
Transaction Level Modeling in System Level Design

Lukai Cai and Daniel Gajski

CECS Technical Report 03-10
Mar 28, 2003

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{lcai, gajski}@ics.uci.edu

1

Transaction Level Modeling in System Level Design

Lukai Cai and Daniel Gajski

CECS Technical Report 03-10
Mar 28, 2003

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425,USA

(949) 824-8059

{lcai, gajski}@ics.uci.edu

Abstract

Recently, the transaction-level modeling is widely referred to in system level design literature. However, the transaction-
level models(TLMs) are not well defined and the usages of TLM in the existing design approaches, namely system synthesis,
platform-based design, and component-based design, are not systematically developed. In order to efficiently use TLMs in
above design approaches, this report defines four transaction level abstraction models. The defined TLMs slice the entire
design process into several small design tasks. Each task targets at a specific design objective and the result of a task
can be validated by simulating the corresponding TLM. Designers can extract the characteristics of the design from lower-
level TLMs and annotate them to the higher-level TLMs, such that designers can accurately make design decision at early
stages. Using defined TLMs as standard models, designers can reuse/exchange the pre-defined TLMs and implement the
cross-approach design.

2

Contents

1 Introduction 1

2 Related Work 1

3 Transaction Level Model Definition 2

4 System Design with TLMs 5
4.1 Design Tasks . 5
4.2 System Refinement Domain . 6
4.3 Architecture Exploration Domain . 6
4.4 IP Reuse Domain . 7
4.5 Cross-Approach Design . 7

5 SCE Environment 8

6 Conclusion 8

i

List of Figures

1 Defined system models at different abstraction levels . 2
2 The example ofspecification model . 3
3 The example ofPE-assembly model. 3
4 The example ofbus-arbitration model . 3
5 Time/cycle accurate diagram . 3
6 The example oftime-accurate communication model. 4
7 The example ofcycle-accurate computation model. 4
8 The example ofimplementation model. 4
9 Design tasks in a general design flow . 5
10 TLMs in the system refinement domain . 6
11 TLMs in the architecture exploration domain . 7
12 TLMs in the IP reuse domain . 8

ii

List of Tables

1 Characteristics of different abstraction models . 5

iii

Transaction Level Modeling in System Level Design

Lukai Cai and Daniel Gajski
Center for Embedded Computer Systems

Information and Computer Science
University of California, Irvine

Abstract

Recently, the transaction-level modeling is widely re-
ferred to in system level design literature. However, the
transaction-level models(TLMs) are not well defined and
the usages of TLM in the existing design approaches,
namely system synthesis, platform-based design, and
component-based design, are not systematically developed.
In order to efficiently use TLMs in above design ap-
proaches, this report defines four transaction level abstrac-
tion models. The defined TLMs slice the entire design pro-
cess into several small design tasks. Each task targets at
a specific design objective and the result of a task can be
validated by simulating the corresponding TLM. Designers
can extract the characteristics of the design from lower-level
TLMs and annotate them to the higher-level TLMs, such
that designers can accurately make design decision at early
stages. Using defined TLMs as standard models, designers
can reuse/exchange the pre-defined TLMs and implement
the cross-approach design.

1 Introduction

In order to handle the ever increasing complexity and
time-to-market pressures in the design of system-on-chips
(SoCs), the design abstraction has been raised to the system
level to increase productivity. System level design enables
making design decisions at higher levels of abstraction and
reusing design components. Recently, there has been inter-
est in transaction-level modeling [4][8] for system abstrac-
tion.

In the transaction-level model(TLM), the details of com-
munication among computation components are separated
from the details of the implementation of computation com-
ponents. Communication is modelled as channels and trans-
action requests take place by calling interface functions of
these channel models. Unnecessary details of communi-
cation and computation are hidden in the TLM and may
be worked out later. Transaction-level modeling enables

speeding up simulation time, exploring and validating im-
plementation alternatives at the higher level of abstraction.

However, the current definition of TLM is too general
and not well defined. Without clear definition of TLMs, not
only the predefined TLMs cannot be easily reused, but also
the usages of TLMs in the existing design practices, namely
system synthesis, platform-based design, and component-
based design, cannot be systematically developed. Conse-
quently, the advantages of TLM don’t effectively benefit the
users of the existing design practices.

In order to eliminate the ambiguity of TLM, this report
explicitly defines four transaction-level abstraction models,
each of which is adopted for different design purpose. It
also explores the usage of defined TLMs under a general
design flow and analyzes how the TLMs benefits the exist-
ing design practices. Finally, we introduce SCE, a system
level design environment for support of TLMs.

This report is organized as follows: Section 2 reviews
the previous work; Section 3 defines four TLMs; Section 4
introduces the usage of TLMs in different design practices;
Section 5 describes the support of TLM by SCE. Finally,
the conclusion is given in section 6.

2 Related Work

The concept of TLM first appears in system language
and modeling domain. UCI [4] defines constructchannel,
which enables separating communication from computa-
tion. It proposes four well-defined models at different ab-
straction levels in a top down design flow. Some of these
models can be classified as TLMs. However, the capabili-
ties of TLMs are not stressed. Grotkeret. al. [8] broadly
define the TLM features and present some design exam-
ples. However, the definition of TLM is too general and
the usages of TLM in the existing design approaches are
not addressed. [4] [8] also demonstrate that both SpecC
and SystemC support transaction level modeling using the
constructchannel.

The TLM can be used in the existing three de-
sign practices: system synthesis (top down approach),

1

platform-based design (meet-in-the-middle approach), and
component-based design (bottom-up approach).System
synthesis, such as UCI’s approach [4], starts design from
the system behavior representing the design’s functional-
ity, generates a system architecture from the behavior, and
gradually reaches the implementation model by adding im-
plementation details. With comparison to the system syn-
thesis,platform-based design[9] maps the system behav-
ior to the predefined system architecture, rather than gen-
erating the architecture from the behavior. An example of
platform-based design approach is to use VCC [1] for de-
sign estimation/exploration and Co-Ware N2C [3] for inter-
face synthesis. Unlike above two approaches, in order to
produce the predefined platform, component-based design
assembles the existing computation components by insert-
ing wrappers among them. Component-based design, such
as proposed by TIMA [2], focuses on component reuse and
wrapper generation. All of above three design practices ful-
ly/partly cover design domain from the system behavior to
the detailed system implementation, which exhibits great
potential of employing TLMs.

Some research groups have applied TLM in the design.
Pasricha’s work [10] adopts TLM to ease the develop-
ment of embedded software. Pierreet al. [11] defines a
TLM with certain protocol details in a platform-based de-
sign, and uses it to integrate components at the transac-
tion level. TIMA [6] implements co-simulation across-
abstraction level using channels, which implies the usage
of TLM.

Each of above research only addresses one limited as-
pects of TLM. In comparison to them, this report has the
following three contributions. First, it clearly defines four
TLMs at different abstraction levels, which allow design-
ers to reuse TLM IPs and to share TLM design experience.
Second, it explores the capability of TLM, which covers but
not limits to the previous research. Finally, it uses TLM in
the existing design practices. Tightly coupling TLM and de-
sign practices not only improves the efficiency of the design
practices, but also assists the appropriate usage of TLM.

3 Transaction Level Model Definition

We define six system models at different abstraction lev-
els, which is displayed in Figure 1. Among them,PE-
assembly model, bus-arbitration model, time-accurate com-
munication modeland cycle-accurate computation model
are TLMs, which are indicated by shaded ellipses.

The first model isspecification model, which describes
the system functionality and is free of any implementation
details. This model is similar to thespecification modelin
[4] anduntimed functional modelin [8]. It models the data
transfer between processes through variable accessing with-
out usingchannelconcept, which eases to convert C/C++

Specification model

� � �
� � �

PE-assembly model

� � �
� � �

Bus-arbitration model

Implemenation model

� � �
Time-accurate

communication

model
 � � �Cycle-accurate

computation

model

Figure 1. Defined system models at different
abstraction levels

language to SystemC/SpecC.Specification modelis an un-
timed model. Figure 2 displays an example ofspecification
model. ProcessesB1, B2, B3, B4, andB2B3are hierarchi-
cally modeled. Variablesv1, v2andv3 transfer data among
processes. The dotted-line/solid-arrow indicates the concur-
rent/sequential execution between processes.

The second model isPE-assembly model. The entities at
the top level of the model represents concurrently executing
processing elements(PEs), which communicates through
channels. These channels aremessage passing channels,
which only represent data transfer or process synchroniza-
tion between PEs without any bus/protocol implementation.
The communication part of the model(channel) is un-timed,
while computation part of the model(PE) is timed through
estimation. The estimated time of computation is computed
by system-level estimator such as [1]. It is called approx-
imate time because it is not cycle accurate. The estimated
time is annotated into the code by insertingwait statements.
PE-assembly modelis the same asarchitecture modelde-
fined in [4] and belongs totimed functional modeldefined
in [8]. In comparison tospecification model, PE-assembly
modelexplicitly specifies the allocated PE in the system ar-
chitecture and process-PE mapping decision. The example
of architecture model is displayed in Figure 3.PE1, PE2
andPE3 are three allocated PEs.Cv11, cv12, cv2are the
message-passing channels.

The third model isbus-arbitration model. In compar-
ison toPE-assembly model, channelsbetween PEs inbus-
arbitration modelrepresent buses, which are calledabstract
bus channels. The channels still implement data transfer
through message passing, while bus protocols can be sim-

2

v2 = v1 + b*b;
 v3= v1- b*b;

v1

v1 = a*a;

v2

v4 = v2 + v3;

c = sequ(v4);

B1

B2

v3

B3

B4

B2B3

Figure 2. The example of specification model

v3

v3= v1- b*b;

B3

v4 = v2 + v3;

c = sequ(v4);

B4

PE3

v2 = v1 + b*b;

B2

PE2

v1 = a*a;

B1

PE1

cv2

cv12

cv11

Figure 3. The example of PE-assembly model

plified as blocking and nonblocking I/O. No cycle-accurate
and pin-accurate protocol details are specified. The abstract
bus channels have estimated approximate time, which is
specified in the channels by onewait statement per trans-
action. Since several message-passing channels inPE-
assembly modelmay be grouped to one abstract bus channel
in bus-arbitration model, two parameters are added to the
interface functions of channels: logical address and bus pri-
ority. Logical address distinguishes interface function calls
of different PEs/processes; bus priority determines the bus
access sequence when bus-conflict happens. Furthermore,
a bus arbiter is inserted into the system architecture as a
new PE to arbitrate the bus conflict. Master PEs, slave PEs,
and arbiter call the functions of different interfaces of the
same abstract bus channels. Among four TLM models we
define,bus-arbitration modelis the only model which con-
tains both communication and communication design deci-
sion in an abstract way.

Figure 4 illustrates an example ofbus-arbitration model

� � �
� � �
� � �

v2 = v1 + b*b;

B2

PE2

v1 = a*a;

B1

PE1

v3

v3= v1- b*b;

B3

v4 = v2 + v3;

c = sequ(v4);

B4

PE3

� �
� �

� �
� �

cv12

cv11

cv2

PE4

(Arbiter)

3

1
 2

1: master interface

2: slave interface

3: arbitor interface

Figure 4. The example of bus-arbitration model

(5, 15)
 (5, 25)

(10, 20)
 (5, 15)

ready

ack

address[15:0]

data[31:0]

(a)Time Diagram

(b)Cycle accurate time diagram

ready

ack

address[15:0]

data[31:0]

CLK

Lowerbound = 5 + 10 + 5 + 5 = 25

Upperbound = 15 + 20 +25 + 15 =75

Figure 5. Time/cycle accurate diagram

refined fromPE-assembly modelin Figure 3. The three
channels inPE-assembly modelare encapsulated into an
abstract bus channel representing a system bus. In order to
access the new channel, the bus masters (PE1andPE2), the
bus slave(PE3), and the inserted arbiter(PE4)use different
channel interfaces.

The fourth model is time-accurate communication
model, which contains time/cycle accurate communication
and approximate timed computation. (Rather than speci-
fying the communication time, time-accurate communica-
tion model specifies the time constraint of communication,
which is determined by the time diagram of component’s
protocol. For example, in Figure 5(a), the communication
time is limited in the time range between 25 and 75. On the
other hand, in the cycle-accurate communication model, the
communication time is specified in terms of the bus mas-
ter’s clock cycles, which is displayed in Figure 5(b). The
task of refining a time-accurate communication to a cycle-
accurate communication is called protocol refinement). In

3

� � �
� � �
� � �

v2 = v1 + b*b;

B2

PE2

v1 = a*a;

B1

PE1

v3

v3= v1- b*b;

B3

v4 = v2 + v3;

c = sequ(v4);

B4

PE3

� �
� �
� �

� �
� �
� �

PE4

(Arbiter)

3

1
 2

1: master interface

2: slave interface

3: arbitor interface

ready

ack

address[15:0]

data[31:0]

IP
ro

to
co

lS
la

v

e

ready

ack

address[15:0]

data[31:0]

Figure 6. The example of time-accurate commu-
nication model

� � �
� � �
� � �

v2 = v1 + b*b;

B2

PE2

v1 = a*a;

B1

PE1

PE3

� �
� �

� �
� �

cv12

cv11

cv2

PE4

(Arbiter)

3

1
 2

1: master interface

2: slave interface

3: arbitor interface

4: wrapper

S0

S1

S2

S3

S4

4

Figure 7. The example of cycle-accurate compu-
tation model

this model, the message-passing channels encapsulated in
an abstract bus channel are replaced by aprotocol channel.
A protocol channel is time/cycle accurate and pin-accurate.
Inside a protocol channel, wires of the bus are represented
by instantiating corresponding variables/signals. Data is
transferred following the time/cycle-accurate protocol se-
quence. At its interface, a protocol channel provides func-
tions for all abstraction bus transaction. A protocol chan-
nel is the same as a protocol channel of [4]. We call an
abstract bus channel containing a protocol channel ade-
tailed bus channel. It should be aware that in thetime-
accurate communication model, it is not necessary to re-
fine all the abstract bus channels into detailed bus channels.
Some abstract bus channels can be refined while others are
untouched. The refinement process frombus-arbitration
modelto thetime-accurate communication modelis similar
to theprotocol inlineintroduced in [4]. Figure 6 illustrates
our time-accurate communication model.

The fifth model is cycle-accurate computation
model, which contains cycle accurate computation

PE2
PE1

PE3
PE4

S0

S1

S2

S3

S4

Interconnect network

MOV
 r1, 10

MUL
 r1, r1, r1

....

...

MLA
 r1, r2, r2, r1

....

S0

S1

S2

S3

Figure 8. The example of implementation model

and approximate-timed communication. This model is
generated frombus-arbitration model. In this model,
computation components(PEs) are pin accurate and execute
cycle-accurately. The custom hardwares are modeled at
register-transfer level and programmable processors are
modeled in terms of instruction set architecture. To enable
communication between cycle-accurate PEs and abstract
level interfaces of abstract bus channels, wrappers which
convert data transfer from higher level of abstraction to
lower level abstraction are inserted to bridge the PEs and
the bus interfaces. Similar to thetime-accurate commu-
nication model, it is not necessary to refine all the PEs to
the cycle-accurate level. Some PEs can be refined while
others are untouched. Figure 7 illustrates acycle-accurate
computation model, in which only PE3 is refined to a
time-accurate and pin-accurate model.

The final model isimplementation model, which has both
cycle-accurate communication and cycle-accurate compu-
tation. The components are defined in terms of their
register-transfer or instruction-set architecture. Theimple-
mentation modelis either refined from thetime-accurate
communication modelor the cycle-accurate computation
model. The implementation modelis the same as theim-
plementation modelin [4] andregister-transfer level model
in [8]. Figure 8 displays an example of theimplementation
model. PE1 andPE2 are micro-processors whilePE3 and
PE4are custom-hardwares.

Table 1 summaries the characteristics of different ab-
straction models.

4

Models Communication Computation Communication PE interface Added imple-
time time scheme mentation detail

Specification model no no variable (no PE) –
PE-assembly model no approximate message- abstract PE allocation,

passing channel process-PE mapping
Bus-transaction model approximate approximate abstract bus channelabstract bus topology, bus arbitration
Time-accurate time/cycle approximate detailed abstract detailed bus protocol
communication model accurate bus channel
Cycle-accurate approximate cycle accurate abstract bus channelpin-accurate RTL/ISS PEs
computation model
Implementation model cycle accurate cycle accurate wire pin-accurate detailed bus protocol

or RTL/ISS PEs

Table 1. Characteristics of different abstraction models

� � �
� � �

Specification model

PE-assembly model

� � �
� � �

Bus-arbitration

model

� � �
Implemenation model

Time-accurate

communication

model

Cycle-accurate

computation

model

1

2

3

4

5

6

8
7

System

 Design

Component

Design

Figure 9. Design tasks in a general design
flow

4 System Design with TLMs

4.1 Design Tasks

Figure 9 displays a general design flow containing the
six models we define. The three shaded models aregolden
models, which represents system functionality, abstract sys-
tem architecture, and final system implementation respec-
tively. Bus-arbitration modeldivides the system flow to two
stages:system design stageand component design stage.
System design stageselects/generates system architecture
and maps the system behavior to the architecture.Compo-
nent design stagerefines/systhezises computation/commu-
nication components to the RTL/ISS level models. Other
three unshaded models are intermediate TLM models.

Besides six models, the general design flow also contains
eight design tasks, which are displayed in Figure 9. The

eight tasks are:

1. (a) PE assembly: It selects PEs from PE libraries, maps
processes in the system behavior to the selected PEs.
(b) PE-assembly modelgeneration: It generatesPE-
assembly modelbased on (a).

2. (a) Communication exploration: It produces the bus-
topology, determines abstract bus protocols, maps
message passing channels to the buses, assigns bus-
accessing priorities to the PEs/processes, and deter-
mines bus arbitration mechanism. (b)bus-arbitration
modelgeneration: It generatesbus-arbitration model
based on (a).

3. (a) Protocol refinement: It determines the pin-accurate
and time-accurate bus protocols. If required, it also
refines time-accurate bus protocols to cycle-accurate
bus protocols. (b)time-accurate communication model
generation: It generatestime-accurate communication
modelbased on (a).

4. RTL/ISS synthesis: It inlines the bus channels to PEs,
synthesizes hardware components to the register trans-
fer models and refines software components to instruc-
tion set architectures.

5. (a) IP replacement: It selects the cycle-accurate com-
ponents(IPs) from the library, generates the across-
level wrappers which enable the communication be-
tween cycle-pin accurate IPs and abstract bus channels,
and replaces the abstract component by both IP and the
corresponding across-level wrapper. Or (b) RTL/ISS
synthesis: it synthesizes hardware components to reg-
ister transfer models and refines software components
to instruction set architectures.

6. (a) Communication synthesis: It determines the imple-
mentation details of interconnect network of the sys-
tem architecture. (b) Interconnect network generation:
It generates the interconnect network based on (a).

5

7. Accurate communication feedback: It replaces the ap-
proximate time of communication inbus-arbitration
model by the cycle-accurate time generated by the
time-accurate communication model.

8. Accurate computation feedback: (a) It replaces the
approximate time of computation inbus-arbitration
modelby cycle-accurate time generated by thecycle-
accurate computation model. (b) It extracts the ab-
stract computation components from cycle accurate
components incycle-accurate computation model.

Among above tasks, tasks 1(a), 2(a), 3(a), 6(a) involves
decision making while tasks 1(b), 2(b), 3(b), 6(b) involves
model generation. Tasks 4 and 5(b) covers both decision
making and model generation. We don’t separate tasks 4
and 5(b) into two parts because generally both of them can
be automatically implemented by either high-level synthesis
tool or compiler.

We discuss the usage of above tasks and defined models
in three domains: system refinement domain, architecture
exploration domain, and IP reuse domain. System refine-
ment gradually refinesspecification modelto implementa-
tion model. Architecture exploration selects/generates the
system architecture and maps the system behavior to it. IP
reuse employs existing IPs and integrates the IPs to the im-
plemented system. Although all of the three design prac-
tices involves above three domains, their concentration is
different. Current system synthesis approach such as UCI’s
approach [4] concentrates on the system refinement. Plat-
form design such as VCC [1] primary addresses the ar-
chitecture exploration. Component based design such as
TIMA’s approach [2] mainly proposes the IP reuse.

4.2 System Refinement Domain

The system refinement generates the next abstraction
model by integrating implementation details determined by
designers/tools to the previous abstraction model. As shown
in Figure 10, it involves five models(specification model,
PE-assembly model, bus-arbitration model, time-accurate
communication model, andimplementation model) and four
tasks (tasks 1(b), 2(b), 3(b), and 4). UCI’s approach [4] de-
fined four abstraction models and proposed refining guide-
lines. In comparison to our design flow, it has a bus-
functional model(calledcommunication model) which has
cycle/pin accurate communication and abstract computa-
tion. On the other hand, it lacksbus-arbitration model
and time-accurate communication model. Bus-arbitration
modelhas the advantage over UCI’s bus-functional model
because it contains both communication and computation
design decision at an abstract way. On the other hand,
time-accurate communication modeldivides the refinement
at component design stageinto two steps: communication

PE-assembly model

Implemenation model

Time-accurate

communication

model

1

2

3

4

System

 Design

Component

Design

Specification model

Bus-arbitration model

Figure 10. TLMs in the system refinement do-
main

component refinement and computation component refine-
ment. This division helps designers to focus on each step’s
objective and to reduce the complexity of each refinement
step.

Furthermore, we found that we can directly employ
UCI’s approach to implement the system refinement cov-
ering the five models and four tasks in our flow. This
is because that althoughbus-arbitration modeland time-
accurate communication modelare not explicitly defined in
the UCI’s approach, they do exist as intermediate models in
its flow of refinement.

4.3 Architecture Exploration Domain

The architecture exploration generates/selects a system
architecture and maps the system behavior to the system
architecture. It consists two fields: accurate estimation at
the high abstraction level and decision making based on the
estimation results.

As shown in Figure 11(a), decision making involves
three models(specification model, PE-assembly model, and
bus-arbitration model) and two tasks (tasks 1(a) and 2(a)).
Although traditional platform mapping approach doesn’t
containPE-assembly model, we add it into our flow in or-
der to separate the decision making for communication and
computation. We first evaluate whether the computation
time based on the decision of PE selection and process-
PE mapping meets the given design constraint by profiling
PE-assembly model. If so, we then make communication-
related decision. AddingPE-assembly modelin allows val-
idating the PE-allocation and process-PE mapping decision
before communication details are obtained, which specially
benefits the computation-oriented design. On the other
hand, taking computation and communication into account
at the same time are also optional by doing task 1(a) and

6

Bus-arbitration model

Time-accurate

communication

model

Cycle-accurate

computation

model

3
 5

8
7

Component

Design

Specification model

PE-assembly model

Bus-arbitration model

1

2

System

 Design

(a) Decision making field

(b) Accurate estimation field

Figure 11. TLMs in the architecture explo-
ration domain

2(a) all together.
As shown in Figure 11(b), accurate estimation involves

three models(bus-arbitration model, time-accurate commu-
nication model, andcycle-accurate computation model) and
four tasks(3(b), 5(b), 7, 8(a)). At the beginning, the esti-
mation inbus-arbitration modelis approximated. In order
to improve the estimation accuracy, designers should refine
computation or communication components to the cycle-
accurate models, which is implemented by tasks 3(b) or 5(b)
respectively. It should be aware that it is unnecessary to re-
fine all the computation/communication components. Only
the components that are on the critical path or are interested
by designers are refined while others are remained at the
high abstraction level. Therefore, the fast simulation speed
of time-accurate communication modelandcycle-accurate
computation modelare ensured. Furthermore, tasks 7 and
8(a) annotate the cycle accurate time derived fromtime-
accurate communication modeland cycle-accurate com-
putation modelback to the refined components inbus-
arbitration model, to replace previous approximate-time.
This annotation will improve the accuracy of the estimation
of bus-arbitration model.

4.4 IP Reuse Domain

In many cases, designers reuse predefined IPs. IPs can be
at any levels of abstraction. For example, when we specify
specification model, bus-arbitration model, implementation
model, we can select IP blocks at the same level from the
library and integrate them with other parts of models.

IP reuse contains three fields: IP validation, IP integra-
tion, and IP extraction.

IP validation validates the correctness of IP. As shown
in Figure 12(a), IP validation involves three models(bus-
arbitration model, time-accurate communication model,
cycle-accurate computation model) and two tasks (tasks
3(a)(b), 5(a)). In order to prove that the cycle and pin ac-
curate IP can work correctly in the system, designers must
simulate the entire system as a whole. For this purpose, de-
signers can first simulatebus-arbitration model. Designers
then perform task 5(a) to replace the abstract computation
component by both the IP and the generated across-level
wrapper. The generatedcycle-accurate computation model
thus can cycle and pin accurately test the functionality of
IP while leave other components at the high level, which re-
sults in the fast simulation speed. Both [10] and [11] works
in this direction. The simulatable wrappers introduced by
TIMA [6] [5] also address this problem. Besides validating
computation components, we also can validate pin/cycle ac-
curate communication protocols by task 3(a)(b) in similar
way.

IP integration integrates IP into the system. As shown
in Figure 12(b), IP integration involves two models(cycle-
accurate computation modeland implementation model)
and one task(task 6(a)(b)). IP integration glues the selected
IPs by generating their communication network. Some re-
search follows this direction. For example, the synthesiz-
able wrapper generation introduced by TIMA [2] automati-
cally generates communication co-processors and intercon-
nect network to connect multi-processors.

IP extraction extracts the abstraction model for each
IP. As shown in Figure 12(c), IP extraction involves two
models(bus-arbitration model, cycle-accurate computation
model) and one task(task 8(b)). In order to move IP into the
higher level of abstraction, task 8(b) extracts the abstract
computation component from the cycle-accurate IP.

4.5 Cross-Approach Design

The designers need to update design versions very fre-
quently. This task becomes quite easy by the use of the
aforementioned TLMs with intermixed application of the
three design practices discussed in the report.

The initial version can be designed using system syn-
thesis approach. During the implementation process all the
generated models at different levels are stored in a library.
After this step we have a predefined platform which we can
use further.

The updation task starts with rewriting of the specifica-
tion model. At this stage we have a predefined platform
which allows us to apply platform-design approach. Fur-
thermore, we have an accurate estimation of the system be-
havior obtained from the initial version of the design. Now,

7

Bus-arbitration model

Time-accurate

communication

model

Cycle-accurate

computation

model

3
 5

(a) IP validation

Implemenation model

Cycle-accurate

computation

model

6

(b) IP integration

Bus-arbitration model

Cycle-accurate

computation

model

8

(c) IP extraction

Figure 12. TLMs in the IP reuse domain

the designers only need to estimate the new additions of the
system behavior. Hence, the architecture exploration deci-
sions for the new design can be easily made using the gen-
erated platform.

After generating thebus-arbitration modelfor the up-
dated version, designers perform computation/communica-
tion component implementation atcomponent design stage.
For the components that are not updated, designers can
reuse the pre-designedtime-accurate communication model
and implementation model, instead of carrying out refine-
ment frombus-arbitration modelagain. Only the updated
components need to be refined.

On the other hand, if designers want to replace the old
IP by the new IP for the designed system, component-based
design can be exploited. Starting fromcycle-accurate com-
putation modelof the design, designers can replace an old
IP and its wrapper with the new IP and its wrapper atcycle-
accurate computation model. Thencommunication synthe-
sis task is performed for the new IP and its wrapper. Start-
ing with cycle-accurate computation modelsaves us redun-
dant sysnthesis tasks. Also it allows complete separation
of communication and computation, as againstimplemen-
tation model.

5 SCE Environment

We have developed a suite of design tools, called
SCE(system-on-chip environment), which implements

most of tasks in our design flow. All the six models we
defined are simulatable. Currently, we provide two sets of
tools: estimation tools and refinement tools. Estimation
tools can profile/estimate the characteristics/performance of
specification model, PE-assembly model, bus-arbitration
model, and time-accurate communication model. Since
the computation components incycle-accurate computa-
tion modeland implementation modelare modeled cycle-
accurately, estimation of the computation of these two mod-
els is unnecessary and the estimation of the communication
on them is provided. Refinement tools covers tasks 1(b),
2(b), 3(b), and 4, 6(b). All the tools have been tested on
GSM Vocoder project [7]. Furthermore, an architecture ex-
ploration tool suite covering task 1(a) and 2(a) has been de-
veloped and still in the testing stage. Tasks 3(a), 5, 6(a), 7,
and 8(a)(b) can be done manually in current stage.

6 Conclusion

In order to eliminate the ambiguity with the transaction
level model, this report defines four TLMs:PE-assembly
model, bus-arbitration model, time-accurate communica-
tion model, andcycle-accurate computation model. Each
model is simulatable and estimatable. IPs can be reused for
any model.

Furthermore, the report explores the usage of TLMs in
the existing design approaches. The defined TLMs slice
the entire design process into several small design tasks.
Each task targets at a specific design objective and the result
of a task can be validated by simulating the corresponding
TLM. Designers can extract the characteristics of the design
from lower-level TLMs and annotate them to the higher-
level TLMs, such that designers can accurately make de-
sign decision at early stages. Using defined TLMs as stan-
dard models, designers can reuse/exchange the pre-defined
TLMs and implement the cross-approach design.

Finally, we describe that SCE, our design environment,
has supported or will soon support most of tasks defined in
this report to exploit the TLMs.

References

[1] http://www.cadence.com/products/vcc.html.

[2] W. Cesario et al. Multiprocessor soc platforms: a
component-based design approach. InIEEE Design
and Test of Computers, Nov-Dec 2002.

[3] Coware. http://www.coware.com.

[4] D. Gajski et al. SpecC: Specification Language and
Methodology. Kluwer Academic Publishers, January
2000.

8

[5] P. Gerin et al. Mixed-level cosimulation for fine grad-
ual refinement of communication in soc design. InIn
DATE, 2001.

[6] P. Gerin et al. Scalable and flexible cosimulation of
soc designs with heterogeneous multi-processor target
architectures. InIn ASPDAC, 2001.

[7] A. Gerstlauer, S. Zhao, and D. Gajski. Design of
a GSM Vocoder using SpeccC Methodology. Tech-
nical Report ICS-TR-99-11, University of California,
Irvine, Feb 1999.

[8] Thorstn Grotker et al.System design with SystemC.
Kluwer Academic Publishers, 2002.

[9] K. Keutzer et al. System level design: Orthogonal-
ization of concerns and platform-based design.IEEE
Transactions on Computer-Aided Design, December
2000.

[10] Sudeep Pasricha. Transaction level modelling of soc
with systemc 2.0. InSynopsys User Group Confer-
ence, 2002.

[11] P. Paulin et al. Stepnp: A system-level exploration
platform for network processors. InIEEE Design and
Test of Computers, Nov-Dec 2002.

9

