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Abstract

This report presents a methodology towards a complete software implementation of G.729 Annexe E on ARM926EJ-S
processor running at 200 MHz clock speed. The methodology spans both, target independent as well as target dependent
optimizations. The main focus is towards code speed up to reduce the per frame execution time as much below the 10 ms
constraint as possible. Although no constraint is given for code size, the outcome of the optimization process has so far
resulted in an overall reduction of the code size. The code was also run on an Aptix FPGA board to calibrate the ARMulator
(ARM instruction set simulator). Although the optimizations presented here, were performed and analyzed on the G.729E
algorithm, they can be used on any similar DSP code for speed up.
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Abstract

This report presents a methodology towards a complete
software implementation of G.729 Annexe E on ARM926EJ-
S processor running at 200 MHz clock speed. The method-
ology spans both, target independent as well as target de-
pendent optimizations. The main focus is towards code
speed up to reduce the per frame execution time as much
below the 10 ms constraint as possible. Although no con-
straint is given for code size, the outcome of the optimiza-
tion process has so far resulted in an overall reduction of the
code size. The code was also run on an Aptix FPGA board
to calibrate the ARMulator (ARM instruction set simulator).
Although the optimizations presented here, were performed
and analyzed on the G.729E algorithm, they can be used on
any similar DSP code for speed up.

1 Introduction

1.1 Project goal

This project focuses on developing a software imple-
mentation of the Coding of Speech at 8 kbit/s and 11.8
kbit/s using Congugate-Structure Algebraic-Code-Excited
Linear-Prediction (CS-ACELP) algorithm running on the
ARM926EJ-S processor which meets the constraints speci-
fied in the algorithm. The emphasis is on developing a soft-
ware implementation without any custom hardware. The
algorithm standard is available as ITU-T recommendations
G.729 and G.729E.

1.2 G.729 standard

1.2.1 G.729 recommendation

Speech compression technology is widely used in digital
communication systems such as wireless systems, VoIP, and
video conference technology. Speech compression reduces

data redundancy and hence eases bandwidth requirements.
The compression technique described in the ITU-T G.729
Recommendation is commonly employed in speech trans-
mission systems because of the sophisticated quality of the
reconstructed speech signal.

The G.729 algorithm standard models the functionality
of the human vocal tract exploiting DSP techniques in order
to synthesize speech or recreate it at the receiving end. Hu-
man speech is produced when air from the lungs is forced
through an opening between two vocal folds called the glot-
tis. Tension in the vocal chords caused by muscle contrac-
tions and forces created by the turbulence of the moving air
force the glottis to open and close at a periodic rate. De-
pending on the physical construction of the vocal tract, os-
cillations occur between 50 to 500 times per second. The
oscillatory sound waves are then modified as they travel
through the throat, over the tongue, through the mouth and
over the teeth and lips.

1.2.2 Speech quality

The Mean Opinion Score (MOS) is a commonly used test
to assess speech quality. In this test, listeners rate a coded
phrase based on a fixed scale. The MOS rating ranges from
0 to 5 and a MOS of four or higher is considered toll qual-
ity, which means that the reconstructed speech is almost as
clear as the original speech. Tests have shown that encod-
ing systems based on G.729 at 8 kbits/s provide toll-quality
speech for most operating conditions. However, the encod-
ing systems based on G.729E may not provide toll-quality
reconstructed speech. quality may not be as good in some
cases due to the included background noise. The details are
shown in Table 1 [ITU-T P.810 96]. Here MNRU stands
for Modulated Noise Reference Unit.

1.2.3 Model of G.729

The International Telecommunications UnionTelecommu-
nications Standardization Sector (ITU-T) G.729 Recom-

1



Test Conditions MOS

Clean 4.125
Encoder Background Noise10 dB MNRU 3.65

30 dB MNRU 3.975
Channel Errors 1.0% bit error 3.3

0.1% bit error 3.95

Table 1. G.729 MOS Results

Figure 1. Speech reconstruction by filtering codebook
excitation.

mendation defines an algorithm for encoding speech sig-
nals at 8 kbit/s using Conjugate-Structure Algebraic-Code-
Excited Linear-Prediction (CS-ACELP). In this system, an
analog voice signal is passed through a 300 Hz 3400 Hz
bandpass filter and sampled at 8 kHz to yield digital data
that is converted to a 16-bit linear PCM speech signal. An
encoder analyzes the speech signal to extract the parame-
ters of the CELP model. These parameters are encoded
and transmitted in a bitstream. The decoder for this sys-
tem uses the received parameters to retrieve the synthesis
filter coefficients. The speech is then reconstructed by fil-
tering the excitation codebook as shown in Figure 1. The
vocoder operates on 10 ms frames with 5 ms look-ahead for
linear-prediction (LP) analysis. Hence, the overall algorith-
mic delay is 15 ms.

Figure 2 shows the G.729 speech synthesis model. A
sequence of pulses is combined with the output of a long-
term pitch filter. Together, they model the buzz produced
by the glottis and build the excitation for the final speech
synthesis filter, which in turn models the throat and mouth
as a system of loss less tubes.

The initial sequence of so-called residual pulses is con-
structed by assembling predefined pulse waveforms taken
out of a given, fixed codebook. The codebook contains a se-
lection of so-called fixed code vectors, which are basically
fixed pulse sequences with varying frequency. In addition,
applying a variable gain factor scales the pulse intensities.

The output of the long-term pitch filter is simply a previ-
ous excitation sequence, modified by scaling it with a vari-
able gain factor. The amount by which excitations are de-
layed in the pitch filter is a parameter of the speech synthesis
model and can vary over time. The long-term pitch filter is

speech
LP filter)

(10th -order 

filter

synthesis

Short-term

Sum

     codebook)

      (Fixed 

Residual  pulses

codebook)

filter (Adaptive  

Long-term pitch

Figure 2. G.729 Speech synthesis model.

also referred to as adaptive codebook since the history of
all past excitations basically forms a codebook with vary-
ing contents out of which one past excitation sequence the
so-called adaptive code vector, is chosen.

Finally, the excitation, which is constructed by adding
fixed and adaptive codebook vectors, is passed through the
short-term speech synthesis filter, which simulates a system
of connected loss less tubes. Technically, the short-term
filter is a tenth order linear prediction filter meaning that
its output is a linear combination (linear weighted sum) of
ten previous inputs. The ten linear prediction coefficients
are intended to model the reflections and resonance of the
human vocal tract.

1.2.4 Speech encoding and decoding

Instead of transmitting compressed speech samples directly,
the input speech samples are analyzed in order to extract the
parameters of the speech synthesis model. These parame-
ters are then transmitted to the receiving side where they are
used to synthesize and reconstruct speech.

On the encoding side, the input speech is analyzed to es-
timate the coefficients of the linear prediction filter, remov-
ing their effects and estimating the intensity and frequency.
The inverse filtering of the incoming speech removes the
linear prediction effects. The remaining signal called the
residual, is then used to estimate the pitch filter parame-
ters. Finally, the pitch filter contribution is removed in order
to find the closest matching residual pulse sequence in the
fixed codebook.

At the receiver, the transmitted parameters are decoded,

2



Figure 3. Encoding principle.

combining the selected fixed and adaptive code vectors to
build the short-term excitation. The linear prediction coeffi-
cients are decoded and the speech is synthesized by passing
the excitation through the parameterized short-term filter.

All together, this speech synthesis method has the advan-
tages of achieving a high compression ratio since it tries to
transmit only the actual information inherent in the speech
signal. The filters of the speech synthesis model eliminate
all the redundant relationships, which are due to the way the
human vocal tract is organized. The vocal tract model pro-
vides an accurate simulation of the real world and is quite
effective in synthesizing high quality speech. The speech
model proves to simulate the real world quite effectively
and synthesized speech is of high quality. In addition, en-
coding and decoding are relatively efficient to compute.

1.2.5 Encoder

Encoding is based on finding the parameters for the speech
synthesis model at the receiving side, which will then be
transmitted, to the decoder over the transmission medium.
The speech synthesis model is a code-excited linear predic-
tive (CELP) model. In this model, the locally decoded sig-
nal is compared with the original signal. The filter parame-
ters are then selected to minimize the mean-square weighted
error between the original and reconstructed signal. In or-
der to synthesize speech in the decoder a 10th order linear
predictive (LP) synthesis filter (Equation 1) is excited with a
signal constructed by adding two vectors from the two code-
books as discussed later. The encoding principle is shown
in Figure 3.

H(z) = 1/A(z) (1)

The input samples are passed through a 140 Hz high-
pass filter and a tenth-order LP analysis is performed on
them. The resulting LP parameters are then quantized in

the line spectral pair (LSP) domain with 18 bits. The in-
put frame is divided into two 5 ms sub-frames to optimize
tracking of the pitch and gain parameters and to reduce the
complexity of the codebook searches. The interpolated LP
coefficients are applied to the first sub-frame. The quan-
tized and un-quantized LP filter coefficients are applied to
the second sub-frame. The excitation in each sub-frame is
represented by both an adaptive codebook contribution and
a fixed codebook contribution. The adaptive and fixed code-
book parameters are transmitted every sub-frame.

Adaptive codebook The adaptive codebook is based on a
pitch synthesis filter, which is responsible for cover-
ing long-term effect. The output of the pitch filter is
simply a previous excitation signal delayed by a cer-
tain amount (lag) and scaled with a certain gain. Since
the delay/lag of the pitch filter can be fractional, the
delayed excitation has to be interpolated (using a FIR
filter) between the two adjacent (delayed by an integer
lag) excitation values. The adaptive codebook com-
ponent represents the periodicity in the excitation sig-
nal using a fractional pitch lag with 1/3 sample reso-
lution. It is searched using a two-step procedure. An
open-loop pitch lag is estimated per frame based on
a perceptually weighted speech signal. The adaptive
codebook index and gain are found by a closed-loop
search around the open-loop pitch lag. The signal to be
matched, referred to as the target signal, is computed
by filtering the LP residual through the weighted syn-
thesis filter. The adaptive codebook index is encoded
with 8 bits in the first sub-frame and differentially en-
coded with 5 bits in the second sub-frame. The target
signal is updated by removing the adaptive codebook
contribution, and this new target is used in the fixed
codebook search.

Fixed codebook The fixed codebook is a an algebraic
codebook with 17 bits. The fixed or algebraic code-
book covers any remaining pulse excitation sequence
left after removing the short-term and long-term con-
tributions. The fixed codebook contains 5 tracks (6
tracks for G.729E) with 8 possible positions each. For
each track two positions are chosen (10 pulses all to-
gether/12 pulses for G.729E) and transmitted.

The gains of the adaptive and fixed codebooks are vector-
quantized with 7 bits using a conjugate structure codebook.
In general, the parameters for the two codebooks are chosen
such that the error between the synthesized speech (at the
output of the LP synthesis filter) and the original speech is
minimized. However, for the codebook searches, the orig-
inal speech is weighted by a weighting filter W(z) in order
to account for the special properties of human acoustic per-
ception.

3



1.2.6 Annexe E

The annexe E of G.729 standard provides the high level
description of the higher bit-rate extensions (11.8kbps) of
Recommendation G.729. It accommodates wide range of
input signals, such as speech, with background noise and
even music. Differences of this annexe from the initial stan-
dard are as follows:

1. A backward LP analysis is added for music sig-
nals and stationary background noises. The back-
ward/forward decision selects speech (forward mode)
or music (backward mode). The backward/forward
procedure also reduces the number of switches needed
to perform smooth switching between the appropriate
filters. The LP mode and the related information better
adapts post-filtering and perceptual weighting to either
music or speech. This mode is also used for the error
concealment.

2. Two algebraic excitation codebooks are added to ex-
tend the bit rate upto11.8kbps.

2 Original C code

The original C code provided was found to contain
14,000 line of code. The code had extensive use of pointers
and a sizeable number of functions. This forced a change
of strategy from attaining a profound understanding of the
algorithm and proceeding with optimizations. The revised
strategy entailed going into details of the specification doc-
ument, several other resources from the web and the C code
at the same time in order to be able to understand and break
the design into algorithmic blocks such that the flow of data
and control could be visualized easily.

The SoC (System-on-chip) environment (SCE) was cho-
sen for further analysis for the following reasons:

Implementation choice At this stage the choice of imple-
mentation was open i.e. SW, HW or mixed SW/HW.
So consideration was attributed to co-design issues and
SoC design flow was chosen which is suited for the
purpose on account of the features discussed below.

Separation of communication and computation
Algorithmic functionality can be detached from
the communication functionality. In addition, I/O of a
computation can be explicitly specified to show data
dependencies.

Parallelism Inherent parallelism in the system functional-
ity can be exposed instead of having to artificially se-
rialize functions assuming a serial implementation. In
essence, all possible parallelism can be made available
to the exploration tools in order to enhance optimiza-
tion scope.

Hierarchy Hierarchy is used to group related functional-
ity and abstract away localized effects at higher levels.
For example, local communication and local data de-
pendencies are grouped and hidden by the hierarchical
structure. So the design is easier to handle.

Granularity The granularity of the basic parts for explo-
ration can be chosen such that optimization possibili-
ties and design complexity are balanced when search-
ing the design space. Basically, the bottom level func-
tions, which build the smallest indivisible units for ex-
ploration, reflect the division into basic algorithmic
blocks.

In order to achieve the above, the design was ported to
SoC environment and profiled using the SCE profiler. The
provided the total number of computations for each algo-
rithmic block and their memory requirements. It also gave
the data traffic and control flow between them and their hi-
erarchical organization as shown in Figure 4 . The data ob-
tained from the SCE profiler enabled making decisions to-
wards changing the structure of the design, re-arranging the
computations among different algorithmic blocks to keep
uniformity in the amount of, computations in each algorith-
mic block, data traffic between pairs of blocks and memory
required for each block.

At this stage the implementation was constrained to a
complete software implementation.

3 Optimization methodology

This section describes the optimization methodology
used in implementing ITU G.729E reference code on
ARM926EJ-S processor. The main steps performed during
the implementation process are illustrated in Table 2 in the
ideal order. Additionally, this section provides the typical
problems encountered and their possible solutions. Finally,
programming techniques are provided to optimize the code
for speed.

3.1 Test vectors and development tools

The test vectors provided by the ITU-T were used to ver-
ify algorithmic equivalence between the ported and the orig-
inal G.729E code. The test vectors used are listed below.

1. algthm.in

2. speech.in

3. algthm118.in

The development tools used included the debuggersAXD
andarmsd, armprof profiler andarmcccompiler from the
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Figure 4. SoC design flow organization with code size in KB and data traffic in bytes.

Development Stage Description

Porting to ARM926EJ-S Modifying makefiles, choosing cpu parameters
Global-Level Optimizations Inlining, Processor specific adaptations

Algorithmic Changes Reducing computational overhead
Function-Level C Optimization C optimization techniques
Writing functions in assembly Exploiting assembly features for optimizations

Table 2. Stages of software development process
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ARM Developer Suite 1.2. The compiler used to check the
C code modifications and generate the test vectors for unit
testing was gcc 3.01. The code was developed on the Solaris
8.0 platform. Hardware tests were run on the Aptix FPGA
implementaton of the processor.

3.2 Porting G.729 code to ARM926EJ-S

There were not many considerations involved in port-
ing the fixed-point C source code distributed by the ITU-
T for the G.729E recommendation to ARM926EJ-S. The
makefile was modified and the original C reference code
was originally compiled witharmcccompiler with only mi-
nor changes, and the resulting code passed the above listed
test vectors on the software simulator. This verified that the
compiler is ANSI C compliant.

3.3 Global-level optimizations

3.3.1 Function inlining

Function inlining is the process of replacing a function call
with the called function within the callee function. This
technique improves execution time by eliminating function-
call overhead at the expense of larger code size, as the called
function code is inserted in place of the function call. Small,
frequently-called functions are the best candidates for inlin-
ing in the C code. Those functions which facilitated other
optimizations illustrated in this report were short listed first.
The short listing criterion also included the number and type
(input or output) of parameters the function passed, the data
type of the returned value and register allocation in the re-
sulting assembly code.

Similarly, in assembly, called functions were inlined
were it was found productive, i.e. did not cause register
spilling or the called function was made redundant by the
use of specific instructions in the callee function. In C, at
the basic operations level, inlining was found to be counter
productive. Upon inliningL add() in L mac() the cycles
increased by 562 cycles per input frame (test performed on
G.729). While there was 22.92% (Table 3) improvement
seen inL mac() in assembly asL mult() andL add() were
inlined in assembly using saturating arithmetic instructions.

The inlined functions are:

1. sature()

2. L mac()

3. L msu()

4. add()

5. sub()

6. Mpy 32 16()

7. Mpy 32()

8. Div 32()

9. L Extract()

10. L Comp()

3.3.2 Post index addressing

In vector operations, at many places the index is recalcu-
lated inside the loop which could easily be replaced by
post index addressing load instructions removing the arith-
metic instructions calculating the displacement from the in-
dex base by exploiting the order inherent in the vector ele-
ments. As seen in the Figure 5, the initial address calcula-
tion is moved out of the loop and subsequent addresses gen-
erated with post index addressing (2 bytes). This technique
reduced at least one ADD or SUB instruction per load in-
struction. As shown in the figure the loop size was reduced
by more than 50%.

3.3.3 Loop invariant code motion

The introduction of post index addressing enabled sizable
loop invariant code motion. e.g. the initial address calcu-
lation for the array/vector is loop invariant and can now be
safely moved out of the loop as shown in the Figure 5, with
the insertion of post indexed load instructions given above.
The address calculation overhead for each loop count was
removed.

3.3.4 32-Bit DPF format and operations

The ITU-T G.729E uses a representation of 32-bit double-
precision numbers known as double precision format
(DPF). The 32-bit DPF format was designed for 16-bit pro-
cessors which do not support 32-bit operations. Thus, firstly
the 32-bit word is split into higher and lower 16-bit half
words as shown in Equation 2 3 and 16-bit operations are
applied on them. Although ARM926EJ-S provides 32-bit
operations, these operations had to be implemented in DPF
format to maintain bit-exactness of the original ITU-T im-
plementation.

hi = L 32>> 16 (2)

lo = (L 32− (hi << 16)) >> 1 (3)

L 32= hi << 16+ lo << 1 (4)

HereL 32is a 32-bit signed integer, and hi and lo are 16-
bit signed integers. The range of values forL 32 is shown
in Equation 5.
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1 /* Original C code */
2

3 for (i = 0; i <= n; i++)
4 s = L_mac(s, x[i], h[n-i]);
5

6 ;Compiler generated assembly
7 ;code
8 ---------------------------
9 MOV r0,#0

10 MOV r4,#0 ; value of i
11 CMP r5,#0 ; value of n
12 BLT |L1.92|
13 |L1.48|
14 SUB r1,r5,r4 ; n-i
15 ADD r1,r7,r1,LSL #1
16 ; address of h[n-i]
17 LDRSH r2,[r1,#0]
18 ; load
19 ADD r1,r6,r4,LSL #1
20 LDRSH r1,[r1,#0]
21 BL L_mac
22 ADD r1,r4,#1
23 MOV r4,r1,LSL #16
24 MOV r4,r4,ASR #16
25 CMP r4,r5
26 BLE |L1.48|
27

28 ;Modified assembly code
29 -----------------------
30 ADD r11,r6,r5,LSL #1
31 ;last address h[n-i]
32 MOV r0,#0
33 MOV r4,r6
34 ADD r10,r7,r5,LSL #1
35 ;first address h[n-i]
36 |L1.48|
37 LDRSH r2,[r10],#-2
38 ;each element 2 bytes
39 LDRSH r1,[r4],#2
40 BL L_mac
41 CMP r4,r11
42 BLE |L1.48|

Figure 5. Post index addressing example.

0x8000000<= L 32<= 0x7 f f f f f f e (5)

The DPF format and the operations based on it are orig-
inally defined in detail in the G.729E oper32b.c file. The
principal operations defined for DPF include:

1. Mpy 32(): multiplication of two 32-bit DPF values

2. Mpy 32 16(): multiplication of a 32-bit DPF value
with a signed 16-bit value

3. Div 32(): division of two 32-bit DPF values

These functions originally took their 32-bit parameters
in 16-bit half words and returned a 32-bit word which was
re-split into half words by the calling function.

Therefore, the optimization took advantage of the pro-
cessors 32-bit architecture without violating the DPF for-
mat. The two 16-bit half words, which were originally pro-
cessed in two separate variables, were combined into a sin-
gle 32-bit value using only one variable as shown in Equa-
tion 4. Thus, functions that originally received two pointers
to two 16-bit arrays could now operate with pointer to a sin-
gle 32-bit array. This optimization step reduced the number
of parameters passed, to the called function, by half.

3.3.5 Two Q15 operations in a single call

As the basic data element (parameter code) was two bytes
long, two contiguous data elements could be passed to a
function residing in the upper and lower halves of the reg-
ister. This reduces the number of function calls by half.
This was utilized by adding an extra function (L macD())
performing twoL mac() operations, one on the upper half
word and the other on the lower half word of the argument
registers as shown in the Figure 6. This technique also uti-
lized the two saturating arithmetic units in parallel and also
reduced the function call overhead by 50%.

3.3.6 Redundant optimization

The armcc is found to generate compare instructions to
compare a loop counter with zero, for a speedy loop ter-
mination, if the terminating value was passed to it as an
argument. While this is a legitimate way for speed opti-
mization, its sometimes applied on global variables which
cannot hold zero or negative values and thus the compare
and branch pair becomes redundant and can be removed.
This removes two instructions per for loop.

3.3.7 Processor specific adaptations

Modifications made to the code which exploit some specific
features of the ARM926EJ-S processor are discussed below.

7



1 ;Compiler generated assembly
2 ;code loop
3 ;loop block running n times
4 LDRSH r1,[r5,#0]
5 MOV r2,r1
6 BL L_mac
7

8 ;Modified assembly code loop
9 ;loop block running n/2 times

10 LDRH r1,[r5,#0]
11 LDRH r2,[r5,#2]!
12 ADD r2,r1,r2,LSL #16
13 MOV r1,r2
14 BL L_macD

Figure 6. SingleL macD() call example.

Saturating arithmetic G729 annexe E like other DSP al-
gorithms utilizes saturating, Q15 and Q31 arithmetic.
The basic arithmetic operations are provided in the ba-
sic op.c and oper32b.c files.

In saturating arithmetic when on addition the result
overflows its corrected to the maximum possible pos-
itive signed number, while on subtraction the value is
corrected to the most negative signed number. While
in Q15 and Q31 format the N bit signed value is treated
to have a binary point following the sign bit, where N
is 16 and 32 bits respectively.

These saturating arithmetic instructions are not part of
the ANSI C and thus their implementation in C assem-
bles into large assembly code. But due to their fre-
quent use many DSP processors implement them in
hardware. The DSP extensions of ARM926EJ-S also
provide the same. Thus the C code was modified and
the operations written in assembly incorporating these
instructions. The improvements provided by this are
listed in the Table 3.

Exploiting processor specific instructionsAlong with
the above DSP instructions the ARM926EJ-S proces-
sor provides a single cycle instruction, to return the
leading number of zeros in a specified register, named
CLZ. This instruction was found to be beneficial for
normalization operations, and was found to reduce the
code size, and improve speed drastically for left shift
operations(L shl), see Table 3. Fornorm l() function
the use of CLZ instead of the for loop as shown in
Figure 7 gave rise to a reduction of 16 cycles per call
leading to a reduction of 1625 cycles per frame.

Multiple load operation The ARM926EJ-S can load a
register with four contiguous bytes from memory. This

1 ;Modified code:
2 CLZ var_out, L_var1
3 SUB var_out,var_out,#1
4

5 ;Compiler generated assembly code:
6 MOV var_out, #0
7 |L1.1952|
8 CMP L_var1, #0x40000000
9 ADDLT var_out, var_out,#1

10 MOVLT var_out, var_out,LSL #16
11 MOVLT var_out, var_out,ASR #16
12 MOVLT L_var1, L_var1, LSL #1
13 BLT |L1.1952|

Figure 7. Instruction reduction with CLZ instruction
usage.

would reduce the load instructions by half by loading
two consecutive two byte data elements from the mem-
ory in one load operation. This was not exploited as the
data bytes are not correctly aligned if the address is not
a multiple of four. This leads to instruction overhead
for loops iterating an odd number of times and for data
byte alignment and defeats the purpose.

3.3.8 Performance

The Table 4 lists the cycle count and MCPS (see Measure-
ment Techniques)before and after performing optimization
in this category.

Version Cycle count MCPS % Impr.

Initial version 42419339 4242 0
Optimized version 39025791 3898 8.1

Table 4. Performance after global optimizations

3.4 Function-level optimization

The optimization techniques presented here can be per-
formed without a global knowledge of the algorithms and
without a detailed analysis of data and control flow. The
general approach for optimizing each function includes:

1. Establishing the function interface and separating the
function from the rest of the code to facilitate analysis.

2. Adding test code that saves the function input and out-
put values before and after each function call.

3. Optimizing the function and verifying the output to en-
sure that it remains the same as the corresponding ref-
erence output.
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Function name Total cycles Reduction % Reduction
Original 42422412 0 0.00
L add 36409140 6013272 14.17
L sub 42040012 382400 0.90
L mac 32697692 9724720 22.92
L shl 41068443 1353969 3.19
sature 42224987 197425 0.47
Total 30774723 11647689 27.45

Table 3. Reduction in cycle count for a 30 frame testvector on G729E code observed after re-writing each of the
functions in assembly.

4. Integrating the optimized function with the rest of the
code and verify that it passes the ITU-T test vectors.

3.4.1 Criterion for selecting functions

The selection of functions for optimization was based pri-
marily on profiling information (Appendix), focusing on the
most time-critical functions. All the functions which con-
sumed more the 5% of the processor cycles while executing
were short listed. This set of functions was called the Z3
set. The main criteria used to select the functions to be op-
timized was the following information.

Number of calls per frame. Based on this information,
the decision is made whether a small, frequently-called
function should be inlined. This information is most
useful during the global-level optimizations.

Total number of cycles per frame. This is the most use-
ful information for selecting the functions to optimize.

3.4.2 Loop unrolling

This technique repeatedly instantiates the loop body with
corresponding indices. Loop unrolling proves quite reward-
ing in some cases where it gives up to 2% improvement in
terms of total number of cycles for each of its applications.
An example is illustrated in Figure 8.

3.4.3 Loop merging

Combining two or more loops into a single loop loads the
ALU more efficiently, as illustrated in Figure 9. This tech-
nique yields up to 1% improvement in terms of total number
of cycles for each of its applications.

3.4.4 Loop count reduction

Loop count reduction is reducing the number of times a
loop is run. The ARM926EJ-S has two saturating arithmetic
functional units, thus in vector operations in each loop two

1 /* original code */
2 for (i=MP1; i <M_BWDP1; i++)
3 {
4 prev_filter[i] = 0;
5 }
6

7 /* modified code */
8 prev_filter[MP1] = 0;
9 |

10 |
11 prev_filter[M_BWDP1-1] = 0;

Figure 8. Loop unrolling example.

1 /* original loops */
2 for (i=0; i<L_WINDOW; i++)
3 {
4 y[i] = mult_r(x[i], hamwindow[i]);
5 }
6 for (i=0; i<L_WINDOW; i++)
7 {
8 sum = L_mac(y[i], y[i]);
9 }

10

11 /* merged loops */
12 for (i=0; i<L_WINDOW; i++)
13 {
14 y[i] = mult_r(x[i], hamwindow[i]);
15 sum = L_mac(y[i], y[i]);
16 }

Figure 9. Loop merging example.
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1 /* using local variables
2 inside for loop */
3 for (j=1; j<i; j++)
4 {
5 Word32 t0;
6 t0 = Mpy_32_new(K, A[i-j]);
7 An[j] = L_add(t0, A[j]);
8 }

Figure 10. Use of local variable example.

1 /* original shift */
2 alp = L_shl(t0, 1);
3

4 /* modified shift */
5 alp = t0 << 1;

Figure 11. Left shift example.

saturating arithmetic operations can be executed in paral-
lel for optimum processor utilization, thereby reducing the
number of loop counts by half. This was optimally used
with the functionL macD() performing two long mac op-
erations in one call (Figure 6).

3.4.5 Declaring local variables

Variables are declared as close as possible, in the code hier-
archy, to their area of use (in C) to help the compiler iden-
tify their life cycles. This improves register allocation but
requires more stack memory. An example is shown in the
Figure 10. This was not probed further.

3.4.6 Replacing functions by arithmetic operators

The right shift operator>> is used in a variable shift dis-
placement to save a function callL shr(). Similarly, the left
shift operator<< is used instead of theL shl() function to
save a function call if overflow or underflow does not occur
after a shift operation. An example is shown in the Fig-
ure 11. Also some additions or subtractions where add() or
sub() functions were used were replaced by addition opera-
tor + or subtraction operator - after analyzing the code . An
example is shown in the Figure 12.

However, the C operators∗, +,−were not applied to op-
erations on fractional values that only employ intrinsic func-
tions (L mult(), L add()) because it is difficult to ascertain
whether overflow, underflow or saturation would occur or
not.

1 /* Original addition and subtraction */
2 alp_exp = add(alp_exp, temp);
3 i = sub(i,1);
4

5 /* modified addition and subtraction*/
6 alp_exp = alp_exp + temp;
7 i--;

Figure 12. Addition and Subtraction example.

1 /* original if construct */
2 if (sub(abs_s(K>>16), 32750)){
3

4 /* modified if construct */
5 if (abs_s(K>>16) > 32750){

Figure 13. if condition example.

3.4.7 Simpler test conditions

The test conditions were simplified to reduce the amount
of computation. e.g. the conditions which involved sub-
traction were replaced with direct comparisons. This saves
a subtraction operation. An example is shown in the Fig-
ure 13.

3.4.8 Removal of Pointers

Impact of pointers on code speedup was probed. Almost
all occurrences of pointers were replaced with ’non-pointer’
implementations. Upon simulation on theARMulator, the
modified code took greater number of execution cycles
compared to the original code.

Subsequently, the C and assembly codes were analysed
and the following example illustrates the reason. Leth[8] be
an eight element array of short data type which is 2 bytes in
size andp be a pointer to this array. To perform the follow-
ing multiplication operation inside afor loop,

Result= h[i]∗h[i]

all variables and array addresses in a function are pushed
on the stack pointer (SP). Figure 14 shows the code with
the pointer implementation and Figure 15 shows without.

So, the implementation without pointers adds extra over-
head of assembly instructions for moving the content of SP
to a register, a left shift operation to double the array in-
dex and an addition operation. Although we need aMov
operation for the original implementation also, it would be
outside thefor loop so it gets executed only once while in
case of the modified code it has to be performed in each
iteration.
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1 C code Assembly
2

3 p = h; Mov r1, sp
4 ;which means
5 the array
6 address from
7 the SP is
8 being moved
9 to reg. r1.

10

11

12 Res = (*p)*(*p); LDRH r2,[r1,0]
13 /* this construct
14 is inside a for ;loads reg.
15 loop */ r2 with the
16 data at the
17 address stored
18 at r1.
19

20 MUL r3, r2, r2
21 ;performs the
22 multiplication.

Figure 14. C and Assembly version for code with
pointers.

This is diagrammatically explained in Figure 16. The
left hand side of the figure shows the data access through a
pointer which involves reading the address of the memory
location and then accessing it. While the right hand side of
the figure shows the computations required to be performed
on the address of the memory location. The double of the
array index has to be added to the address of the memory
location. This modification was abandoned as it was found
to be counter productive.

3.4.9 Sign-extending/Zero-extending

Using the most appropriate data type for variables is im-
portant, as it can reduce code and/or data size and increase
performance considerably.

ARM926EJ-S processor has a 32-bit wordsize. So,
wherever the design permits, it is best to avoid using short
(Word16) as local variables. For these, the compiler needs
to reduce the size of the local variable to 16-bits after each
assignment. This is called sign-extending for signed vari-
ables and zero-extending for unsigned variables. It is imple-
mented by shifting the register left by 16-bits, followed by
a signed or unsigned shift right by the same amount, taking
two instructions (zero-extension of an unsigned char takes
one instruction). These shifts can be avoided by using int

1

2 C code Assembly
3

4 Res = h[i]*h[i]; ADD r2, sp, r1, LSL #1
5 ;moves the address
6 stored at SP to
7 reg. r2, adds it
8 to twice the array
9 index corresponding

10 to the element being
11 accessed and finally
12 stores the result in
13 reg. r2. The index
14 is doubled since
15 its data type
16 occupies 2 bytes,
17 so each element
18 corresponds to 2 bytes.
19

20 LDRH r2,[r2, 0]
21 ;loads reg. r2 with
22 the data at the address
23 stored at r2.
24

25 MUL r3, r2, r2
26 ;performs the
27 multiplication.

Figure 15. C and Assembly version for code without
pointers.

Pointer

Memory

Sum (+)

Left
Shift
(<<)

Array address
stored in stack
pointer (SP)

    Array
    index

(a)
(b)

Figure 16. Array access for implementation (a)with
pointers (b) without pointers.
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1 /* C code for adding
2 1 to a 32-bit quantity */
3 int word32 ( int a)
4 {
5 return a + 1;
6 }
7

8 ;Corresponding Assembly
9 ;code (compiler) generated

10 ADD r1,r1,#1
11 MOV pc,lr

Figure 17. C and Assembly code for operation on a
32-bit quantity.

1 /* C code for adding 1
2 to a 16-bit quantity */
3 short word16 ( short a)
4 {
5 return a + 1;
6 }
7

8 ;Corresponding assembly
9 ;code (compiler generated)

10 ADD r1,r1,#1
11 MOV r1,r1,LSL #16
12 MOV r1,r1,ASR #16
13 MOV pc,lr

Figure 18. C and Assembly code for operation on a
16-bit quantity.

and unsigned int for local variables. This is essentially im-
portant for calculations which first load data into local vari-
ables and then process the data inside them. Even if data
is input and output as 16-bit quantities, it leads to better
performance processing them as 32-bit quantities as can be
seen from the code fragments shown. Figure 17 shows the
C and assembly code for adding 1 to a 32-bit number (int
type). Figure 18 shows the C and assembly codes for adding
1 to a 16-bit number (short int type). The assembly code is
shortest for the 32-bit operation.

So far this is applied to some functions and the improve-
ment in terms of cycles is considerable (by 2.2% , in code-
book) in terms of number of execution cycles.

Version Cycle count MCPS % Impr.

Initial version 42419339 4242 0
Optimized version 37753211 3766 11.2

Table 5. Performance after function level optimiza-
tions

3.4.10 Selected functions for function level optimiza-
tions

The Z3 group of selected functions was extended to include
Syn f ilt (), Convolve(), Residue(), Cor h X(), Autocorr(),
andNorm Corr(). As they are smaller and easier to ma-
nipulate. However, the optimizations were further extended
to functions Cor h(), Lsp pre select(), Levinsone(),
D4i40 17(), Pre Process(), Az lsp(), Chebps10(),
Chebps11(), Lag max(), Pred lt3(), Get lsp pol(),
Qua gain(). There are still functions left to which these
optimizations are to be applied.

3.4.11 Performance

The Table 5 lists the cycle count and MCPS (see Measure-
ment techniques) before and after performing optimization.
Comparing with Table 4, it is observed that optimizations
under this category provided 3.1% improvement.

3.5 Algorithmic changes

It is worthwhile to determine if frequently-accessed data
structures could be changed so that the functions access
data sequentially and lengths of data arrays are multiples of
four(thereby filling the complete 32-bits of a register). It is
also useful to examine the relationship between the results
of an algorithmic module and its internally computed val-
ues. Often the number of variables a module computes and
stores is significantly larger than the number of variables
returned and need to be probed for reduction.

For example, the output of a function might be the offset
of a single value, while at the same time numerous inter-
mediate internal variables might have to be computed and
stored internally to obtain it. Examining the relationships
of the output and the internal variables allows to determine
if the output could be obtained with lesser computations
and/or with fewer internal variables. However while per-
forming this analysis special emphasis was given on main-
taining bit-exactness with the standard specification. This is
particularly important for cases where the sequence of op-
erations is changed from that of the original reference code.
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3.5.1 Identifying algorithms to change

Precise determination of which algorithms to optimize is
difficult. It involves a further search from the Z3 set. The
following two guidelines reduce the scope of this search to
a manageable range:

1. Using profiling data to select only the most time-
critical functions from the Z3 set.

2. Including the functions that provide inputs to and re-
ceive outputs from the functions in Z3 set.

Although the functions in step 2 are usually small and
not included in the Z3 set, they are usually easily modified
so that the data they provide or receive from the functions
selected in step 1 is accessed and manipulated more effi-
ciently. The three most time-consuming modules, which
together accounted for more than 50% of the total execu-
tion time.

Ideally, algorithmic modifications should have been
taken up before performing function-level optimizations.
This could have saved significant time in this iterative opti-
mization process. However, this is possible only if the im-
provement in execution time after function-level optimiza-
tion or assembly implementation could be predicted fairly
accurately, which cannot be done without an in depth under-
standing of algorithms and optimization techniques. Hence,
after the algorithmic modifications are done and the final
C implementation passed the test vectors, another round of
function-level optimizations have to be taken up. The re-
sult yields a faster C implementation and also serves as an
excellent reference code for the assembly implementation.

3.5.2 Platform-independent changes

Platform-independent changes to algorithms are improve-
ments in code which apply to all processor types and C
compilers. The following are general guidelines which were
followed:

1. Replacing the time-critical operations div() and log()
with multiplications.

2. Removing repeated computations of the same value.

3. Reordering computations to avoid repeated fetches of
the same value.

4. Reducing the number of test conditions (e.g.if state-
ments)

3.5.3 Platform-dependent changes

Platform-dependent changes to algorithms essentially re-
order and restructure data. They also reorder and regroup
computation blocks to take advantage of the parallel archi-
tecture of a particular processor. H. They are as follows:

Version Cycle count MCPS % Improvement

Initial version 42419339 4242 0
Optimized version 35208051 3510 17.26

Table 6. Performance after algorithmic optimizations

1. Data structure addressing is preferably done sequen-
tially (linearly), using indices rather than pointers.

2. DPF formats are translated to native 32-bit representa-
tion wherever possible.

3. Sequential, identical and related computations are
grouped together.

3.5.4 Function selection for algorithmic modifications

Algorithmic modifications were made after performing the
function-level optimizations. The initial selected function
set for the algorithmic changes focusing on modules that
grouped several functions, is as follows:

1. D4i40 17() + Cor h() + Cor h X()

2. Lag max() + Pitch ol()

3. Norm Corr() + Pitch f r3()

4. Autocorr() + Lag window() + Levinsone()

5. Az lsp() + Chebps10()+ Chebps11()

6. cor h e() + cor h vec() + searchixiy()

Changes have been made to above 1 through 4. The re-
sults are quite rewarding considering the improvements we
can obtain for an essentially non-parallel architecture. The
above list of functions can be used to demonstrate the given
optimizations and can be further applied on other function
groups.

3.5.5 Performance

The Table 6 lists the cycle count and MCPS (Measurement
techniques before and after performing algorithmic modi-
fications on some functions. Comparing with Table 5, it
is observed that optimizations under this category provided
6.06% improvement.

3.6 Assembly implementation of functions

In general, rewriting C functions in assembly increased
speed and reduced code size by implementing optimizations
overlooked by the compiler. However, thearmcccompiler
is quite efficient, hence most code was kept in C with spe-
cific functions re-written in assembly. While the optimiza-
tion techniques enshrined in this report can be used on the
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Version Cycle count MCPS % Impr.

Initial version 42419339 4242 0
Optimized version 24603216 2452 42.19

Table 7. Performance after mixed C assembly opti-
mizations

remaining C code thereby giving further improvement. This
was left for future work due to time limitations. The func-
tions to be implemented in assembly were selected on the
basis of profiling information, as discussed as follows.

3.6.1 Selecting functions

The entire code is profiled, and the most time-critical func-
tions are identified for the Z3 set (as discussed earlier). The
estimates of ideal execution times are compared with the C
optimization results. Functions which are near-optimal are
retained in the optimized C version and the remainder are
candidates to be implemented in assembly.

3.6.2 Implementation approaches

There are two basic approaches to implementing assembly.

Modifying compiler output This approach is most useful
for relatively simple functions for which the compiled
code is close to the optimal version. For instance, reg-
isters can be more optimally allocated,or the number
of pointers needed to fetch data can be reduced.

Coding directly in assembly The functions that are com-
plex or that could use better assembly instructions
were written using this approach. The optimized C
code is used as a reference for testing to ensure the
bit-exactness after performing platform-dependent op-
timizations. In such cases, assembly implementation is
based on, another C version or standard recommended
algorithm. However, it is best to use the C code as a
reference, regardless of other optimizations employed.

3.6.3 Performance

The Table 7 lists the cycle count and MCPS before and after
writing some functions in assembly. Comparing with Ta-
ble 6, it is observed that optimizations under this category
provided 24.93% improvement.

4 Measurement techniques

Various tools and techniques are used to measure the ex-
ecution time, code size and data size of the code.

Cache options Cyls Cyls/fr mS/fr
I and D caches off 17143184 571439.47 95.24
I cache On, D cache Off 12380106 412670.20 68.78
I cache Off, D cache On 13431503 447716.77 74.62
I and D caches On 9171550 305718.33 50.95

Table 8. Execution statistics for a 30 frame test-vector
set running on a Non-optimized G729 code at 6Mhz

4.1 Execution time

The execution time of functions were evaluated using the
number of simulated cycles spent in the functions. This
measurement is a good approximation of actual processing
time. Four tools were used to gather execution time infor-
mation: the ARM compiler (armcc), the ARM ISS (ARMu-
lator), and the ADS Debuggers (AXD andarmsd) and the
profilerarmprof.

The profiler provides information on the average time
spent in each function as a percentage of the total number
of cycles. The profiler provides the overall number of cycles
spent in each function with and without descendants (in ab-
solute and percentage values) as well as the number of times
the function was called. The profiler was used to determine
which functions are the most time-critical and where to di-
rect further optimization efforts. It reports the number of
cycles used to execute each function.

The metric used for optimization measurements was mil-
lion cycles per second (MCPS). The number of MCPS re-
quired to encode a frame is obtained by multiplying the
measured number of cycles by the number of frames to be
processed per second (for G.729E, 100 frames of 10 ms
each have to be processed per second), and dividing the re-
sult by 1,000,000. For instance, if it takes 42,420,000 cy-
cles to encode a frame, the processing power required is
(42,420,000 100) / 1,000,000 = 4242 MCPS.

4.2 ARMulator Benchmarking

As the algorithm needs to be executed with real time con-
straints it was imperative to calibrate theARMulatorto real
time. Thus, the ARMULATOR was calibrated against an
Aptix FPGA board with Instruction and Data caches. The
Tables 8, 9, provide the statistics for the same.

The cycle count provided by theARMULATORneeds to
be scaled by a factor of 0.222 to provide the correct cy-
cle count including instruction and data caches on an Ap-
tix FPGA implementaton of the processor, as shown in Ta-
ble 10.
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Cache options Cyls Cyls/fr mS/fr)
I and D caches off 12929209 430973.63 71.83
I cache On, D cache Off 9756321 325210.70 54.20
I Off cache, D cache On 9700514 323350.46 53.89
I and D caches On 6961778 232059.27 38.68

Table 9. Execution statistics for a 30 frame test-vector
set running on an optimized G729 code at 6 Mhz

G.729E version Armulator cyls Emulator cyls Ratio
Original 42419339 9171550 0.216
Optimized 30590320 6961778 0.22
Average 36504829.5 8066664 0.222

Table 10. Scaling factor for the ARMULATOR.

5 Results

The following section presents the results of porting the
G.729E code to the ARM926EJ-S processor. The primary
performance data (MCPS) is presented in comparison to the
effort applied to achieve that performance. The major mile-
stones shown on the graph include code versions after each
of the following steps:

1. Initial porting to the ARM926EJ-S.

2. Global-level optimization, including inlining of DPF
functions.

3. Initial function-level optimization, before algorithmic
changes.

4. The final C version, after algorithmic changes and re-
optimization at function level.

5. The final mixed implementation, including selected
functions in assembly.

5.1 Execution time

The percentage of improvement in execution speed
through the different versions of the project are summarized
in the Figure 19. While the distribution of man-months
taken over the various optimization levels is illustrated in
Figure 20.

The global-level optimizations, especially inlining small
DPF functions, proved to be beneficial for both execution
time and code size. They reduce the time by 8.2% (344
MCPS). The code size also decreased slightly, primarily
due to the removal of operations performed before and after
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Figure 19. Percentage improvement in execution
speed
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Figure 20. Man months taken per optimization level
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function calls which were now redundant. The function-
level C optimizations reduce execution time by an addi-
tional 3.1% (132 MCPS). Algorithmic changes reduce exe-
cution time by another 6.06% (256 MCPS). The phases after
project-level optimization included some redundant work
because some time-critical functions were optimized both
before and after algorithmic changes. After the mixed C and
assembly implementation the time reduces by further 25%
(1058 MCPS). The final execution time of 2452 MCPS is
substantially better than our original target of 4242 MCPS
which is an improvement of approximately 42%. This sug-
gests that with one more iteration of the optimization pro-
cess an improvement of up to 50% can be achieved.

6 Optimization examples

This section presents details of the optimization process
for the functions,L shl(), andNorm Corr(). The function-
level, algorithmic, and assembly changes for each function
are discussed, as well as the effect of these changes on the
efficiency of code generated by the compiler.

6.1 Optimizations in L shl()

The L shl() function arithmetically shifts the 32-bit in-
put argument left by positions provided by the second 16-bit
argument. If second argument is negative, it calls the right
shift function and right shifts the 32bit argument. Finally, it
saturates the result in case of underflows or overflows.

The main steps in the reference C code are:

1. Checking if the 16-bit argument is negative.

2. Calling the right shift function if above test returns
true.

3. Multiplying the 32-bit argument by 2.

4. Checking for overflows each time in the above itera-
tion.

6.1.1 Function-Level Optimizations

The function calls function Lshr() if the number of shift
positions specified are negative. This check operation takes
eight instructions. While in the static code the Lshl in-
struction is called 74 times where 41 instances have hard-
coded positive shift arguments. Thus by defining a second
shift function L shlf() which does not perform sign check
for calling L shr() function reduces eight redundant instruc-
tions per Lshl() call.

Using L shlf: Therefore all Lshl calls with hard-coded
positive shift arguments were replaced by the new
function L shlf.

Version Cycle count MCPS % Impr.

Initial version 42419339 4242 0
Optimized version 40934662 4094 3.4

Table 11. Performance after modifyingL Shl()

6.1.2 Algorithmic Changes in assembly

1. The ARM926EJ-S provides an instruction, CLZ to re-
turn the number of leading zeros in a given register
data. This instruction was utilized to return the num-
ber of zeros or ones for a positive and negative number
respectively in the given register.

2. The above returned value was compared with the num-
ber of shifts required, and if found greater, the overflow
flag was set.

6.1.3 Performance

The Table 11 lists theL Shl() cycle count and MCPS before
and after optimization.

6.2 Optimizations in Norm Corr()

The Norm Corr() function finds the normalized corre-
lation (correlation divided by the square root of the energy
of filtered excitation) between the target vector and the fil-
tered past excitation. The main steps of this function in the
reference C code are as follows:

1. Computing the filtered excitation for the minimum de-
lay.

2. Scaling the excitation vector to avoid overflow.

3. Computing the energy of the filtered excitation to
check overflow.

4. Scaling the filtered excitation to avoid overflow and
computing the energy of the scaled filtered excitation.

5. Computing the normalized correlation vector For ev-
ery possible delay between minimum and maximum
and modifying the excitation for the next iteration.

6.2.1 Function-Level Optimizations

The C optimizations applied toNorm Corr() to speed up
the function include the following:

1. Replacing the tests that use subtraction with direct
comparisons. for example, replace if(sub(a,b) > 0)
with if (a > b).
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2. Replacing functions calls with operators when integer
values are used. for example, replacingi = sub(i,1)
with i−−.

3. Replacing theL shl() function call with the<< oper-
ator.

4. Replacing unmodified variables with constants defined
in the G.729 reference code.

5. Inlining of DPF functions

6.2.2 Algorithmic Changes

The major modifications to the algorithms inNorm Corr()
included the following:

1. Computation of the scaled filtered excitation vector
only when overflow occurs. In the ITU-T speech.in
test vector, overflow occurs in only about 200 out of
3750 frames.

2. Exploiting the 32-bit capabilities of the processor
by using 32-bit variables instead of the DPF for-
mat defined in the G.729 standard, and replacing the
Mpy 32() function with a new functionMpy 32 new()
which works with native 32-bit data but preserves bit-
exactness. The code listing is shown in the appendix.

3. Eliminating the else branch of the if()else statement to
reduce the number of branch-like instructions.

4. Computing the energy in the same loop which com-
putes the new scaled filtered excitation values to avoid
extra memory moves. However this modification did
not work as intended due to suboptimal register uti-
lization.

These modifications were first applied to the un-optimized
C code to verify bit-exactness. The function was then re-
optimized in C.

6.2.3 Assembly implementation

Assembly implementation was not used in this case except
for the arithmetic functions which were implemented using
saturating arithmetic instructions.

6.2.4 Performance

The Table 12 lists theNorm Corr() cycle count and MCPS
before and after optimization.

Version Cycle count MCPS % Impr.

Initial version 42419339 4242 0
Optimized version 41146758 4115 3

Table 12. Performance after modifyingNorm Corr()

7 Conclusion

This report describes porting G.729E C code to the
ARM926EJ-S platform and optimizing the code while
maintaining the bit-exactness of the original code. The ap-
proach used and recommended has the following key com-
ponents:

1. C source optimizations for selected functions, with and
without algorithmic changes.

2. Assembly implementation/optimization of selected
time-critical functions.

The C optimization of selected functions was done at
both the global and function level. These optimizations
were algorithm independent. Execution time profile, pro-
vided by the profiler, was used for selecting functions for
optimization. The global-level optimizations involve profil-
ing the initially ported code, inlining frequently-called func-
tions, and optimizing the C code so that the compiler pro-
duces code that is better adapted to the ARM926EJ-S ar-
chitecture. In the function-level optimization, several tech-
niques including loop unrolling and loop merging were em-
ployed. These two optimizations lead to an improvement by
11.2 % (476 MCPS). The total development time for these
two phases of the project was 4 man-months.

Further run-time reduction is achieved by applying al-
gorithmic changes to critical functions grouped in mod-
ules. This involves a comprehensive understanding of the
algorithms. Four such modules were chosen for optimiza-
tions. The profiler generated information assisted in identi-
fying functions for implementing algorithmic changes. The
algorithm-modified functions were then re-optimized at the
function level. The functions initially selected were termed
Z3 set and collectively took more than 50% of total execu-
tion time of the optimized C version. This Z3 set of func-
tions was expanded to include functions that provide inputs
to and receive outputs from the functions in the it. The
algorithmic changes employed included both architecture-
independent modifications and ARM926EJ-S specific adap-
tations. Basic algorithmic changes included modifying vec-
tor sizes and internal pointer offsets to multiples of four,
sequential array addressing, searches with interval division
by four, and use of native 32-bit data format. Algorithmic
changes reduced run time from 3766 MCPS to 3510 MCPS
and improved by 6.06%. The development time for this
phase was 4 man-months. These improvements were made
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after the initial C optimization, due to which some functions
had to be optimized again at function level.

Assembly implementation was the final phase of devel-
opment because it is very difficult to change the structure
of an implementation in assembly, especially after algo-
rithmic changes. Functions targeted for assembly imple-
mentation are primarily those for which thearmcc com-
piler could not produce efficient code, and those which ex-
ecute for large number of cycles. Particular emphasis was
given to loops, where each cycle saved results in a signifi-
cant reduction in execution time. This final phase involved
the implementation of selected critical functions in assem-
bly. The optimized C implementation served as a refer-
ence for the assembly implementation. It was used to verify
that the intended modifications comply with bit-exactness
requirements and it also provide a pseudo-code for the al-
gorithm. The criteria for selecting functions for this phase
was primarily based on the difference between the estimated
performance and actual performance of the compiler gen-
erated code for each function. An improvement by 25%
(1058 MCPS) was obtained, with a development time for
this phase of 6 man-months.

The ARMulator was bench-marked with Aptix FPGA
implementation of ARM926EJ-S by executing the code on
it and a correction factor of 0.222 was obtained for deter-
mining accurate number of cycles from theARMulatorre-
sults.

With the present effort the code has speeded up by ap-
proximately 42% and the steps for the next optimization it-
eration are defined. It is predicted, with these optimizations
applied on the complete code can speed up by 10% more.

8 Future research

Many optimizations on similar algorithms were surveyed
and it was found that further optimizations could be ex-
plored for the given system. Till now the emphasis of op-
timization has been on the algorithm and the implementing
C code.

Algorithmic optimizations: The present algorithmic opti-
mizations provided about 7% improvement and further
optimizations upto 10% more seem feasible.

Code size and Memory usage:The code size and mem-
ory utilization needs to be be explored. Using the cor-
rect sizes of caches and TCM can improve or nullify
the code speed-up gained above. In the course of the
project, functions which could be reduced, collapse d
or contained redundant code, and data look up tables
which could be modified, were marked. The authors
believe these reductions can be made without signifi-
cant penalty on the execution speed.

Harvard architecture: Optimizations utilizing the inter-
nal Harvard architecture of ARM926EJ-S could also
be explored.

Multiple channels: Code modification / optimization to
support multiple channels is not yet implemented.

The complete code speedup can be ascertained after im-
plementing the optimizations elaborated here on the com-
plete code. While the code could be further speeded up if
the constraint of not using customized hardware is removed
or by using a full DSP processor.
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Name cum% self% desc% calls
__heap_extend 96.06% 0.00% 96.06% 1

__rt_heap_extend 0.00% 0.00% 1
__rt_stackheap_init 0.00% 0.00% 1
__rt_lib_init 0.00% 0.00% 1
exit 0.00% 0.00% 1
main 0.00% 96.06% 1

----------------------------------------------------------------------
main 96.06% 0.00% 96.06% 1

fwrite 0.00% 0.00% 30
fread 0.00% 0.00% 31
fopen 0.00% 0.00% 3
atoi 0.00% 0.00% 1
_printf 0.00% 0.04% 31
_printf 0.00% 0.01% 15
Pre_Process 0.12% 0.85% 30
Init_Pre_Process 0.00% 0.00% 1
prm2bits_ld8e 0.04% 0.00% 30
Coder_ld8e 0.50% 94.44% 30
Init_Coder_ld8e 0.00% 0.01% 1

----------------------------------------------------------------------
__argv_alloc 96.06% 0.00% 96.06% 0

__heap_extend 0.00% 96.06% 1
----------------------------------------------------------------------
Coder_ld8e 94.95% 0.50% 94.44% 30

Copy 0.02% 0.00% 120
Copy 0.04% 0.00% 180
Enc_lag3 0.00% 0.00% 60
G_pitch 0.07% 0.12% 60
Pitch_fr3 0.02% 7.92% 60
Pitch_ol 0.12% 9.77% 30
perc_var 0.02% 0.06% 30
Qua_gain 0.31% 1.14% 60
Parity_Pitch 0.01% 0.00% 30
Pred_lt_3 0.34% 1.28% 60
Int_lpc 0.00% 0.44% 29
Int_qlpc 0.01% 0.23% 29
Weight_Az 0.04% 0.67% 270
L_shl 0.23% 0.00% 6000
L_shl 0.18% 0.00% 4800
L_mac 0.01% 0.03% 2400
round 0.22% 0.01% 2400
extract_h 0.00% 0.00% 3600
extract_h 0.00% 0.00% 4800
negate 0.13% 0.00% 180
L_mult 0.03% 0.00% 6000
L_mult 0.03% 0.00% 4800
mult 0.00% 0.00% 747
mult 0.00% 0.00% 787
shl 0.00% 0.00% 60
shr 0.00% 0.00% 30
sub 0.04% 0.03% 3688
sub 0.05% 0.04% 4892

20



add 0.00% 0.01% 2603
add 0.00% 0.00% 817
Az_lsp 0.08% 4.07% 30
Levinsone 0.84% 6.67% 60
Lag_window 0.00% 0.00% 30
Autocorr 1.00% 1.74% 30
Residue 1.58% 3.81% 180
Syn_filte 0.32% 1.16% 60
Syn_filte 1.64% 5.84% 300
Convolve 0.52% 1.08% 60
ACELP_10i40_35bits 0.46% 23.43% 60
Lag_window_bwd 0.02% 0.19% 30
autocorr_hyb_window 1.31% 2.34% 30
set_lpc_mode 0.00% 5.33% 30
Lsp_prev_update 0.00% 0.02% 30
Qua_lspe 0.00% 6.74% 30
test_err 0.00% 0.00% 60
Corr_xy2 0.12% 0.22% 60
update_exc_err 0.00% 0.00% 60

----------------------------------------------------------------------
L_mac 31.81% 11.73% 20.07% 1559356

L_add 9.96% 0.00% 1469754
L_mult 10.11% 0.00% 1534020

----------------------------------------------------------------------
ACELP_10i40_35bits 23.90% 0.46% 23.43% 60

L_msu 0.00% 0.00% 180
L_sub 0.00% 0.00% 720
L_add 0.00% 0.00% 300
L_mult 0.00% 0.00% 180
mult 0.00% 0.00% 540
shl 0.00% 0.00% 180
add 0.11% 0.53% 58320
cor_h_x_e 0.68% 1.35% 60
set_sign 0.18% 0.89% 60
cor_h_e 0.73% 2.78% 60
cor_h_vec 3.05% 6.19% 1440
search_ixiy 2.04% 4.23% 720
build_code 0.35% 0.25% 60

----------------------------------------------------------------------
L_mult 13.03% 13.03% 0.00% 1977254
----------------------------------------------------------------------
L_add 10.65% 10.65% 0.00% 1571129
----------------------------------------------------------------------
Residue 9.90% 2.90% 6.99% 330

L_shl 0.56% 0.00% 14400
L_mac 1.80% 3.08% 240000
round 1.35% 0.09% 14400
L_mult 0.09% 0.00% 14400

----------------------------------------------------------------------
Pitch_ol 9.89% 0.12% 9.77% 30

Lag_max 3.29% 6.26% 90
L_sub 0.00% 0.00% 30
L_mac 0.04% 0.08% 6690
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mult 0.00% 0.00% 60
shl 0.07% 0.00% 2736
sub 0.00% 0.00% 120

----------------------------------------------------------------------
Lag_max 9.56% 3.29% 6.26% 90

Mpy_32 0.00% 0.00% 90
L_Extract 0.00% 0.00% 180
Inv_sqrt 0.00% 0.01% 90
L_sub 0.05% 0.00% 3720
L_mac 2.28% 3.91% 304800
extract_l 0.00% 0.00% 90

----------------------------------------------------------------------
cor_h_vec 9.24% 3.05% 6.19% 1440

L_mac 1.77% 3.03% 236152
round 1.03% 0.07% 10944
mult 0.06% 0.09% 10944
add 0.01% 0.10% 11520

----------------------------------------------------------------------
Syn_filte 8.99% 1.98% 7.01% 360

L_shl 0.56% 0.00% 14400
L_msu 1.70% 3.21% 144000
round 1.35% 0.09% 14400
L_mult 0.09% 0.00% 14400

----------------------------------------------------------------------
L_msu 8.55% 2.96% 5.59% 250363

L_sub 4.04% 0.00% 250363
L_mult 1.55% 0.00% 235918

----------------------------------------------------------------------
Pitch_fr3 7.94% 0.02% 7.92% 60

Norm_Corr 1.93% 5.89% 60
Interpol_3 0.02% 0.06% 280
sub 0.00% 0.00% 901
add 0.00% 0.00% 63

----------------------------------------------------------------------
Norm_Corr 7.82% 1.93% 5.89% 60

Mpy_32 0.02% 0.07% 990
L_Extract 0.03% 0.08% 1980
Inv_sqrt 0.06% 0.19% 990
L_shl 1.46% 0.00% 37260
L_sub 0.00% 0.00% 60
L_mac 0.60% 1.04% 81600
extract_h 0.00% 0.00% 37260
negate 0.04% 0.00% 60
L_mult 0.23% 0.00% 36270
shr 0.03% 0.00% 3330
sub 0.01% 0.01% 1920
add 0.06% 0.33% 36270
Convolve 0.52% 1.08% 60

----------------------------------------------------------------------
Levinsone 7.52% 0.84% 6.67% 60

Div_32 0.13% 0.91% 1069
Mpy_32 0.79% 2.06% 26618
L_Comp 0.38% 0.30% 15426
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L_Extract 0.26% 0.75% 16499
norm_l 0.04% 0.00% 1064
L_abs 0.00% 0.00% 2133
L_shl 0.15% 0.00% 4132
L_shr 0.00% 0.00% 1064
L_negate 0.00% 0.00% 471
L_sub 0.01% 0.00% 1064
round 0.09% 0.00% 1050
L_add 0.17% 0.00% 25499
abs_s 0.59% 0.00% 1009
sub 0.00% 0.00% 1009
add 0.00% 0.00% 1004

----------------------------------------------------------------------
Qua_lspe 6.74% 0.00% 6.74% 30

Lsp_lsf2 0.04% 0.08% 30
Lsf_lsp2 0.02% 0.00% 30
Lsp_qua_cse 0.00% 6.58% 30

----------------------------------------------------------------------
Lsp_qua_cse 6.58% 0.00% 6.58% 30

Get_wegt 0.00% 0.03% 30
Relspwede 0.02% 6.52% 30

----------------------------------------------------------------------
Relspwede 6.55% 0.02% 6.52% 30

shl 0.00% 0.00% 60
add 0.00% 0.00% 600
Lsp_prev_extract 0.06% 0.09% 60
Lsp_expand_2 0.01% 0.00% 60
Lsp_expand_1 0.00% 0.00% 60
Lsp_get_quante 0.01% 0.11% 30
Lsp_expand_1_2 0.01% 0.01% 60
Lsp_pre_select 1.34% 3.27% 60
Lsp_select_1 0.18% 0.55% 60
Lsp_select_2 0.27% 0.55% 60
Lsp_get_tdist 0.00% 0.02% 60
Lsp_last_select 0.00% 0.00% 30

----------------------------------------------------------------------
search_ixiy 6.27% 2.04% 4.23% 720

L_msu 0.54% 1.02% 46080
L_mult 0.30% 0.00% 46080
mult 0.28% 0.41% 46080
add 0.28% 1.38% 151200

----------------------------------------------------------------------
sature 6.06% 6.06% 0.00% 660726
----------------------------------------------------------------------
round 5.86% 5.47% 0.39% 57896

L_add 0.39% 0.00% 58480
----------------------------------------------------------------------
set_lpc_mode 5.33% 0.00% 5.33% 30

L_shr 0.00% 0.00% 30
L_mac 0.00% 0.00% 300
L_mult 0.00% 0.00% 30
shr 0.00% 0.00% 30
sub 0.00% 0.00% 300

23



add 0.00% 0.00% 30
extract_l 0.00% 0.00% 30
Residue 1.31% 3.17% 150
ener_dB 0.34% 0.39% 210
Int_bwd 0.06% 0.04% 30
tst_bwd_dominant 0.00% 0.00% 28
calc_stat 0.00% 0.00% 28

----------------------------------------------------------------------
L_sub 4.67% 4.67% 0.00% 289532
----------------------------------------------------------------------
Lsp_pre_select 4.61% 1.34% 3.27% 60

L_sub 0.12% 0.00% 7680
L_mac 0.57% 0.98% 76800
sub 0.89% 0.70% 76800

----------------------------------------------------------------------
L_shl 4.45% 4.45% 0.00% 113258

L_shr 0.00% 0.00% 1172
----------------------------------------------------------------------
Az_lsp 4.16% 0.08% 4.07% 30

div_s 0.06% 0.05% 299
norm_s 0.00% 0.00% 299
L_shr 0.00% 0.00% 598
L_msu 0.00% 0.00% 150
L_mac 0.00% 0.00% 150
extract_h 0.00% 0.00% 300
negate 0.08% 0.00% 120
L_mult 0.00% 0.00% 1798
L_mult 0.00% 0.00% 1636
L_mult 0.00% 0.00% 300
shl 0.00% 0.00% 299
shr 0.02% 0.00% 2400
abs_s 0.17% 0.00% 299
sub 0.00% 0.00% 30
sub 0.01% 0.00% 1198
sub 0.00% 0.00% 150
add 0.00% 0.00% 290
add 0.00% 0.00% 1200
add 0.00% 0.01% 1636
add 0.00% 0.00% 150
extract_l 0.00% 0.00% 598
Chebps_11 0.61% 2.99% 3166

----------------------------------------------------------------------
autocorr_hyb_window 3.65% 1.31% 2.34% 30

Mpy_32_16 0.01% 0.03% 930
L_Extract 0.01% 0.03% 930
L_shl 0.03% 0.00% 930
L_shr 0.01% 0.00% 1860
L_mac 0.79% 1.37% 106950
L_add 0.00% 0.00% 930
mult 0.02% 0.03% 4350

----------------------------------------------------------------------
Chebps_11 3.61% 0.61% 2.99% 3166

Mpy_32_16 0.20% 0.52% 12664
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L_Extract 0.20% 0.57% 12664
L_shl 0.49% 0.00% 12664
L_msu 0.14% 0.27% 12664
L_mac 0.20% 0.36% 28494
extract_h 0.00% 0.00% 3166
L_mult 0.01% 0.00% 3166

----------------------------------------------------------------------
cor_h_e 3.51% 0.73% 2.78% 60

__rt_sdiv 0.04% 0.00% 2400
Inv_sqrt 0.00% 0.00% 60
norm_l 0.00% 0.00% 60
L_shl 0.00% 0.00% 120
L_shr 0.00% 0.00% 60
L_mac 0.17% 0.30% 24000
extract_h 0.00% 0.00% 21660
negate 1.82% 0.00% 2400
mult 0.12% 0.19% 21600
shl 0.07% 0.00% 2400
shr 0.02% 0.00% 2460
add 0.00% 0.00% 60

----------------------------------------------------------------------
Convolve 3.22% 1.04% 2.18% 120

L_shl 0.18% 0.00% 4800
L_mac 0.73% 1.26% 98400
extract_h 0.00% 0.00% 4800

----------------------------------------------------------------------
add 3.22% 0.55% 2.66% 290811

sature 2.66% 0.00% 291011
----------------------------------------------------------------------
Mpy_32 3.22% 0.89% 2.32% 29967

L_mac 0.44% 0.76% 59934
L_mult 0.19% 0.00% 29967
mult 0.36% 0.54% 59934

----------------------------------------------------------------------
mult 3.16% 1.26% 1.89% 205988

sature 1.89% 0.00% 206654
----------------------------------------------------------------------
negate 3.03% 3.03% 0.00% 3984
----------------------------------------------------------------------
sub 3.00% 1.68% 1.31% 143786

sature 1.31% 0.00% 143814
----------------------------------------------------------------------
Autocorr 2.75% 1.00% 1.74% 30

L_Extract 0.00% 0.01% 330
norm_l 0.00% 0.00% 30
L_shl 0.01% 0.00% 330
mult_r 0.04% 0.06% 7200
L_mac 0.59% 1.01% 79230
shr 0.01% 0.00% 1680

----------------------------------------------------------------------
L_Extract 2.63% 0.68% 1.94% 42594

L_shr 0.41% 0.00% 42598
L_msu 0.50% 0.94% 42598
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extract_h 0.00% 0.00% 42598
extract_l 0.09% 0.00% 42598

----------------------------------------------------------------------
cor_h_x_e 2.04% 0.68% 1.35% 60

norm_l 0.00% 0.00% 60
L_abs 0.00% 0.00% 2400
L_shl 0.09% 0.00% 2400
L_shr 0.00% 0.00% 300
L_sub 0.03% 0.00% 2400
L_mac 0.36% 0.62% 49200
round 0.22% 0.01% 2400
L_add 0.00% 0.00% 300
sub 0.00% 0.00% 60

----------------------------------------------------------------------
Mpy_32_16 1.87% 0.52% 1.34% 32046

L_mac 0.23% 0.41% 32110
L_mult 0.20% 0.00% 32110
mult 0.19% 0.29% 32110

----------------------------------------------------------------------
Pred_lt_3 1.62% 0.34% 1.28% 60

L_mac 0.35% 0.61% 48000
round 0.22% 0.01% 2400
negate 0.04% 0.00% 60
sub 0.02% 0.01% 2400
add 0.00% 0.00% 26

----------------------------------------------------------------------
Qua_gain 1.46% 0.31% 1.14% 60

Gbk_presel 0.00% 0.01% 56
Mpy_32_16 0.15% 0.39% 9600
L_Extract 0.00% 0.01% 300
Gain_update 0.00% 0.01% 60
Gain_predict 0.06% 0.09% 60
norm_l 0.00% 0.00% 180
div_s 0.01% 0.00% 60
L_deposit_l 0.00% 0.00% 3960
L_deposit_h 0.00% 0.00% 300
L_shl 0.00% 0.00% 240
L_shr 0.02% 0.00% 2700
L_sub 0.03% 0.00% 2100
L_add 0.06% 0.00% 9660
extract_h 0.00% 0.00% 360
negate 0.08% 0.00% 120
L_mult 0.00% 0.00% 540
mult 0.04% 0.06% 7680
shl 0.00% 0.00% 56
shr 0.00% 0.00% 60
sub 0.01% 0.01% 1680
add 0.00% 0.03% 3938
extract_l 0.00% 0.00% 1980

----------------------------------------------------------------------
set_sign 1.08% 0.18% 0.89% 60

Inv_sqrt 0.00% 0.01% 120
L_abs 0.00% 0.00% 2400
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L_shl 0.00% 0.00% 120
L_mac 0.04% 0.08% 6720
extract_h 0.00% 0.00% 120
negate 0.75% 0.00% 984
L_mult 0.01% 0.00% 2400
mult 0.00% 0.00% 60

----------------------------------------------------------------------
Div_32 1.04% 0.13% 0.91% 1069

Mpy_32_16 0.03% 0.08% 2138
Mpy_32 0.03% 0.07% 1069
L_Extract 0.04% 0.14% 3207
div_s 0.24% 0.20% 1069
L_shl 0.03% 0.00% 1069
L_sub 0.01% 0.00% 1069

----------------------------------------------------------------------
Pre_Process 0.97% 0.12% 0.85% 30

Mpy_32_16 0.07% 0.19% 4800
L_Extract 0.03% 0.10% 2400
L_shl 0.09% 0.00% 2400
L_mac 0.04% 0.09% 7200
round 0.22% 0.01% 2400
L_add 0.01% 0.00% 2400

----------------------------------------------------------------------
Lsp_select_2 0.82% 0.27% 0.55% 60

L_sub 0.03% 0.00% 1920
L_mac 0.06% 0.12% 9600
mult 0.05% 0.08% 9600
sub 0.11% 0.08% 9900

----------------------------------------------------------------------
abs_s 0.81% 0.81% 0.00% 1368
----------------------------------------------------------------------
shr_r 0.79% 0.79% 0.00% 0
----------------------------------------------------------------------
ener_dB 0.74% 0.34% 0.39% 210

L_shr 0.03% 0.00% 3638
L_mac 0.12% 0.21% 16800
sub 0.00% 0.00% 210
add 0.00% 0.03% 3428
extract_l 0.00% 0.00% 210

----------------------------------------------------------------------
Lsp_select_1 0.73% 0.18% 0.55% 60

L_sub 0.03% 0.00% 1920
L_mac 0.06% 0.12% 9600
mult 0.05% 0.08% 9600
sub 0.11% 0.08% 9900

----------------------------------------------------------------------
Weight_Az 0.71% 0.04% 0.67% 270

round 0.59% 0.03% 6330
L_mult 0.03% 0.00% 6330

----------------------------------------------------------------------
L_Comp 0.70% 0.39% 0.30% 15486

L_deposit_h 0.00% 0.00% 15486
L_mac 0.11% 0.19% 15486
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----------------------------------------------------------------------
div_s 0.63% 0.34% 0.29% 1476

L_sub 0.19% 0.00% 12030
sature 0.10% 0.00% 12047

----------------------------------------------------------------------
L_shr 0.61% 0.61% 0.00% 63274
----------------------------------------------------------------------
build_code 0.61% 0.35% 0.25% 60

L_shr 0.00% 0.00% 600
L_mult 0.00% 0.00% 600
mult 0.00% 0.00% 550
shl 0.00% 0.00% 300
shr 0.02% 0.00% 2200
sub 0.07% 0.05% 6336
add 0.01% 0.08% 9427
extract_l 0.00% 0.00% 600

----------------------------------------------------------------------
L_add_c 0.56% 0.56% 0.00% 0
----------------------------------------------------------------------
Int_lpc 0.44% 0.00% 0.44% 29

Lsp_lsf 0.08% 0.25% 60
Lsp_Az 0.01% 0.12% 30
shr 0.00% 0.00% 600
add 0.00% 0.00% 300

----------------------------------------------------------------------
Lsp_Az 0.43% 0.03% 0.39% 90

Get_lsp_pol 0.04% 0.27% 180
L_shr_r 0.05% 0.00% 900
L_sub 0.01% 0.00% 900
L_add 0.00% 0.00% 900
extract_l 0.00% 0.00% 900

----------------------------------------------------------------------
Corr_xy2 0.35% 0.12% 0.22% 60

norm_l 0.00% 0.00% 180
L_shl 0.00% 0.00% 180
L_mac 0.04% 0.09% 7200
round 0.01% 0.00% 180
negate 0.04% 0.00% 60
shr 0.02% 0.00% 2400
sub 0.00% 0.00% 120
add 0.00% 0.00% 180

----------------------------------------------------------------------
Lsp_lsf 0.34% 0.08% 0.25% 60

L_shl 0.01% 0.00% 600
round 0.05% 0.00% 600
L_mult 0.00% 0.00% 600
shl 0.01% 0.00% 600
sub 0.09% 0.07% 8338
add 0.00% 0.00% 600

----------------------------------------------------------------------
Inv_sqrt 0.33% 0.08% 0.25% 1260

norm_l 0.04% 0.00% 1211
L_deposit_h 0.00% 0.00% 1169
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L_shl 0.04% 0.00% 1211
L_shr 0.03% 0.00% 4221
L_msu 0.01% 0.02% 1211
extract_h 0.00% 0.00% 1127
shr 0.01% 0.00% 1211
sub 0.03% 0.03% 3633
add 0.00% 0.00% 1127
extract_l 0.00% 0.00% 1169

----------------------------------------------------------------------
Get_lsp_pol 0.32% 0.04% 0.27% 180

Mpy_32_16 0.02% 0.07% 1800
L_Extract 0.02% 0.07% 1800
L_shl 0.06% 0.00% 1800
L_msu 0.00% 0.01% 900
L_sub 0.02% 0.00% 1800
L_add 0.00% 0.00% 1800
L_mult 0.00% 0.00% 180

----------------------------------------------------------------------
shr 0.27% 0.27% 0.00% 23652

shl 0.00% 0.00% 3
----------------------------------------------------------------------
Int_qlpc 0.24% 0.01% 0.23% 29

Lsp_Az 0.02% 0.25% 60
shr 0.00% 0.00% 600
add 0.00% 0.00% 300

----------------------------------------------------------------------
shl 0.24% 0.24% 0.00% 7939
----------------------------------------------------------------------
Lag_window_bwd 0.21% 0.02% 0.19% 30

Mpy_32 0.02% 0.06% 900
L_Extract 0.02% 0.07% 1830
norm_l 0.00% 0.00% 30
L_shl 0.03% 0.00% 930
L_add 0.00% 0.00% 930

----------------------------------------------------------------------
G_pitch 0.20% 0.07% 0.12% 60

norm_l 0.00% 0.00% 120
div_s 0.00% 0.00% 48
L_shl 0.00% 0.00% 112
L_mac 0.03% 0.06% 4800
round 0.00% 0.00% 112
shr 0.02% 0.00% 2496
sub 0.00% 0.00% 216

----------------------------------------------------------------------
Gain_predict 0.15% 0.06% 0.09% 60

L_Extract 0.00% 0.00% 60
Log2 0.01% 0.00% 60
Pow2 0.03% 0.00% 60
L_shl 0.00% 0.00% 60
L_shr 0.00% 0.00% 60
L_mac 0.01% 0.03% 2700
extract_h 0.00% 0.00% 60
L_mult 0.00% 0.00% 60
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sub 0.00% 0.00% 60
extract_l 0.00% 0.00% 60

----------------------------------------------------------------------
Lsp_prev_extract 0.15% 0.06% 0.09% 60

L_deposit_h 0.00% 0.00% 600
L_shl 0.01% 0.00% 600
L_msu 0.02% 0.04% 2400
extract_h 0.00% 0.00% 1200
L_mult 0.00% 0.00% 600

----------------------------------------------------------------------
Lsp_lsf2 0.13% 0.04% 0.08% 30

L_shr 0.00% 0.00% 300
L_mult 0.00% 0.00% 300
mult 0.00% 0.00% 300
shl 0.00% 0.00% 300
sub 0.04% 0.03% 4178
add 0.00% 0.00% 300
extract_l 0.00% 0.00% 300

----------------------------------------------------------------------
norm_l 0.13% 0.13% 0.00% 3055
----------------------------------------------------------------------
Lsp_get_quante 0.12% 0.01% 0.11% 30

Copy 0.00% 0.00% 30
add 0.00% 0.00% 300
Lsp_expand_1_2 0.01% 0.01% 60
Lsp_prev_compose 0.02% 0.01% 30
Lsp_stability 0.02% 0.01% 30

----------------------------------------------------------------------
mult_r 0.11% 0.04% 0.06% 7200

sature 0.06% 0.00% 7200
----------------------------------------------------------------------
Copy 0.11% 0.11% 0.00% 455
----------------------------------------------------------------------
extract_l 0.11% 0.11% 0.00% 50928
----------------------------------------------------------------------
Int_bwd 0.11% 0.06% 0.04% 30

L_shr 0.01% 0.00% 1860
L_mult 0.00% 0.00% 1860
shr 0.01% 0.00% 1860
sub 0.00% 0.00% 60
add 0.00% 0.01% 1860
extract_l 0.00% 0.00% 1860

----------------------------------------------------------------------
Interpol_3 0.08% 0.02% 0.06% 280

L_mac 0.01% 0.02% 2240
round 0.02% 0.00% 280
sub 0.00% 0.00% 280
add 0.00% 0.00% 112

----------------------------------------------------------------------
perc_var 0.08% 0.02% 0.06% 30

L_shr 0.00% 0.00% 55
L_sub 0.00% 0.00% 55
L_mult 0.00% 0.00% 49
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mult 0.00% 0.00% 26
shl 0.01% 0.00% 626
shr 0.00% 0.00% 175
abs_s 0.03% 0.00% 60
sub 0.00% 0.00% 799
add 0.00% 0.00% 58
extract_l 0.00% 0.00% 53

----------------------------------------------------------------------
_printf 0.08% 0.01% 0.07% 46

__vfprintf 0.06% 0.01% 46
----------------------------------------------------------------------
__vfprintf 0.07% 0.06% 0.01% 46

strlen 0.00% 0.00% 2
_printf_display 0.01% 0.00% 30

----------------------------------------------------------------------
Lsp_expand_1_2 0.07% 0.03% 0.03% 120

shr 0.01% 0.00% 1080
sub 0.01% 0.00% 1094
add 0.00% 0.00% 1094

----------------------------------------------------------------------
L_shr_r 0.06% 0.06% 0.00% 960

L_shr 0.00% 0.00% 960
----------------------------------------------------------------------
fputc 0.05% 0.02% 0.03% 0

__flsbuf 0.03% 0.00% 978
----------------------------------------------------------------------
Random 0.04% 0.04% 0.00% 0
----------------------------------------------------------------------
__rt_sdiv 0.04% 0.04% 0.00% 2400
----------------------------------------------------------------------
prm2bits_ld8e 0.04% 0.04% 0.00% 30
----------------------------------------------------------------------
Lsp_prev_compose 0.04% 0.02% 0.01% 30

L_mac 0.00% 0.01% 1200
extract_h 0.00% 0.00% 300
L_mult 0.00% 0.00% 300

----------------------------------------------------------------------
Lsp_stability 0.03% 0.02% 0.01% 30

L_deposit_l 0.00% 0.00% 1080
L_sub 0.01% 0.00% 810
sub 0.00% 0.00% 60
add 0.00% 0.00% 3

----------------------------------------------------------------------
Pow2 0.03% 0.03% 0.00% 60

L_shr_r 0.00% 0.00% 60
L_deposit_h 0.00% 0.00% 60
L_shr 0.00% 0.00% 60
L_msu 0.00% 0.00% 60
extract_h 0.00% 0.00% 60
L_mult 0.00% 0.00% 60
sub 0.00% 0.00% 120
extract_l 0.00% 0.00% 60

----------------------------------------------------------------------
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Log2 0.03% 0.03% 0.00% 120
norm_l 0.00% 0.00% 120
L_deposit_h 0.00% 0.00% 120
L_shl 0.00% 0.00% 120
L_shr 0.00% 0.00% 240
L_msu 0.00% 0.00% 120
extract_h 0.00% 0.00% 240
sub 0.00% 0.00% 360
extract_l 0.00% 0.00% 120

----------------------------------------------------------------------
Get_wegt 0.03% 0.00% 0.03% 30

norm_s 0.00% 0.00% 30
L_shl 0.01% 0.00% 622
extract_h 0.00% 0.00% 622
L_mult 0.00% 0.00% 622
shl 0.00% 0.00% 300
sub 0.00% 0.00% 812
add 0.00% 0.00% 281

----------------------------------------------------------------------
__flsbuf 0.03% 0.03% 0.00% 993

_sys_istty 0.00% 0.00% 2
malloc 0.00% 0.00% 2
_writebuf 0.00% 0.00% 40

----------------------------------------------------------------------
Lsp_get_tdist 0.02% 0.00% 0.02% 60

L_shl 0.01% 0.00% 600
L_mac 0.00% 0.00% 600
extract_h 0.00% 0.00% 600
L_mult 0.00% 0.00% 600
mult 0.00% 0.00% 600
sub 0.00% 0.00% 600

----------------------------------------------------------------------
Lsf_lsp2 0.02% 0.02% 0.00% 30

L_shr 0.00% 0.00% 300
L_mult 0.00% 0.00% 300
mult 0.00% 0.00% 300
shr 0.00% 0.00% 290
sub 0.00% 0.00% 300
add 0.00% 0.00% 300
extract_l 0.00% 0.00% 300

----------------------------------------------------------------------
Lsp_prev_update 0.02% 0.00% 0.02% 30

Copy 0.02% 0.00% 120
----------------------------------------------------------------------
L_sat 0.02% 0.02% 0.00% 0
----------------------------------------------------------------------
Gain_update 0.01% 0.00% 0.01% 60

L_Comp 0.00% 0.00% 60
Log2 0.01% 0.00% 60
L_shl 0.00% 0.00% 60
extract_h 0.00% 0.00% 60
mult 0.00% 0.00% 60
sub 0.00% 0.00% 60
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----------------------------------------------------------------------
Gbk_presel 0.01% 0.00% 0.01% 56

L_deposit_l 0.00% 0.00% 60
L_shl 0.00% 0.00% 180
L_shr 0.00% 0.00% 598
L_sub 0.00% 0.00% 598
L_add 0.00% 0.00% 60
extract_h 0.00% 0.00% 240
L_mult 0.00% 0.00% 778
mult 0.00% 0.00% 60
sub 0.00% 0.00% 330
add 0.00% 0.00% 330

----------------------------------------------------------------------
Init_Coder_ld8e 0.01% 0.00% 0.01% 1

Copy 0.00% 0.00% 1
Set_zero 0.01% 0.00% 15
Lsp_encw_resete 0.00% 0.00% 1

----------------------------------------------------------------------
L_abs 0.01% 0.01% 0.00% 6933
----------------------------------------------------------------------
perc_vare 0.01% 0.01% 0.00% 0
----------------------------------------------------------------------
Gain_update_erasure 0.01% 0.01% 0.00% 0
----------------------------------------------------------------------
norm_s 0.01% 0.01% 0.00% 329
----------------------------------------------------------------------
extract_h 0.01% 0.01% 0.00% 123173
----------------------------------------------------------------------
Parity_Pitch 0.01% 0.01% 0.00% 30

shr 0.00% 0.00% 210
add 0.00% 0.00% 180

----------------------------------------------------------------------
Set_zero 0.01% 0.01% 0.00% 15
----------------------------------------------------------------------
L_deposit_l 0.01% 0.01% 0.00% 5100
----------------------------------------------------------------------
__rt_memcpy 0.01% 0.00% 0.01% 82

__rt_memcpy_w 0.01% 0.00% 82
----------------------------------------------------------------------
_printf_display 0.01% 0.01% 0.00% 30

strlen 0.00% 0.00% 30
__rt_udiv10 0.00% 0.00% 51

----------------------------------------------------------------------
Lsp_expand_2 0.01% 0.01% 0.00% 60

shr 0.00% 0.00% 300
sub 0.00% 0.00% 300
add 0.00% 0.00% 300

----------------------------------------------------------------------
__rt_memcpy_w 0.01% 0.01% 0.00% 82
----------------------------------------------------------------------
fwrite 0.00% 0.00% 0.00% 30

__rt_memcpy 0.00% 0.00% 44
__flsbuf 0.00% 0.00% 15
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----------------------------------------------------------------------
Lag_window 0.00% 0.00% 0.00% 30

Mpy_32 0.00% 0.01% 300
L_Extract 0.00% 0.01% 300

----------------------------------------------------------------------
test_err 0.00% 0.00% 0.00% 60

L_sub 0.00% 0.00% 147
sub 0.00% 0.00% 60
add 0.00% 0.00% 86

----------------------------------------------------------------------
Lsp_expand_1 0.00% 0.00% 0.00% 60

shr 0.00% 0.00% 240
sub 0.00% 0.00% 258
add 0.00% 0.00% 258

----------------------------------------------------------------------
L_deposit_h 0.00% 0.00% 0.00% 17735
----------------------------------------------------------------------
Lsp_last_select 0.00% 0.00% 0.00% 30

L_sub 0.00% 0.00% 30
----------------------------------------------------------------------
calc_stat 0.00% 0.00% 0.00% 28
----------------------------------------------------------------------
update_exc_err 0.00% 0.00% 0.00% 60

Mpy_32_16 0.00% 0.00% 114
L_Extract 0.00% 0.00% 114
L_shl 0.00% 0.00% 118
L_sub 0.00% 0.00% 116
L_add 0.00% 0.00% 116
sub 0.00% 0.00% 76

----------------------------------------------------------------------
Enc_lag3 0.00% 0.00% 0.00% 60

sub 0.00% 0.00% 178
add 0.00% 0.00% 232

----------------------------------------------------------------------
L_negate 0.00% 0.00% 0.00% 471
----------------------------------------------------------------------
__rt_get_argv 0.00% 0.00% 0.00% 1

_handle_redirection 0.00% 0.00% 4
_sys_command_string 0.00% 0.00% 1

----------------------------------------------------------------------
atoi 0.00% 0.00% 0.00% 1

strtol 0.00% 0.00% 1
__rt_errno_addr 0.00% 0.00% 1

----------------------------------------------------------------------
Lsp_encw_resete 0.00% 0.00% 0.00% 1

Copy 0.00% 0.00% 4
----------------------------------------------------------------------
_fflush 0.00% 0.00% 0.00% 5

_writebuf 0.00% 0.00% 1
----------------------------------------------------------------------
fclose 0.00% 0.00% 0.00% 12

_sys_close 0.00% 0.00% 5
free 0.00% 0.00% 3
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fflush 0.00% 0.00% 5
----------------------------------------------------------------------
fopen 0.00% 0.00% 0.00% 3

__rt_memclr_w 0.00% 0.00% 3
malloc 0.00% 0.00% 3
freopen 0.00% 0.00% 3

----------------------------------------------------------------------
_initio 0.00% 0.00% 0.00% 1

setvbuf 0.00% 0.00% 3
__rt_memclr_w 0.00% 0.00% 3
freopen 0.00% 0.00% 3

----------------------------------------------------------------------
_terminateio 0.00% 0.00% 0.00% 1

free 0.00% 0.00% 3
fclose 0.00% 0.00% 6

----------------------------------------------------------------------
tst_bwd_dominant 0.00% 0.00% 0.00% 28

shl 0.00% 0.00% 19
add 0.00% 0.00% 28

----------------------------------------------------------------------
Init_Pre_Process 0.00% 0.00% 0.00% 1
----------------------------------------------------------------------
fflush 0.00% 0.00% 0.00% 5

fseek 0.00% 0.00% 5
_fflush 0.00% 0.00% 5

----------------------------------------------------------------------
free 0.00% 0.00% 0.00% 6

__user_libspace 0.00% 0.00% 6
__Heap_Free 0.00% 0.00% 6

----------------------------------------------------------------------
fseek 0.00% 0.00% 0.00% 5

_sys_istty 0.00% 0.00% 5
----------------------------------------------------------------------
__rt_exit 0.00% 0.00% 0.00% 1

__rt_lib_shutdown 0.00% 0.00% 1
----------------------------------------------------------------------
_terminate_user_alloc 0.00% 0.00% 0.00% 1
----------------------------------------------------------------------
_init_user_alloc 0.00% 0.00% 0.00% 1
----------------------------------------------------------------------
_init_alloc 0.00% 0.00% 0.00% 1

__user_libspace 0.00% 0.00% 1
__Heap_ProvideMemory 0.00% 0.00% 1
__Heap_DescSize 0.00% 0.00% 1
__Heap_Initialize 0.00% 0.00% 1

----------------------------------------------------------------------
malloc 0.00% 0.00% 0.00% 6

__user_libspace 0.00% 0.00% 6
__Heap_Alloc 0.00% 0.00% 6

----------------------------------------------------------------------
__rt_errno_addr 0.00% 0.00% 0.00% 2

__user_libspace 0.00% 0.00% 2
----------------------------------------------------------------------
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__rt_memclr_w 0.00% 0.00% 0.00% 6
----------------------------------------------------------------------
__rt_udiv 0.00% 0.00% 0.00% 1
----------------------------------------------------------------------
strtol 0.00% 0.00% 0.00% 1

__rt_ctype_table 0.00% 0.00% 1
_strtoul 0.00% 0.00% 1
__rt_errno_addr 0.00% 0.00% 1

----------------------------------------------------------------------
_sys_command_string 0.00% 0.00% 0.00% 1
----------------------------------------------------------------------
_sys_open 0.00% 0.00% 0.00% 6

strlen 0.00% 0.00% 6
----------------------------------------------------------------------
_sys_close 0.00% 0.00% 0.00% 5
----------------------------------------------------------------------
_sys_write 0.00% 0.00% 0.00% 41
----------------------------------------------------------------------
exit 0.00% 0.00% 0.00% 1

__rt_exit 0.00% 0.00% 1
----------------------------------------------------------------------
_sys_istty 0.00% 0.00% 0.00% 7
----------------------------------------------------------------------
_writebuf 0.00% 0.00% 0.00% 41

_sys_write 0.00% 0.00% 41
----------------------------------------------------------------------
_strtoul 0.00% 0.00% 0.00% 1

_chval 0.00% 0.00% 2
----------------------------------------------------------------------
__filbuf 0.00% 0.00% 0.00% 11

_sys_read 0.00% 0.00% 11
malloc 0.00% 0.00% 1

----------------------------------------------------------------------
freopen 0.00% 0.00% 0.00% 6

_sys_open 0.00% 0.00% 6
fclose 0.00% 0.00% 6

----------------------------------------------------------------------
__Heap_Initialize 0.00% 0.00% 0.00% 1
----------------------------------------------------------------------
__Heap_DescSize 0.00% 0.00% 0.00% 2
----------------------------------------------------------------------
__Heap_Alloc 0.00% 0.00% 0.00% 6
----------------------------------------------------------------------
__Heap_ProvideMemory 0.00% 0.00% 0.00% 1

__Heap_Free 0.00% 0.00% 1
----------------------------------------------------------------------
__Heap_Free 0.00% 0.00% 0.00% 7
----------------------------------------------------------------------
__rt_lib_init 0.00% 0.00% 0.00% 1

_fp_init 0.00% 0.00% 1
_get_lc_ctype 0.00% 0.00% 1
__user_libspace 0.00% 0.00% 1
__Heap_DescSize 0.00% 0.00% 1
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_init_alloc 0.00% 0.00% 1
_init_user_alloc 0.00% 0.00% 1
_initio 0.00% 0.00% 1
__rt_get_argv 0.00% 0.00% 1

----------------------------------------------------------------------
__rt_lib_shutdown 0.00% 0.00% 0.00% 1

_terminate_user_alloc 0.00% 0.00% 1
_terminateio 0.00% 0.00% 1

----------------------------------------------------------------------
__user_libspace 0.00% 0.00% 0.00% 20
----------------------------------------------------------------------
__rt_ctype_table 0.00% 0.00% 0.00% 1

__user_libspace 0.00% 0.00% 1
----------------------------------------------------------------------
__rt_udiv10 0.00% 0.00% 0.00% 51
----------------------------------------------------------------------
__rt_stackheap_init 0.00% 0.00% 0.00% 1

__user_initial_stackheap 0.00% 0.00% 1
__user_libspace 0.00% 0.00% 1

----------------------------------------------------------------------
__rt_heap_extend 0.00% 0.00% 0.00% 1

__user_libspace 0.00% 0.00% 1
----------------------------------------------------------------------
strlen 0.00% 0.00% 0.00% 38
----------------------------------------------------------------------
_sys_exit 0.00% 0.00% 0.00% 1
----------------------------------------------------------------------
_chval 0.00% 0.00% 0.00% 2
----------------------------------------------------------------------
_handle_redirection 0.00% 0.00% 0.00% 4
----------------------------------------------------------------------
fread 0.00% 0.00% 0.00% 31

__rt_memcpy 0.00% 0.00% 38
__filbuf 0.00% 0.00% 11
__rt_udiv 0.00% 0.00% 1

----------------------------------------------------------------------
setvbuf 0.00% 0.00% 0.00% 3
----------------------------------------------------------------------
_get_lc_ctype 0.00% 0.00% 0.00% 1
----------------------------------------------------------------------
__user_initial_stackheap 0.00% 0.00% 0.00% 1
----------------------------------------------------------------------
__rt_fp_status_addr 0.00% 0.00% 0.00% 1

__user_libspace 0.00% 0.00% 1
----------------------------------------------------------------------
_sys_read 0.00% 0.00% 0.00% 11
----------------------------------------------------------------------
_fp_init 0.00% 0.00% 0.00% 1

__rt_fp_status_addr 0.00% 0.00% 1
----------------------------------------------------------------------
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