We use the software defined radio systamnthe second experiment too. However,
we change the number of activated channels, toruamper of controllable devices.

PA| | Trans | | Modem| [Proc 10

ST T R GG
PA| | Trans | | Modem| [Proc

—— aCaCaCadd
PA| | Trans | | Modem| | Proc

2 2 2 2

Figure 7. Theblock diagram of a softwar e defined radio Figure 8. Send and receivetask graphsfor one
system channd

Figure 7 shows the block diagram of a CORBA-basd#tivare defined radio system
[1]. The system has three communication channelseioding and receiving messages. It is
also capable of generating different waveforms @dcommunicate with different stations
simultaneously. Each channel consists of four efésn@rocessor, modem, transceiver and
Power Amplifier (PA)). The power modes of the rases are presented in Table 3. Note
that the PA has different power values, which bdlselected by the application based on the
distance of the receiver station. Each resourcevimastandby modestdbyl andstdby?)
that are controlled by power manager (Table 4). HAdas an extra standby modgalby))
that does not have any transition overhead andnsalled by the PA itself. During mode
transitions, the resources are considered ON. &i§whows the task graphs for sending a
message to or receiving it from an external statisimg one of the channels. We have
randomly generated 20 testbenches of 10s lengte. distance between every two
consecutive messages is boundedhbyDistanceralue that varies in range 3260to 400Qs
in different testbenches. In this section, thebtsthes are referred using the@xDistance
value (e.g. TBmaxDistancg

Proc | Modem| Trang PA 10 Proc
ON mode 6W AW 25W| 9, 40, 200 5W

Table 3. Power consumption of different resourcesin their ON mode

Standby Modes Power(W| Entering Q) Exiting Ov(is) minSTus)
0 0

Stdby0 (PA only) 5 1
stdby1 (all) 1 45 45 100
stdby2 (all) 0.1 120 120 1000

Table 4. Standby modes of the resources

6.3.1 Impact of PCIO on energy consumption

In this experiment we show energy consumption eftéstbenches for different values
of PCIO. In general, the value of PCIO is dependamtthe designed API for power
commands, the number of CORBA objects that ardvedan issuing power commands and
the way they communicate with each other. It is dispendent on the speed of the machine
that runs power manager as well as the efficieftlysoutilized middleware. PCIO is usually
proportional to collocation delay [7] and schedglervice overhead [8]. Collocation delay is
mainly due to CORBA inter-object calls and is retato extra data processing required for
CORBA compliant communications. The delay of schexdservice is due to the additional
middleware code that should be executed on topabitime scheduling of the OS and is OS-
specific [5]. For a typical controlling API, likén¢ one proposed in [10], and a Linux based
CORBA platform, PCIO can be as high as a few rati@ds. In this experiment, PCIO is
considered in the range of 80to 90@s. Figure 9 compares the energy consumption of all
testbenches for a system with a non-ideal poweragem(non-IPM) vs. one with an ideal
power manager (IPM). The non-IPM has a PCIO qisS@vhile the IPM has a PCIO of 0.
The horizontal axis shows different testbenchesesgmted by theimaxDistancevalue. In
both curves, the energy gradually drops due taritrease in size of idle intervals, which
provides more opportunity for power saving. Howeren-IPM cannot benefit from idle
intervals as much as IPM does, because it can @gsi@ower command in every s and
as a result some commands will conflict with eatitelo The conflicting commands are
removed or rescheduled using PCA algorithm.

—— non-PM —=— PM ‘—0— PM—=—non-PM no-PM ‘

1400 1400

1200 ’\\ 1200 ’.““.Hf.‘-—: el tyiatatalyn
1000 "\ \ 1000 ,/.‘,-r-

= 800

>

)/
Energy (J)

800
>
o 600 * 600 1
[=
5 ‘\-\- W_A
0 M - -
200 _ 200 [FHESEEE0000000000000000000000¢

o7 0

q/gb

L Q Q N L QO N Q Q
S Q \) N\ N\ \) N S N\

maxDistance PCIO (u-sec)

Figure 9. Comparing the energy consumption of the Figure 10. Comparing the energy consumption of
testbencheswhen PCI0O=0vs. PCIO=50ps TB-2000 for different valuesof PCIO

S 1200
LRSS SSRESSESSees
‘.”'0”’0’:’:‘;’3’;":’3’3'3’ > 1000
AAX X OISR
‘ Slen Y W 1200-1400

@ 1000-1200
B 800-1000
0O 600-800

@ 400-600

m 200-400

@ 0-200

N /Y ‘
000
h'['/l["'"
& u_/!,!,t'
"3’

maxDistance

Figure 11. Comparing the ener gy consumption of thetestbenchesfor different valuesof PCIO

Figure 10 shows the sensitivity of the result ®hlue of PCIO. In this case, testbench
TB-2000 is simulated with different PCIOs. The amtoaf energy consumption rapidly goes
up by increasing PCIO, because all idle intervaialker than PCIO are discarded and the
conflicting ones are resolved. Note that a PClQoasas 3@s can increase the energy
consumption by 25%. Figure 11 shows the energyutopson of all testbenches for
different values of PCIO. Note that for testbencivéh short idle intervals, the amount of
energy consumption increases with a higher trend.

6.3.2 Impact of system scale on energy savings of non-ideal power
managers

In this experiment we change the number of coafotdl resources in the software
defined radio system by activating different nursbafrchannels. When only one channel is
active, the power manager controls five resoutdesever, when all channels are active, the
power manager must control 13 resources. Figureht®'s the energy consumption of the

activated channels. The results are shown forrdiftecases: (1) ideal power management
(IPM), (2) non-ideal power manager with a PCIO 6% (uses PCA algorithm), and (3)
without any power management (no-PM). Testbench20®) is selected for this
experiment. Compared to ideal power manager, teemsywith non-ideal power manager
consumes 22%, 24% and 27% more energy when ongrevthree channels are activated
respectively. Note when more resources are cosdrdtie non-ideal power manager looses
more energy.

@no-PM m non-IPM O IPM \
1400
1200
1000 -+
©
> 800
o
L 600
I
400
s = F N
O T T
Channel O Channel 0,1 Channel 0,1,2

Figure 12. energy consumption of the system for different number of channels

noPM : no power manager isused, PCA: non-ideal power manager, |PM: ideal power manager

7 Conclusion

This paper introduced the Power Command Jitter I@nobin middleware based
distributed real-time embedded systems. In suchersigs the Power Command Issue
Overhead (PCIO), caused by inherent middlewarehewaet, limits the rate of issuing power
commands and therefore changes their scheduler®desed an effective Power Command
Adjustment (PCA) algorithm that re-orders, rescheslor removes the power commands so
that the correctness of the schedule is maintairnléd minimizing the corresponding energy
loss. Power command overhead can significantlycaffee amount of energy saving
achievable by power manager. Our experimentalteesul a commercial software defined
radio system shows that in presence of power comrisane overhead, even as low ags30
the power manager can loose 25% of its energy gaVimerefore, it is important to estimate
the amount of PCIO and consider it in the schedudihpower commands. Also, designing
and developing techniques to minimize PCIO is resngdor reducing the energy loss.

8 References

[1] Joint tactical radio system. http://jtrs.army.mil.

[2] Real-time and embedded CORBA forum. http://wwwtheal- corba.com/.

[3] D. Sharp. Real-time distributed object computinga&®y for mission-critical embedded
system applications. IHEEE Proceedings of the Third International Symposion
Distributed-Objects and Applications (DOA'Q2P01.

[4] C. Gill and R. Cytron. Extending real-time CORBA feext generation distributed real-
time mission-critical systems. @MG Second Workshop on Real-Time and Embedded
Systems2001.

[5] D. Levine, S. Flores-Gaitan, and D. Schmidt. An iicgd evaluation of OS support for
real-time CORBA object request brokers.Real-Time Technology and Applications
Symposium (RTAS '99)999.

[6] R. Noseworthy. IKE 2-implementing the stateful dlgtted object paradigm. IRifth
IEEE International Symposium on Object-Oriented |[R@ae Distributed Computing
2002.

[7] I. Pyarali, C. O'Ryan, D. Schmidt, N. Wang, V. Kaab, and A. Gokhale. Applying
optimization principle patterns to real-time ORB&EE Concurrency Magazine
January-March 2000.

[8] D. Schmidt, D. Levine, and S. Mungee. The desigherformance of real-time object
request broker€€omputer Communicationsages 294—-324, April 1998.

[9] CORBA performance and overheads. http://www.ois/oesources/ corb-10.asp.

[10] D. Haverkamp, D. Jensen, and S. Koenck. CORBAfattes for power management /

CORBA for low power embedded devices.MG Workshop on Distributed Object

Computing for Real-time and Embedded Syst2663.

[11] Neal K. Bambha, Shuvra S. Bhattacharyya, Juergeh,Tand Eckart Zitzler. Hybrid

global/local search strategies for dynamic voltsgaing in embedded multiprocessors.

In Proc. International Workshop on Hardware/Softwared€sign (CODES/CACHE)

page 243, 2001.

[12] Y. Zang, X. Hu, and D. Chen. Task scheduling anttage selection for energy

minimization. InProc. DAG 2002.

[13] Marcus Schmitz, Bashir Al-Hashimi, and Petru ElEsergy efficient mapping and

scheduling for DVS enabled distributed embeddetesys InProc. Design, Automation

and Test in Europe - DATE002.

[14] J. Luo and N. K. Jha. Power-conscious joint scliegubf periodic task graphs and

aperiodic tasks in distributed realtime embeddetiesys. InProc. Int. Conf. Computer-

Aided Designpages 357-364, 2000.

[15] Inki Hong, Gang Qu, Miodrag Potkonjak, and ManiSBivastava. Synthesis techniques

for low-power hard real-time systems on variablitage processor. IEEEE Real-Time

Systems Symposium (RTSS, 2898.

