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Abstract

This report presents a formal approach to verify models in a system level design environment. Itis a firstin series of reports
that demonstrate how we use this formal approach to refine a given specification down to its cycle-accurate implementation.
We formally define models and develop theorems and proofs to show that our well defined refinement algorithms produce
functionally equivalent models. In this report, we specifically look at generation of an architecture level model by refinement
of a specification model. The refinement process follows a well defined system level partitioning algorithm. We prove that
executing the individual steps of the refinement algorithm, in the predefined order, leads to an equivalent model.
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Formal Verification of Specification Partitioning

Samar Abdi and Daniel Gajski
Center for Embedded Computer Systems
University of California, Irvine

Abstract <_Specification Model (level 0) >
v

This report presents a formal approach to verify models
in a system level design environment. Itis a first in series of | Refinement 1 |
reports that demonstrate how we use this formal approach
to refine a given specification down to its cycle-accurate im- @mediate Model (Iev@
plementation. We formally define models and develop the-
orems and proofs to show that our well defined refinement /

algorithms produce functionally equivalent models. In this "

report, we specifically look at generation of an architecture - .
level model by refinement of a specification model. The re- Intermediate Model (level i-1)
finement process follows a well defined system level parti-

tioning algorithm. We prove that executing the individual | Refinement i |
steps of the refinement algorithm, in the predefined order,

leads to an equivalent model. *
@rmediate Model (Ie@

1 Introduction T
)

The continuous increase in behavioral and structural A
complexity of SoC designs has raised the abstraction level @hitecture Model (leVGID
of system specification. The common approach in system
design is to write models at different levels of abstraction.
However,with the size of these designs, traditional verifi- Figure 1. The gradual refinement process.
cation and simulation based approaches for validation are
no longer practical. Besides, verification by comparing
two separately written models is not tractable at the system  Figure 2 shows the universal set of system models. This
level. set is divided into classes of equivalent models. As shown,

The only solution is to correctly generate one model  aspecification modehs and its corresponding implementa-
from another using a well defined sequence of refine-  tion mj belong to the same equivalence class. There may be
ments [2]. The output model is the product of gradual severalimplementations for the same specification and they
refinements to the input model. Each gradual refinementwould all belong to the same equivalence class. We must
produces an output model that is functionally equivalent to ensure that when a model at abstraction Igvielrefined to
the input model. Figure 1 shows how a model refinementthe one at leve| + 1, then mode;; must belong to the
is broken into a sequence of gradual refinement steps. Wesame equivalence class as moag!l In other words, the
must ensure that model at leve$ equivalent to the one at ~ refinement must beontainedin the equivalence class.
leveli — 1. By transitivity this ensures that the final output This report is a first in series of reports on formal veri-
model is equivalent to the input model. To achieve this, we fication of system level model refinements. Here, we focus
develop formalisms to describe models at different abstrac-on the behavioral partitioning of a specification model to
tion levels and perform refinements on them. This report derive an architecture level model. The report is divided as
presents a limited set of formalisms useful in the context of follows. We begin by introducing the model algebra in the
system level design partitioning. next section. This includes a formal definition of a model in
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Figure 2. The universal set of system models. v ¢

Figure 3. A two way blocking channel
terms of the model algebrain Section 2. We also present the
basic axioms associated with this algebra. We then present
the partitioning refinement algorithm in Section 3. Next, we ferred and events to ensure the transfer semantics. The
prove some useful theorems. The final theorem uses the axchannels we consider for the purpose of this report are two
ioms of Model Algebra and these theorems to prove that theWay blocking channels as shown in figure 3. As we can
partitioned architecture model and specification model areSee, the behaviots; andbz use the channeito exchange
equivalent. The model in this report has been simplified to PATA The transfer semantics ensure that the receiving be-

demonstrate the concept. The methods used are completelfjavior will wait until the sender has written the data, and
scalable and can be used for large models as well. Finally,the sender behavior waits until the data item has been read

we wind up with a summary and conclusion. by the receiver.
The Model Algebra is defined as:

2 Model Algebra A=<B,C,O0,R >

For proving correctness of model refinements, we needB 1S the set of behaviors,
C is the set of channels,

to define a model algebra that can be used to formally repre- .

sent system models. Generally speaking, a system is a set o@ = {seq ear} (Setof Opgraﬂons)

tasks that are executed in a predefined partial order. Thes® = {~,—}(Set of Relations)

tasks also talk to each other by exchanging data. In order ]

to develop an algebra for system models, we must intro- Operations

duce primitives to represent tasks and the data transactions

amongst them. The operations mentioned in the above algebra are de-
The first primitive is the unit of computation in a model, fined on elements iB. The seB is closed with respect to

referred to as behavior Behaviors that can either keafor bothsegandpar.

composite A leaf behaviolis a sequence of operations be-

ing executed in a serial order. @omposite behaviasn the Vby,bp,bs,... € B

other hand is formed by combinationle&f behaviorsising

operations of the model algebra. A model is constructed out 1. seqby,bz,bs,...) € B

of these leaf behaviors by using the basic concept of hierar- 2 par(py, by, bs,...) € B

chy and composition operations. Two or more leaf behav-

iors are put together to compose a composite behavior. The Thesegoperator implies that behaviors execute sequen-

composite behaviors may also be combined with other leaftially in time. Hence ifo = seqbg, by, ..., bn), thenb, starts

or composite behaviors to generate larger composite behavafterb; has completedys starts afteb, has completed and

iors. In the scope of this report, the composition may be so on. Behaviob is said to start wheh; starts and it com-

sequential or parallel. Moreover, we need synchronizationpletes wheib, completes. Note that the composite behavior

between behaviors to ensure the correct temporal order ot can be used to create more composite behaviors.

execution. Theparoperator creates a parallel composition of behav-
The other primitive is the unit of computation referred iors. If b = par(bs,by,...,by), then there is no predefined

to as a channel. It is used for communication between be-order of execution between the behavibysy, ..., b,. Be-

haviors. A channel encapsulates the data item to be transhaviorb is said to start when any behaviorbn throughb,



starts. Behaviob is said to complete when all behaviors
from by throughb, complete.

Composite behaviors are essentially functions formed
using operatorseqandpar on behaviors. We will use the
notation f (by, by, ...,bn) to represent a composite behavior
formed using behavioits; throughb,.

Relations

We define thesynchronizatiorrelation onB in the fol-
lowing way. Vby,b, € B, if by ~» b, then irrespective of
the hierarchical composition, behavimr cannot start exe-
cuting until behaviob; completes.

Data transfers in a system can take place either through
variables or channels. Sequentially composed behaviors
communicate through variables, while those composed in
parallel use channels. In the latter case, data from the sender
behavior is written to the channel. Subsequently, the re-
ceiver behavior reads the data from the channel. We define

sync

A

three kinds oflata transferelations as follows.
1. Data variabler sent from behaviob; to behavioib;

b1 ~ by, where(by,by) € B x B

2. Data variabler sent from behaviob; to channekt;

by ~ c1, where(by,c;) € B x C

3. Data variabler received by behavids; from channel
C1
c1 — by, where(cy,by) € C x B

Class of Identity Behaviors

We define the class ddentity Behaviorsl to be a subset
of B such that all behaviors belonging kaoutput the input
data. The following behaviors belong to the clss

e Behavior(in varvy, out varvy)
{va=wv}

e Behavior(in varw, out channet)
{ c.write(v) }

e Behavior(in channed, out varv)
{v=c.read()}

e Behavior(in channet;, out channety)
{ co.write(cy.read()) }

Figure 4. A simple model

2.1 Model Definition

Based on the above algebra, a system madebn be
defined as a tuple

m= B(m),R(m),where

B(m) the hierarchical composition of behaviors
representing the model m, and
R(m) set of relations on the

behaviors used to compose B(m)

Figure 4 shows a simple model comprising of thiegf
behaviorsh;,b, andbs. Behaviorsb, andbs are sequen-
tially composed to create @mpositdoehaviorh,3, which
in turn is composed in parallel with behavioy. Channel
c is used to send data from by to b,. Variablev; is sent
directly from behaviob, to b3 since they are in sequential
composition. Also note the synchronization edge friem
to bs which guarantees thag cannot start executing before
b, completes, despite their parallel composition. The model
m can be written as follows:

par(blasec{bza b3))7
{bl’\» b3,b1 \g c,C \g bz,bz \g b3}

B(m) =
R(m) =

2.1.1 Terms and definitions

For the purpose of explaining and formally proving correct-

Note that an identity behavior does not perform any other ness of model refinements, we need to introduce some no-

operation except reading and writing a data item.

tations.



Sub-behavior The relationsub-behavioiis defined onB
as follows

Vby,by € B, if by aby, then

2.1.2 Axioms

Now that we have established the basic building blocks of
the system model, we need to define a set of axioms that are
associated with the model algebra. These axioms will be

by is a sub-expression in the hierarchical expression of used to construct theorems that will validate model refine-

by.

Example from Figure 4:

by3 = seqby,bz), B(m) = par(by,sedby,bs)),
thereforebyz<B(m).

Leafs This is the set of all leaf level sub-behaviors of a

behavior.
Leafgb) = {x|x<b, Ay<abs.t.yax}
Example from Figure 4:

1. Leafgby3) = {by,bs}
2. LeafgB(m)) = {b1,by, b3}

PredecessorA behaviorb; is said to be gredecessoof
behaviorb, in modelm (denoted byb; 2 by), if in the

temporal order of executioy must complete before
b, begins. Formally, the predecessor relation can be

defined as:
Vbl,bz,b3<l B(m)

1. seq..,by, by, ..) 4B(M) = by < by
2. by~ boe R(m) = b 2 by
3. by 2 b, Abg<by = by 2 b3
4. by < byAbgaby = bs < by
m m m
5. b1 <byAby<bz= by <bs
Example from Figure 4:
1. by 2 b3
m
2. by <bs

Immediate PredecessorA behaviorb; is said to be amm-
mediate predecessof behaviorby, in a modeim (de-

noted byby < by) if
AbgaB(m),bs € B, such thaby < bs < by
Example from Figure 4:

m

1. b1 < bs
m

2. b < bs

ments and transformations.

Axiom 1 (Synchronization) A sequential composition of
behaviors b, b, in a model M may be replaced by a parallel
composition of b by by adding a synchronization relation
b1~ by in R(m).
f(seqbs,by),b3,b4...),R(m) =

f(par(by,b2),b3,b4...),R(m) Uby ~ by
Axiom 2 (Flattening) If a behavior x, in model M, is com-
posite and parent of x is the same composite type as x, and

x does not have any synchronization constraints, then x may
be removed through flattening.

Sub-Axiom 2.1 For theseqgbehavior:
if X = sedbit1,bi42,...0j)
b = seqbs,b>...bi,X,bj11,bj12...bx) «B(m), and
Aa<B(m), such that
a~» x € R(m) or x~ a€ R(m), then
b=seqbs,by,...,bi,biy1,bi2,...,bj,bj11,bj42, ..., bx)
Sub-Axiom 2.2 The dual forparbehavior is as follows:
if x = par(bit1,biy2,...bj)
b = par(by,b...bj,x,bj11,bj42...¢) «B(m), and
Aa<B(m), such that
a~» X € R(m) or x~ a€ R(m), then
b= par(by,by,...,bi,bit1,bit2, ..., b}, bjy1, 0542, ..., bK)
Axiom 3 (Forward Substitution) Synchronization re-

lation for composite behaviors may be replaced by
synchronization relation(s) on their child behaviors.

Sub-Axiom 3.11If a behavior b is a sequential composition
such that b= sedbs,by...,by) and if there exists a syn-
chronization constraint from a behavior-a b, then the
constraint may be replaced by a synchronization constraint
a~» by. Similarly, a constraint b—» n may be replaced by
bh~n

if b = seqby, by, ...,by) <B(m), then
Ya<B(m), ifa~ b e R(m)
R(m) = (R(m) —a~ x) Ua~» by

Ya<B(m), if b~ a e R(m)
R(m) = (R(m) —b~a)Uby~ a



Sub-Axiom 3.21If a behavior x is a parallel composition
such that b= par(bs,by...,by) and if there exists a syn-
chronization constraint from a behavior-a b, then the
constraint may be replaced by synchronization constraints
a~ bj,a~ b2,...,a~ by. Similarly, a constraint b» a
may be replaced by constraintgb» a,b,~ a,...b,~ a
if b = par(bs,by,...,bn) <B(m), then
Ya<B(m), ifa~» b e R(m),
(R(m) —a~» b)Ua~» by,a~ by, ...,a~ by
Ya<B(m), if b~ a € R(m),
R(m) = (R(m) —b~»a)Ub;~ a,by~ a,...bp~ a.

Axiom 4 (Commutativity) A parallel composition of the
type pafby,by) is equivalent to pafby,bs).

par(by,by) = par(by,b1)

Axiom 5 (Identity) Given a model m and behavioreel
such that e doesothave any relations in fn), the follow-
ing hold truevb<B(m)

1. sedb,e)=b
2. sede,b) =D
3. par(b,e)=b

Axiom 6 (Transitivity) Given a model m and;bby, b3«
B(m)

v v v . m m
b1—)b2={b1—)b3,b3—>b2} iff by <bgAbsz<hy

Axiom 7 (Channel creation) Given
e;,e € | and channel & C

identity behaviors

Sub-Axiom 7.1
{e1 5 2,61~ &2} = {€1 5 C,c €2}

Sub-Axiom 7.2
e~ e} ={e1 3 cc e}
3 System Level Partitioning

This is the first step in deriving the architecture model
from a given specification [1]. Once we have determined the

components in the proposed system architecture, we need

to divide the system tasks into suitable groups. Each of

these groups is assigned to a unique component in the ar-
chitecture. After this assignment, we need to evaluate the

Figure 5. A simple specification model.

correctness and suitability of our partition. For this pur-
pose, we need to generate an executable partitioned model.
The model may be generated automatically from the speci-
fication, once we have the partitioning decisions. This pro-
cess is known as partitioning refinement [3]. In this section,
we present the partitioning refinement algorithm using our
model algebra. Subsequently, we develop a theorem and
prove it to show that this algorithm indeed works correctly.

3.1 Partitioning refinement algorithm

Given a model m = B(m),R(m), a set of n
components PE;,PE,...,PE;, and n partitions
partitions, partitiony, ..., partitiony. Each partition is
a set of leaf behaviors im. The partitions follow the
following rules:

1. UL, partition; = LeafgB(m)), and
2. partition; N partition; =@, 1 <i,j <n
3. partition; is assigned t®E
The partitioned modeh,, is generated as follows.

1. Initialize B(mp) as a parallel composition of behav-
iors PE; throughPE, such that
PE = f(bi1,bii2,...,bim), where

b.

bij = { (Jp

bj € partition;
otherwise
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Figure 6. Intermediate model after step 1 of partition-
ing algorithm.
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. Add following synchronization relations

UL {x~ yly € partition; Ax <r2 yA
X € (LeafgB(m)) — partition;) }

. Introduce identity behaviors for each synchronization
relation as follows
Vby,by <B(m), such thaby ~ by € R(m),ep, e € 1
replace behavioh; with sedbs,e;) and by with
seq ey, by) and modify R(m) as follows

(a) if 3b; % by € R(m), thenR(m) = (R(m) — {b;
b27bl'\’) bZ})U{bl_v) elael_v> Cl,Cl—v) e27e2_v>
by}

(b) else Rm) = (R(m) — {by ~ bp}) U {e1 3
c1.C1 > €}

4. Flatten redundant hierarchy.

PE,

Vs

Figure 7. Intermediate model after step 2 of partition-
ing algorithm.

The patrtitioning decision is as follows.
partition; = by, by, by to PEL
partition, = bz to PE

After partitioning, the model is refined to a parallel com-
position of PE; and PE,. After step 1 the intermediate
model is shown in figure 6. The relevant leaf behaviors
are copied into each of tHeEs in the original hierarchy.
After step 2 of the partitioning algorithm, we derive an in-
termediate modeh. Synchronization constraints are added
across the partitions to maintain the original partial order of

execution. by <r2 bz andbs <r2 b4, are the only immediate
predecessor relations across partitions. Therefore, we add

An example of the refinement process is demonstratedcorresponding synchronization constraintsig~ bs and

on a simple specification model. The specification, com-
prising of four leaf behaviors vids, by, bs andb, is shown

in figure 5. Leaf behavions, andbs are composed in paral-
lel to form a composite behavior. This composite behavior
follows by and precedeb, in a larger sequential composi-

tion. Also note the data transactions between the behaviors.

Data itemv, is sent from behaviorb; to by. Similarly v3

is sent frombs to bs. Sinceb, andbs are composed in par-
allel, they talk using the channe] which sends data item
V2> from by to bz. The modelm may be expressed in our
algebra as follows:

B(m) =
R(m)

seqbs, par(by,bs),ba),
{b1 33 by, by 3 c,c 3 by, bs 3 by}

bs ~» by to derive intermediate mode} as shown in figure
7.

par(sedbi,by,bs),sedbs)),
{b1 5 by, by 3 c,c 3 b, bg 3 by,
by ~» bz, bz ~» ba}

B(my)
R(m)

The final modelm, is shown in Figure 8. This model is
derived by executing step 3 and 4 of our algorithm on model
m;. ldentity behavior®;, e»,e3 andes and channels; and
cp are inserted corresponding to synchronization relations
b; ~ bz andbz ~ bs. The pair of relationgbz ~ bs,bs At
bs} in my is replaced by{bs A €3,63 Y C2,C2 Y €4,&4 Y
ba} in my. Similarly, channet; is introduced to implement



Figure 8. Final model after partitioning.

the synchronization relation betwebp andbz. The final
partitioned modein, can be expressed as:

B(m) = par(seqb17e17b27e47b4),
seqep, bz, €3)),
RM) = {b13byby3c,c3bsbs3 by,

el_o>clycl_0>e27b3vge37e3\l$c27
C2 3 es,€4 -3 by}

3.2 Theorems

The axioms in Section 2 establish the basic properties of
a model. We now focus on developing some useful the-
orems from these axioms. The theorems in turn will be
employed to prove the correctness of model refinement al-
gorithms. In particular, we are trying to prove that our re-
finement algorithm for partitioning a specification model is
correct. The theorems in this sub-section will help in prov-
ing that the model obtained after partitioningeiguivalent
to the specification.

Theorem 1 (Expression Exchange)A sequential compo-
sition of the type setpi,by,...b)) in a given model m,
may be replaced by a parallel composition of the type
par(by,by,...b) by adding the synchronization constraints
b1~ bo,by ~ b, ....bj_1 ~ bj to R(M).
f(sedbq,by,...0),bit1,bi12..),R(M)

f(par(bl,bz,"'bi),bi+l,bi+2--)7
R(m) U {by~» by, by~ b3, ..., bi_1 ~ b}

Proof:

We prove this theorem by mathematical induction.
m= f(seqby,by,...),bit1,bi2..),R(M)

fori =3, we have,

f(seqby,by,b3),by,...),R(m)
f(seqsedbs,by),bs),ba,...),R(m)
using axiom 2
f(par(sedbs,by),bs),ba,...
R(m) Usedbs,by) ~ bg
using axiom 1
f(par(sedbs,by),bs),ba,...
R(m) Ubo~» b3

using axiom 3
f(par(par(by,b2),bs),ba,...
R(m)ubz«» bsUby ~» by
using axiom 1
f(par(by,by,bs),ba,...),
R(m) Uby ~ bo, by~ bg
using axiom 2

m

);

So, the theorem is proved for= 3. By principle of in-
duction, let us assume that the theorem is true for integer
i =N,N > 3. We have to prove that the theorem holds true
fori =N+ 1 also.

fori=N+1, we have
f(SeC{bl, by, ...,bn, bN+1), bN+2, ), R(m)
f (sec{seo[bl, by,..., bN), bN+1), bn+2, ), R(m)
using axiom 2
f(par(sec{bl,bz, ...,bN),bN+1),bN+2,
R(m)uU {sedby, by, ...,bn) ~ bn+1}
using axiom 1
f(par(sec{bl,bz, ...,bN),bN+1),bN+2,
R(m) U {by ~ bnt1}
using axiom 3
f(par(par(by,by,...,bn), bnt1), b2, -
R(m)uU {bN ~ bN+1}
U{bl’\» by, by ~» bz, -+ ,bn_1 ~ bN}
using assumption fori =N
f (par(bl, by, ..., by, bN+1), bn+2, ),
R(m)uU {bl’\» by, by ~ bg,---
-+, b1~ by, by~ by}
using axiom 2

m

),

);



Hence proved.

Theorem 2 (Permutation of parallel behaviors) A paral-
lel composition of the type péyy, by, ...b;) in a given model
m, may be replaced by a parallel composition of behaviors
b; through b in any permutation.
This amounts to proving that

par(blbe,",bX7 bx+l;---,by,by+1;---bi) =
par(blbe,"'7by,b>(+l,"'7bX7by+l,---bi),
where x£y,1 <X,y <i

Proof:
Without loss of generality, let us assume y Lety = x+
n,n> 1. We have

b par(bl,bz, ...,bx, bx+1, ...,bXJrn,l,by, ...,bi)
= par(by,by,...,bx, bxt1, ..., par(bxrn_1,by), ..., bi)
= using axiom 2
= par(bl, bz, ey bx, bx+;|_, ey par(by, bx+n71)7 ey b,)
using axiom 4
= par(bl, by, ...,byx, bys1, ..., by, Dyin_1,..es bi)

using axiom 2

Using n iterations of the above three steps and moving
by to the left, we get

b par(by,by, ..., by, by, bxi 1, ..., bxin-1, ..., bi)
= par(by,by,...,by, par(bx,bxs1), ..., Bxpn—1,..., i)
using axiom 2
= par bl,bz, by par bx+1,bx),...,bx+n,1,...,bi)
using axiom 4
= par(bl, by,..., by, By+1, 0%, 0y Bxrn—1, ..., bi)

using axiom 2

Performing n iterations of the above three steps and mov-

ing by to the right, we get
b= par(by,by, ..., by, bxy1, ...,
Hence proved.

b, by 1, ---by)

Theorem 3 (Redundant Synchronization)Given model
m, if behavior B is a predecessoibut not an immediate
predecessoof behavior b, then the synchronization rela-
tion by ~» by is redundant in m.

m
by < by Aby £ bp = R(M) = R(m) — {by ~» b2}
Proof:
By definition of immediate predecessor,
m
by < bpAby £ by

= Ja<B(m), such thab; 2 a/\ag by

The conditiorb; 2 b, is satisfied by clause 5 of the pre-
decessor definition, which renders the relatign- b, re-
dundant. ThereforB(m) = R(m) — {b; ~ b2}.

Theorem 4 (Canonical form) Any system model m is
equivalent to a canonical model nwhich is a parallel com-
position of all leaf behaviors in m, and each leaf behavior in
m' has a synchronization constraint from all its immediate
predecessors in m.

B(m) = par(LeafgB(m))),
R(M) = (R(M)—{x~yx~y€eRm}U
{X~ y|x < yAX Yy € LeafgB(m))}
Proof:

We start with a modein of the system. In order to convert
mto its canonical forrm',we perform the following steps.

1. Convert allsegbehaviors tgpar and add synchroniza-
tion relations using theorem 1.

. Recursively substitute synchronization relations be-
tween composite behaviors with synchronization rela-
tions between their child behaviors using axiom 3 to
derive modehn.

. Remove all redundant synchronization relationsin
using theorem 3.

. Flatten the hierarchy imy using axiom 2 to get the
canonical modein

It is easy to see thah = m; = m' since each of the above
steps follows directly from an established theorem or ax-
iom.

We start with showing that
(R(M) — {x~> y|x~yeR(mM)})U

{x~ yx< yAXy € LeafgB(m))}

R(m)

This means that we have to prove that

Vby, by € LeafgB(m)),by < by & by ~» by € R(my)

The proofis divided in two parts.
Assertion 1: "
Vb, by € LeafgB(m)),by < by = by ~» by € R(my)

Consider the clauses of the predecessor definition in Sec-
tion 2. The definition isnductivewith two terminal cases.
If by < by, then one of the following is true:

1. sed...by,bp...) «B(m). In this case step 1 of the
above process would convered...by,by...) to



par(...b1,by...) and add the synchronization relation We have shown that in each of the above ca&ssertion 2
by ~ by. If by,by € LeafgB(m)), then this relation  holds true. Let,
would not be modified. Thu&ssertionlis true in this

case. predm) = {x~ yjx<yAxye LeafgB(m))},
o _ impredm) = {x«»y|x<r2y/\x,ye LeafgB(m))}.
2. by ~ by € R(m). Existing relations betweeleaf be- m m
haviors are not modified in the conversion process, redundm;) = {x~ yX<YyAX&yAXxye LeafgB(m))}
thusby ~» by € R(my) = pred(m) —impredm),

sinceimpred'm) C pred(m).

3. b 2 bz A by <bs. This is an inductive definition,
so if we need to show that ib; ~ bs was added During the conversion process, all synchronization
to R(m) during the conversion process ahgd b, € relations betweencomposite behaviorsare substituted
LeafgB(m)), thenby ~ b, € R(my) is true. Since all with those between leaf behaviors. The synchronization

Composite behaviors in the modalare converted to relations between leaf behaviors of modal are still
parallel before step 2, the substitution of synchroniza- retained inR(my). UsingAssertion 1andAssertion 2, we

tion relations in step 2 replacés 2 bz with by 2 by have

if by <bs. Since synchronization relations betwédeaf

behaviorscannot be substituted, we halie~» b, €

R(my). ThusAssertion 1is true in this case by induc-  R(M) = (R(M) — {x~ yjx~y e R(m) A
tive reasoning. X,y ¢ LeafgB(m))}) U pred(my)

= (R(M) — {x~ ylx~ y € R(M)}) U pred(my),

4. by < by Aby abs. We use the same inductive reasoning since{x~ y|x~y € R(m) A

as above to show that the relatibsi~ b, is replaced X,y € LeafgB(m))} C pred(m)
with b1 ~ by during the conversion process. R(mM) = R(m)—redundm)
by step 4 of the conversion process
5. by < bgAbs < by. As above, we assume thabif~» bs = ((R(m) — {x~ y|x~y e R(m)})U pred(my))
andbg ~ by are added t&(m) during the conversion —redundmy),using theorem 3
process, then the redundant synchronization relation = (R(M) — {X~ y|x~yeRM})U

b1 ~ by may be added using theorem 3. TiR{s,) =

R(mp) Uby ~» by without changing the model. (pred(my) — (pred(my) —impredim,)))

= (R(M) — {X~ y|x~ye R(m)})Uimpredm)

We have shown that in each of the above ca&ssertion 1 = (Rm) - {::’) ylx~y € R(m)}) U
holds true. {X~ yX <K yAX,y € Leaf§B(m))}
Assertion 2: .

Vb, by € LeafgB(m)),by ~ by € R(my) = by < by

A synchronization relatiob; ~» b is added to the modeh

under the following cases. Finally, executing step 5 of the conversion process, we

flatten the hierarchy obar behaviors to one composipar
_ behavior consisting of all the leaf behavior&im). There-
1. sed...b1,by...) «B(m). is converted tgar(...by, by...). fore,

m
Clearlyb; < by. ThusAssertionlis true in this case.

2. by~ bz Abp<abs. Using inductive reasoning, t ~ B(m) = par(LeafgB(m))),
bs — by < bg, thenby < b, by clause 3 of the prede- R(M) = (R(M)—{x~yx~yeRm})u
cessor definition. X~ y|x 2 yAXy € LeafgB(m))}
= m =m

3. by~ by Abyabs. As above, ifbs ~ by — bg < by,
m
thenb; < by by clause 4 of the predecessor definition. Hence proved.



3.3 Formal Verification of Specification Partition- This implies,

ing
B(m) = par(LeafgB(m))),
As mentioned in the beginning of this section, we are par(LeafgB(m)))
interested in proving the correctness of our partition re- = B(m) using theorem 4
finement algorithm. Towards that end, we established and
proved the above theorems. Using these theorems and the Now, let us try to prove that the immediate predecessor
basic axioms of the Model Algebra, we prove the correct- q|5tions are unchanged as we transfamto m.
ness of the partitioning refinement algorithm. Vby € partition;, b, € partition;,

e m my
if i = j, thenb; < by & x Ky,

Theorem 5 (Partitioning refinement) Model m, gener- ) )
since each PE is a copy of B(m)

ated by partitioning refinement of specification model m, is

equivalent to m. if i ﬁ j, then
b1 < e bi~bye R(m),
Proof: since m has no synchronization relations

The proof for this theorem is divided into two parts. Firstwe Also by ~» by € R(m) < by 2 by
prove that the intermediate modwl, produced after step  sinceb; «PE A by < PEj and

2 of the partitioning algorithm, is equivalent to. In the PE andPE; are composed in parallel
second part of the proof we show that the final partitioned m m
Thereforeb; < by & by < by

model,my, is equivalent to the intermediate mode! . )
P15 €4 i For the relations imr{, we have

Part 1 RM) = (R(M)— {x~ ylx~ y € RmM)}) U

U{x~ y|x € yAx,y € LeafgB(m))}

Letm = par(LeafgB(m))), _ RO
(R(M) — {x~ yjx~yeR(mM})uU (R(mM) = {x~ y|x~ye RmM})U

U{x~ y|x € yAx,y € LeafgB(m))},

m
(X~ yx<yAxy € LeafsB(m))} since data-transfer relations are preservatin

We have = (R(M) —{X~yx~yeRm}u
m’ = m,using theorem 4 U{x~> y|x < YAXy € LeafgB(m))},
Similarly, for modelm;, we have since immediate predecessors are unchanged
= R(m)
m = par(Leaf§B(m))), Therefore,
(R(M) —{x~ ylx~yeRm)}HuU m = m
m
{X~yx < yAXxy€ LeafgB(m))} —m=m
m{ = my, using theorem 4 Part 2
We now prove that executing steps 3 and 4 of our parti-
B(m) = par(PE;,PE;...,PE,) tioning algorithm on the intermediate mod®} produces
an equivalent modethp,.
Therefore, Letbs, by aB(m) andby ~ by, by ~ by € R(m). By def-

inition of predecessdr; 2 b,. Using axiom 5, we have

n

Leaf§B(m)) = | JLeafgPE)
'T]l b; = seqby,e),e €l and
= | partition b, = sedeyby),excl
i=1
= LeafgB(m)) by partitioning rules. henceB(my) = B(mp)
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We now prove equivalence of relations in the two mod-
els,

bj~by = sedbs,e)~» by, using axiom 5
= e~ by, using axiom 3
= ep~ seqep,by,) using axiom 5
= e~ e, using axiom 3
Also,
bi by = by eyel— byusing axiom 6

b1 - e1,e1 — €,e — by using axiom 6
Using the above results, we have

(R(m) — {b1 ~ by, by ~» bp}) U
{by % 1,61 €2,62 > by, €1~ €2}
(R(m) — {b1 ~ by, by ~» bp}) U

{b1 S er,e1 % c,c e,e0 5 by},
c € C using axiom 7

R(mp)

R(m)

If there is no data transfer relation betwdgnand by,
butb; ~ by € R(my), we have

R(m) (R m)—{bl’\" bz})U{blf\» bz}

(
(R(m) — {b1~ ba}) U {e1~ e}
(

R(m) — {b1~ b)) U{er 3 c.c S e},
c € C using axiom 7
R(mp)

Hence under all cases
B(m) = B(mp) AR(M) = R(mp) = my =mp
Using results from Part 1 and Part 2 of the proof, we get

Hence proved.

4 Conclusion and Future Work

In this report, we presented an algebra and a formal ver-

new model that was derived from the specification model
through a series of well defined refinement steps. A theo-
rem was established and proved to show that this refinement
produced a model that is functionally equivalent to the spec-
ification model.

This approach to system level design validation shows
a lot of promise. In the future, we will try to expand the
algebra to incorporate powerful modeling capabilities like
FSM and pipeline compositions. This will enable us to de-
velop theorems that will be used to verify more general and
complex refinement algorithms.
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ification scheme based on model refinement. This is a new

concept wherein we perform formal verification in a sys-
tem design process by deriving one model from another,
rather than the traditional way of comparing two indepen-
dently written models. We showed how models at differ-

ent abstraction levels may be expressed in the proposed
model algebra and how their transformations can be proved

to be correct. The system design partitioning produced a
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