
Formal Verification of Specification Partitioning

Samar Abdi and Daniel Gajski

Technical Report CECS-03-06
April 23, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fsabdi,gajskig@cecs.uci.edu

1

Formal Verification of Specification Partitioning

Samar Abdi and Daniel Gajski

Technical Report CECS-03-06
April 23, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fsabdi,gajskig@cecs.uci.edu

Abstract

This report presents a formal approach to verify models in a system level design environment. It is a first in series of reports
that demonstrate how we use this formal approach to refine a given specification down to its cycle-accurate implementation.
We formally define models and develop theorems and proofs to show that our well defined refinement algorithms produce
functionally equivalent models. In this report, we specifically look at generation of an architecture level model by refinement
of a specification model. The refinement process follows a well defined system level partitioning algorithm. We prove that
executing the individual steps of the refinement algorithm, in the predefined order, leads to an equivalent model.

2

Contents

1 Introduction 1

2 Model Algebra 2
2.1 Model Definition . 3

2.1.1 Terms and definitions . 3
2.1.2 Axioms . 4

3 System Level Partitioning 5
3.1 Partitioning refinement algorithm 5
3.2 Theorems . 7
3.3 Formal Verification of Specification Partitioning. 10

4 Conclusion and Future Work 11

i

List of Figures

1 The gradual refinement process. 1
2 The universal set of system models. 2
3 A two way blocking channel . 2
4 A simple model . 3
5 A simple specification model. 5
6 Intermediate model after step 1 of partitioning algorithm. 6
7 Intermediate model after step 2 of partitioning algorithm. 6
8 Final model after partitioning. 7

ii

Formal Verification of Specification Partitioning

Samar Abdi and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

This report presents a formal approach to verify models
in a system level design environment. It is a first in series of
reports that demonstrate how we use this formal approach
to refine a given specification down to its cycle-accurate im-
plementation. We formally define models and develop the-
orems and proofs to show that our well defined refinement
algorithms produce functionally equivalent models. In this
report, we specifically look at generation of an architecture
level model by refinement of a specification model. The re-
finement process follows a well defined system level parti-
tioning algorithm. We prove that executing the individual
steps of the refinement algorithm, in the predefined order,
leads to an equivalent model.

1 Introduction

The continuous increase in behavioral and structural
complexity of SoC designs has raised the abstraction level
of system specification. The common approach in system
design is to write models at different levels of abstraction.
However,with the size of these designs, traditional verifi-
cation and simulation based approaches for validation are
no longer practical. Besides, verification by comparing
two separately written models is not tractable at the system
level.

The only solution is to correctly generate one model
from another using a well defined sequence of refine-
ments [2]. The output model is the product of gradual
refinements to the input model. Each gradual refinement
produces an output model that is functionally equivalent to
the input model. Figure 1 shows how a model refinement
is broken into a sequence of gradual refinement steps. We
must ensure that model at leveli is equivalent to the one at
level i�1. By transitivity this ensures that the final output
model is equivalent to the input model. To achieve this, we
develop formalisms to describe models at different abstrac-
tion levels and perform refinements on them. This report
presents a limited set of formalisms useful in the context of
system level design partitioning.

Specification Model (level 0)

Intermediate Model (level i)

Intermediate Model (level i-1)

Intermediate Model (level 1)

Architecture Model (level N)

Refinement 1

Refinement i

Figure 1. The gradual refinement process.

Figure 2 shows the universal set of system models. This
set is divided into classes of equivalent models. As shown,
a specification modelms and its corresponding implementa-
tion mi belong to the same equivalence class. There may be
several implementations for the same specification and they
would all belong to the same equivalence class. We must
ensure that when a model at abstraction levelj is refined to
the one at levelj +1, then modelmj+1 must belong to the
same equivalence class as modelmj . In other words, the
refinement must becontained in the equivalence class.

This report is a first in series of reports on formal veri-
fication of system level model refinements. Here, we focus
on the behavioral partitioning of a specification model to
derive an architecture level model. The report is divided as
follows. We begin by introducing the model algebra in the
next section. This includes a formal definition of a model in

1

Equivalence Class

ms mp=

Figure 2. The universal set of system models.

terms of the model algebra in Section 2. We also present the
basic axioms associated with this algebra. We then present
the partitioning refinement algorithm in Section 3. Next, we
prove some useful theorems. The final theorem uses the ax-
ioms of Model Algebra and these theorems to prove that the
partitioned architecture model and specification model are
equivalent. The model in this report has been simplified to
demonstrate the concept. The methods used are completely
scalable and can be used for large models as well. Finally,
we wind up with a summary and conclusion.

2 Model Algebra

For proving correctness of model refinements, we need
to define a model algebra that can be used to formally repre-
sent system models. Generally speaking, a system is a set of
tasks that are executed in a predefined partial order. These
tasks also talk to each other by exchanging data. In order
to develop an algebra for system models, we must intro-
duce primitives to represent tasks and the data transactions
amongst them.

The first primitive is the unit of computation in a model,
referred to as abehavior. Behaviors that can either beleafor
composite. A leaf behavioris a sequence of operations be-
ing executed in a serial order. Acomposite behavioron the
other hand is formed by combination ofleaf behaviorsusing
operations of the model algebra. A model is constructed out
of these leaf behaviors by using the basic concept of hierar-
chy and composition operations. Two or more leaf behav-
iors are put together to compose a composite behavior. The
composite behaviors may also be combined with other leaf
or composite behaviors to generate larger composite behav-
iors. In the scope of this report, the composition may be
sequential or parallel. Moreover, we need synchronization
between behaviors to ensure the correct temporal order of
execution.

The other primitive is the unit of computation referred
to as a channel. It is used for communication between be-
haviors. A channel encapsulates the data item to be trans-

Write DATA

Read DATA

Channel c

ready

wait

wait

ack

Send Recv

cb1 b2
sender receiver

Figure 3. A two way blocking channel

ferred and events to ensure the transfer semantics. The
channels we consider for the purpose of this report are two
way blocking channels as shown in figure 3. As we can
see, the behaviorsb1 andb2 use the channelc to exchange
DATA. The transfer semantics ensure that the receiving be-
havior will wait until the sender has written the data, and
the sender behavior waits until the data item has been read
by the receiver.

The Model Algebra is defined as:

A =< B ;C ;O;R >

B is the set of behaviors,
C is the set of channels,
O = fseq; parg (Set of Operations)
R = f;;

v
!g(Set of Relations)

Operations

The operations mentioned in the above algebra are de-
fined on elements inB . The setB is closed with respect to
bothseqandpar.

8b1;b2;b3; ::: 2 B

1. seq(b1;b2;b3; :::) 2 B

2. par(b1;b2;b3; :::) 2 B

Theseqoperator implies that behaviors execute sequen-
tially in time. Hence ifb= seq(b1;b2; :::;bn), thenb2 starts
afterb1 has completed,b3 starts afterb2 has completed and
so on. Behaviorb is said to start whenb1 starts and it com-
pletes whenbn completes. Note that the composite behavior
b can be used to create more composite behaviors.

Theparoperator creates a parallel composition of behav-
iors. If b= par(b1;b2; :::;bn), then there is no predefined
order of execution between the behaviorsb1;b2; :::;bn. Be-
haviorb is said to start when any behavior inb1 throughbn

2

starts. Behaviorb is said to complete when all behaviors
from b1 throughbn complete.

Composite behaviors are essentially functions formed
using operatorsseqandpar on behaviors. We will use the
notation f (b1;b2; :::;bn) to represent a composite behavior
formed using behaviorsb1 throughbn.

Relations

We define thesynchronizationrelation onB in the fol-
lowing way. 8b1;b2 2 B ; if b1; b2 then irrespective of
the hierarchical composition, behaviorb2 cannot start exe-
cuting until behaviorb1 completes.

Data transfers in a system can take place either through
variables or channels. Sequentially composed behaviors
communicate through variables, while those composed in
parallel use channels. In the latter case, data from the sender
behavior is written to the channel. Subsequently, the re-
ceiver behavior reads the data from the channel. We define
three kinds ofdata transferrelations as follows.

1. Data variablev sent from behaviorb1 to behaviorb1

b1
v
! b2, where(b1;b2) 2 B�B

2. Data variablev sent from behaviorb1 to channelc1

b1
v
! c1, where(b1;c1) 2 B�C

3. Data variablev received by behaviorb1 from channel
c1

c1
v
! b1, where(c1;b1) 2 C �B

Class of Identity Behaviors

We define the class ofIdentity BehaviorsI to be a subset
of B such that all behaviors belonging toI output the input
data. The following behaviors belong to the classI :

� Behavior(in varv1, out varv2)
f v2 = v1 g

� Behavior(in varv, out channelc)
f c.write(v) g

� Behavior(in channelc, out varv)
f v = c.read()g

� Behavior(in channelc1, out channelc2)
f c2:write(c1:read()) g

Note that an identity behavior does not perform any other
operation except reading and writing a data item.

m

sync

cb1 b2

b3

v 1

v 2

b23

Figure 4. A simple model

2.1 Model Definition

Based on the above algebra, a system modelm can be
defined as a tuple

m= B(m);R(m);where

B(m) : the hierarchical composition of behaviors

representing the model m, and

R(m) : set of relations on the

behaviors used to compose B(m)

Figure 4 shows a simple model comprising of threeleaf
behaviorsb1;b2 andb3. Behaviorsb2 andb3 are sequen-
tially composed to create acompositebehaviorb23, which
in turn is composed in parallel with behaviorb1. Channel
c is used to send datav1 from b1 to b2. Variablev2 is sent
directly from behaviorb2 to b3 since they are in sequential
composition. Also note the synchronization edge fromb1

to b3 which guarantees thatb3 cannot start executing before
b1 completes, despite their parallel composition. The model
m can be written as follows:

B(m) = par(b1;seq(b2;b3));

R(m) = fb1; b3;b1
v1! c;c

v1! b2;b2
v2! b3g

2.1.1 Terms and definitions

For the purpose of explaining and formally proving correct-
ness of model refinements, we need to introduce some no-
tations.

3

Sub-behavior The relationsub-behavioris defined onB
as follows

8b1;b2 2 B ; if b1/b2; then

b1 is a sub-expression in the hierarchical expression of
b2.
Example from Figure 4:
b23= seq(b2;b3), B(m) = par(b1;seq(b2;b3)),
thereforeb23/B(m).

Leafs This is the set of all leaf level sub-behaviors of a
behavior.

Lea f s(b) = fxjx/b; 6 9y/b s.t. y/xg

Example from Figure 4:

1. Lea f s(b23) = fb2;b3g

2. Lea f s(B(m)) = fb1;b2;b3g

PredecessorA behaviorb1 is said to be apredecessorof

behaviorb2 in modelm (denoted byb1
m
< b2), if in the

temporal order of executionb1 must complete before
b2 begins. Formally, the predecessor relation can be
defined as:
8b1;b2;b3/B(m)

1. seq(::;b1;b2; ::)/B(m)) b1
m
< b2

2. b1; b2 2 R(m)) b1
m
< b2

3. b1
m
< b2^b3/b2) b1

m
< b3

4. b1
m
< b2^b3/b1) b3

m
< b2

5. b1
m
< b2^b2

m
< b3) b1

m
< b3

Example from Figure 4:

1. b1
m
< b3

2. b2
m
< b3

Immediate PredecessorA behaviorb1 is said to be anim-
mediate predecessorof behaviorb2, in a modelm (de-

noted byb1
m
� b2) if

6 9b3/B(m);b3 2 B ; such thatb1
m
< b3

m
< b2

Example from Figure 4:

1. b1
m
� b3

2. b2
m
� b3

2.1.2 Axioms

Now that we have established the basic building blocks of
the system model, we need to define a set of axioms that are
associated with the model algebra. These axioms will be
used to construct theorems that will validate model refine-
ments and transformations.

Axiom 1 (Synchronization) A sequential composition of
behaviors b1;b2 in a model M may be replaced by a parallel
composition of b1;b2 by adding a synchronization relation
b1; b2 in R(m).

f (seq(b1;b2);b3;b4:::);R(m) =

f (par(b1;b2);b3;b4:::);R(m)[b1; b2

Axiom 2 (Flattening) If a behavior x, in model M, is com-
posite and parent of x is the same composite type as x, and
x does not have any synchronization constraints, then x may
be removed through flattening.

Sub-Axiom 2.1For theseqbehavior:

if x = seq(bi+1;bi+2; :::bj)

b= seq(b1;b2:::bi;x;bj+1;bj+2:::bk)/B(m); and

6 9a/B(m); such that

a; x2 R(m) or x; a2 R(m); then

b= seq(b1;b2; :::;bi ;bi+1;bi+2; :::;bj ;bj+1;bj+2; :::;bk)

Sub-Axiom 2.2The dual forparbehavior is as follows:

if x = par(bi+1;bi+2; :::bj)

b= par(b1;b2:::bi ;x;bj+1;bj+2:::bk)/B(m); and

6 9a/B(m); such that

a; x2 R(m) or x; a2 R(m); then

b= par(b1;b2; :::;bi ;bi+1;bi+2; :::;bj ;bj+1;bj+2; :::;bk)

Axiom 3 (Forward Substitution) Synchronization re-
lation for composite behaviors may be replaced by
synchronization relation(s) on their child behaviors.

Sub-Axiom 3.1 If a behavior b is a sequential composition
such that b= seq(b1;b2:::;bn) and if there exists a syn-
chronization constraint from a behavior a; b, then the
constraint may be replaced by a synchronization constraint
a; b1. Similarly, a constraint b; n may be replaced by
bn; n

if b = seq(b1;b2; :::;bn)/B(m); then

8a/B(m); if a; b2 R(m)

R(m) = (R(m)�a; x)[a; b1

8a/B(m); if b; a2 R(m)

R(m) = (R(m)�b; a)[bn; a

4

Sub-Axiom 3.2 If a behavior x is a parallel composition
such that b= par(b1;b2:::;bn) and if there exists a syn-
chronization constraint from a behavior a; b, then the
constraint may be replaced by synchronization constraints
a; b1;a; b2; :::;a; bn. Similarly, a constraint b; a
may be replaced by constraints b1; a;b2; a; :::bn; a

if b = par(b1;b2; :::;bn)/B(m); then

8a/B(m); if a; b2 R(m);

R(m) = (R(m)�a; b)[a; b1;a; b2; :::;a; bn

8a/B(m); if b; a2 R(m);

R(m) = (R(m)�b; a)[b1; a;b2; a; :::bn; a:

Axiom 4 (Commutativity) A parallel composition of the
type par(b1;b2) is equivalent to par(b2;b1).

par(b1;b2) = par(b2;b1)

.

Axiom 5 (Identity) Given a model m and behavior e2 I
such that e doesnothave any relations in R(m), the follow-
ing hold true8b/B(m)

1. seq(b;e) = b

2. seq(e;b) = b

3. par(b;e) = b

Axiom 6 (Transitivity) Given a model m and b1;b2;b3/
B(m)

b1
v
! b2 = fb1

v
! b3;b3

v
! b2g iff b1

m
� b3^b3

m
� b2

Axiom 7 (Channel creation) Given identity behaviors
e1;e2 2 I and channel c2 C

Sub-Axiom 7.1

fe1
v
! e2;e1; e2g= fe1

v
! c;c

v
! e2g

Sub-Axiom 7.2

fe1; e2g= fe1
0
! c;c

0
! e2g

3 System Level Partitioning

This is the first step in deriving the architecture model
from a given specification [1]. Once we have determined the
components in the proposed system architecture, we need
to divide the system tasks into suitable groups. Each of
these groups is assigned to a unique component in the ar-
chitecture. After this assignment, we need to evaluate the

m

b1

b4

b3b2 c
v 2

v 3

v 1

Figure 5. A simple specification model.

correctness and suitability of our partition. For this pur-
pose, we need to generate an executable partitioned model.
The model may be generated automatically from the speci-
fication, once we have the partitioning decisions. This pro-
cess is known as partitioning refinement [3]. In this section,
we present the partitioning refinement algorithm using our
model algebra. Subsequently, we develop a theorem and
prove it to show that this algorithm indeed works correctly.

3.1 Partitioning refinement algorithm

Given a model m = B(m);R(m), a set of n
components PE1;PE2; :::;PEn and n partitions
partition1; partition2; :::; partitionn. Each partition is
a set of leaf behaviors inm. The partitions follow the
following rules:

1.
Sn

i=1 partitioni = Lea f s(B(m)); and

2. partitioni \ partitionj = φ;1� i; j � n

3. partitioni is assigned toPEi

The partitioned modelmp is generated as follows.

1. Initialize B(mp) as a parallel composition ofn behav-
iorsPE1 throughPEn such that
PEi = f (bi1;bi i2; :::;bim), where

bi j =

�
bj : bj 2 partitioni

φ : otherwise

5

b1

b4

b3b2

b23

PE1 b1

b4

b3b2

b23

PE2

Figure 6. Intermediate model after step 1 of partition-
ing algorithm.

2. Add following synchronization relations
Sn

i=1fx; yjy2 partitioni^x
m
� y^

x2 (Lea f s(B(m))� partitioni)g

3. Introduce identity behaviors for each synchronization
relation as follows
8b1;b2/B(m); such thatb1; b2 2 R(m);e1;e2 2 I
replace behaviorb1 with seq(b1;e1) and b2 with
seq(e2;b2) and modify R(m) as follows

(a) if 9b1
v
! b22R(m), thenR(m) = (R(m)�fb1

v
!

b2;b1; b2g)[fb1
v
! e1;e1

v
! c1;c1

v
! e2;e2

v
!

b2g

(b) else R(m) = (R(m) � fb1 ; b2g) [fe1
0
!

c1;c1
0
! e2g

4. Flatten redundant hierarchy.

An example of the refinement process is demonstrated
on a simple specification model. The specification, com-
prising of four leaf behaviors viz.b1;b2;b3 andb4 is shown
in figure 5. Leaf behaviorsb2 andb3 are composed in paral-
lel to form a composite behavior. This composite behavior
follows b1 and precedesb4 in a larger sequential composi-
tion. Also note the data transactions between the behaviors.
Data itemv1 is sent from behaviorsb1 to b2. Similarly v3

is sent fromb3 to b4. Sinceb2 andb3 are composed in par-
allel, they talk using the channelc, which sends data item
v2 from b2 to b3. The modelm may be expressed in our
algebra as follows:

B(m) = seq(b1; par(b2;b3);b4);

R(m) = fb1
v1! b2;b2

v2! c;c
v2! b3;b3

v3! b4g

2

b3

PE1

b1

b4

b2

m i

PE

sync

sync

c
v 2

v 3

v 1

Figure 7. Intermediate model after step 2 of partition-
ing algorithm.

The partitioning decision is as follows.
partition1 = b1;b2;b4 to PE1

partition2 = b3 to PE2

After partitioning, the model is refined to a parallel com-
position of PE1 and PE2. After step 1 the intermediate
model is shown in figure 6. The relevant leaf behaviors
are copied into each of thePEs in the original hierarchy.
After step 2 of the partitioning algorithm, we derive an in-
termediate modelmi . Synchronization constraints are added
across the partitions to maintain the original partial order of

execution.b1
m
� b3 andb3

m
� b4, are the only immediate

predecessor relations across partitions. Therefore, we add
corresponding synchronization constraints i.e.b1; b3 and
b3; b4 to derive intermediate modelmi as shown in figure
7.

B(mi) = par(seq(b1;b2;b4);seq(b3));

R(mi) = fb1
v1! b2;b2

v2! c;c
v2! b3;b3

v3! b4;

b1; b3;b3; b4g

The final modelmp is shown in Figure 8. This model is
derived by executing step 3 and 4 of our algorithm on model
mi . Identity behaviorse1;e2;e3 ande4 and channelsc1 and
c2 are inserted corresponding to synchronization relations
b1; b3 andb3; b4. The pair of relationsfb3; b4;b3

v3!

b4g in mi is replaced byfb3
v3! e3;e3

v3! c2;c2
v3! e4;e4

v3!
b4g in mp. Similarly, channelc1 is introduced to implement

6

b3b2

b 4

c
v 2

c2
v 3

c1
0

e4 e3

e2e1

v 3

v 3

v1

mp

2PE
1PE

b1

Figure 8. Final model after partitioning.

the synchronization relation betweenb1 andb3. The final
partitioned modelmp can be expressed as:

B(mi) = par(seq(b1;e1;b2;e4;b4);

seq(e2;b3;e3));

R(mi) = fb1
v1! b2;b2

v2! c;c
v2! b3;b3

v3! b4;

e1
0
! c1;c1

0
! e2;b3

v3! e3;e3
v3! c2;

c2
v3! e4;e4

v3! b4g

3.2 Theorems

The axioms in Section 2 establish the basic properties of
a model. We now focus on developing some useful the-
orems from these axioms. The theorems in turn will be
employed to prove the correctness of model refinement al-
gorithms. In particular, we are trying to prove that our re-
finement algorithm for partitioning a specification model is
correct. The theorems in this sub-section will help in prov-
ing that the model obtained after partitioning isequivalent
to the specification.

Theorem 1 (Expression Exchange)A sequential compo-
sition of the type seq(b1;b2; :::bi) in a given model m,
may be replaced by a parallel composition of the type
par(b1;b2; :::bi) by adding the synchronization constraints
b1; b2;b2; b3; ::::bi�1; bi to R(m).
f (seq(b1;b2; :::bi);bi+1;bi+2::);R(m) =

f (par(b1;b2; :::bi);bi+1;bi+2::);
R(m)[fb1; b2;b2; b3; :::;bi�1; big

Proof:
We prove this theorem by mathematical induction.
m= f (seq(b1;b2; :::bi);bi+1;bi+2::);R(m)
for i = 3, we have,

m = f (seq(b1;b2;b3);b4; :::);R(m)

= f (seq(seq(b1;b2);b3);b4; :::);R(m)

using axiom 2

= f (par(seq(b1;b2);b3);b4; :::);

R(m)[seq(b1;b2); b3

using axiom 1

= f (par(seq(b1;b2);b3);b4; :::);

R(m)[b2; b3

using axiom 3

= f (par(par(b1;b2);b3);b4; :::);

R(m)[b2; b3[b1; b2

using axiom 1

= f (par(b1;b2;b3);b4; :::);

R(m)[b1; b2;b2; b3

using axiom 2

So, the theorem is proved fori = 3. By principle of in-
duction, let us assume that the theorem is true for integer
i = N;N > 3. We have to prove that the theorem holds true
for i = N+1 also.

for i = N+1, we have

m = f (seq(b1;b2; :::;bN;bN+1);bN+2; :::);R(m)

= f (seq(seq(b1;b2; :::;bN);bN+1);bN+2; :::);R(m)

using axiom 2

= f (par(seq(b1;b2; :::;bN);bN+1);bN+2; :::);

R(m)[fseq(b1;b2; :::;bN); bN+1g

using axiom 1

= f (par(seq(b1;b2; :::;bN);bN+1);bN+2; :::);

R(m)[fbN; bN+1g

using axiom 3

= f (par(par(b1;b2; :::;bN);bN+1);bN+2; :::);

R(m)[fbN; bN+1g

[fb1; b2;b2; b3; � � � ;bN�1; bNg

using assumption for i = N

= f (par(b1;b2; :::;bN;bN+1);bN+2; :::);

R(m)[fb1; b2;b2; b3; � � �

� � � ;bN�1; bN;bN; bN+1g

using axiom 2

7

Hence proved.

Theorem 2 (Permutation of parallel behaviors) A paral-
lel composition of the type par(b1;b2; :::bi) in a given model
m, may be replaced by a parallel composition of behaviors
b1 through bi in any permutation.

This amounts to proving that

par(b1;b2; ::;bx;bx+1; :::;by;by+1; :::bi) =

par(b1;b2; :::;by;bx+1; :::;bx;by+1; :::bi);

where x6= y;1� x;y� i

Proof:
Without loss of generality, let us assumex< y Let y= x+
n;n� 1. We have

b = par(b1;b2; :::;bx;bx+1; :::;bx+n�1;by; :::;bi)

= par(b1;b2; :::;bx;bx+1; :::; par(bx+n�1;by); :::;bi)

= using axiom 2

= par(b1;b2; :::;bx;bx+1; :::; par(by;bx+n�1); :::;bi)

using axiom 4

= par(b1;b2; :::;bx;bx+1; :::;by;bx+n�1; :::;bi)

using axiom 2

Using n iterations of the above three steps and moving
by to the left, we get

b = par(b1;b2; :::;by;bx;bx+1; :::;bx+n�1; :::;bi)

= par(b1;b2; :::;by; par(bx;bx+1); :::;bx+n�1; :::;bi)

using axiom 2

= par(b1;b2; :::;by; par(bx+1;bx); :::;bx+n�1; :::;bi)

using axiom 4

= par(b1;b2; :::;by;bx+1;bx; :::;bx+n�1; :::;bi)

using axiom 2

Performing n iterations of the above three steps and mov-
ing bx to the right, we get
b= par(b1;b2; :::;by;bx+1; :::;bx;by+1; :::bi)

Hence proved.

Theorem 3 (Redundant Synchronization)Given model
m, if behavior b1 is a predecessor, but not an immediate
predecessor, of behavior b2, then the synchronization rela-
tion b1; b2 is redundant in m.

b1
m
< b2^b1

m
6� b2) R(m) = R(m)�fb1; b2g

Proof:
By definition of immediate predecessor,

b1
m
< b2^b1

m
6� b2

)9a/B(m); such thatb1
m
< a^a

m
< b2

The conditionb1
m
< b2 is satisfied by clause 5 of the pre-

decessor definition, which renders the relationb1; b2 re-
dundant. ThereforeR(m) = R(m)�fb1; b2g.

Theorem 4 (Canonical form) Any system model m is
equivalent to a canonical model m0, which is a parallel com-
position of all leaf behaviors in m, and each leaf behavior in
m0 has a synchronization constraint from all its immediate
predecessors in m.

B(m0) = par(Lea f s(B(m)));

R(m0) = (R(m)�fx; yjx; y2 R(m)g)[

fx; yjx
m
� y^x;y2 Lea f s(B(m))g

Proof:
We start with a modelm of the system. In order to convert
m to its canonical formm0,we perform the following steps.

1. Convert allseqbehaviors topar and add synchroniza-
tion relations using theorem 1.

2. Recursively substitute synchronization relations be-
tween composite behaviors with synchronization rela-
tions between their child behaviors using axiom 3 to
derive modelm1.

3. Remove all redundant synchronization relations inm1

using theorem 3.

4. Flatten the hierarchy inm1 using axiom 2 to get the
canonical modelm0

It is easy to see thatm= m1 = m0 since each of the above
steps follows directly from an established theorem or ax-
iom.

We start with showing that

R(m1) = (R(m)�fx; yjx; y2 R(m)g)[

fx; yjx
m
< y^x;y2 Lea f s(B(m))g

This means that we have to prove that

8b1;b2 2 Lea f s(B(m));b1
m
< b2 , b1; b2 2 R(m1)

The proof is divided in two parts.
Assertion 1:
8b1;b2 2 Lea f s(B(m));b1

m
< b2) b1; b2 2 R(m1)

Consider the clauses of the predecessor definition in Sec-
tion 2. The definition isinductivewith two terminal cases.
If b1

m
< b2, then one of the following is true:

1. seq(:::b1;b2:::) / B(m): In this case step 1 of the
above process would convertseq(:::b1;b2:::) to

8

par(:::b1;b2:::) and add the synchronization relation
b1; b2. If b1;b2 2 Lea f s(B(m)), then this relation
would not be modified. ThusAssertion1is true in this
case.

2. b1; b2 2 R(m): Existing relations betweenleaf be-
haviors are not modified in the conversion process,
thusb1; b2 2 R(m1)

3. b1
m
< b3 ^ b2 / b3. This is an inductive definition,

so if we need to show that ifb1 ; b3 was added
to R(m) during the conversion process andb1;b2 2
Lea f s(B(m)), thenb1; b2 2 R(m1) is true. Since all
composite behaviors in the modelm are converted to
parallel before step 2, the substitution of synchroniza-

tion relations in step 2 replacesb1
m
< b3 with b1

m
< b2

if b2/b3. Since synchronization relations betweenleaf
behaviorscannot be substituted, we haveb1; b2 2
R(m1). ThusAssertion 1 is true in this case by induc-
tive reasoning.

4. b3
m
< b2^b1/b3. We use the same inductive reasoning

as above to show that the relationb3; b2 is replaced
with b1; b2 during the conversion process.

5. b1
m
< b3^b3

m
< b2. As above, we assume that ifb1; b3

andb3; b2 are added toR(m) during the conversion
process, then the redundant synchronization relation
b1; b2 may be added using theorem 3. ThusR(m2) =
R(m2)[b1; b2 without changing the model.

We have shown that in each of the above cases,Assertion 1
holds true.
Assertion 2:
8b1;b2 2 Lea f s(B(m));b1; b2 2 R(m1)) b1

m
< b2

A synchronization relationb1; b2 is added to the modelm
under the following cases.

1. seq(:::b1;b2:::)/B(m): is converted topar(:::b1;b2:::).

Clearlyb1
m
< b2. ThusAssertion1 is true in this case.

2. b1; b3^b2 /b3. Using inductive reasoning, ifb1;

b3 ! b1
m
< b3, thenb1

m
< b2 by clause 3 of the prede-

cessor definition.

3. b3; b2^ b1 / b3. As above, ifb3; b2 ! b3
m
< b2,

thenb1
m
< b2 by clause 4 of the predecessor definition.

We have shown that in each of the above cases,Assertion 2
holds true. Let,

pred(m1) = fx; yjx
m
< y^x;y2 Lea f s(B(m))g;

impred(m1) = fx; yjx
m
� y^x;y2 Lea f s(B(m))g:

redund(m1) = fx; yjx
m
< y^x

m
6� y^x;y2 Lea f s(B(m))g

= pred(m)� impred(m);

sinceimpred(m)� pred(m):

During the conversion process, all synchronization
relations betweencomposite behaviorsare substituted
with those between leaf behaviors. The synchronization
relations between leaf behaviors of modelm are still
retained inR(m1). UsingAssertion 1andAssertion 2, we
have

R(m1) = (R(m)�fx; yjx; y2 R(m)^

x;y 62 Lea f s(B(m))g)[pred(m1)

= (R(m)�fx; yjx; y2 R(m)g)[pred(m1);

sincefx; yjx; y2 R(m)^

x;y2 Lea f s(B(m))g � pred(m1)

R(m0) = R(m1)� redund(m1)

by step 4 of the conversion process

= ((R(m)�fx; yjx; y2 R(m)g)[pred(m1))

�redund(m1);using theorem 3

= (R(m)�fx; yjx; y2 R(m)g)[

(pred(m1)� (pred(m1)� impred(m1)))

= (R(m)�fx; yjx; y2 R(m)g)[impred(m1)

= (R(m)�fx; yjx; y2 R(m)g)[

fx; yjx
m
� y^x;y2 Lea f s(B(m))g

Finally, executing step 5 of the conversion process, we
flatten the hierarchy ofpar behaviors to one compositepar
behavior consisting of all the leaf behaviors inB(m). There-
fore,

B(m0) = par(Lea f s(B(m)));

R(m0) = (R(m)�fx; yjx; y2 R(m)g)[

fx; yjx
m
� y^x;y2 Lea f s(B(m))g

) m = m0

Hence proved.

9

3.3 Formal Verification of Specification Partition-
ing

As mentioned in the beginning of this section, we are
interested in proving the correctness of our partition re-
finement algorithm. Towards that end, we established and
proved the above theorems. Using these theorems and the
basic axioms of the Model Algebra, we prove the correct-
ness of the partitioning refinement algorithm.

Theorem 5 (Partitioning refinement) Model mp gener-
ated by partitioning refinement of specification model m, is
equivalent to m.

Proof:
The proof for this theorem is divided into two parts. First we
prove that the intermediate modelmi , produced after step
2 of the partitioning algorithm, is equivalent tom. In the
second part of the proof we show that the final partitioned
model,mp, is equivalent to the intermediate modelmi .

Part 1

Let m0 = par(Lea f s(B(m)));

(R(m)�fx; yjx; y2 R(m)g)[

fx; yjx
m
� y^x;y2 Lea f s(B(m))g

We have
m0 = m;using theorem 4

Similarly, for modelmi , we have

m0

i = par(Lea f s(B(mi)));

(R(mi)�fx; yjx; y2 R(mi)g)[

fx; yjx
mi
� y^x;y2 Lea f s(B(mi))g

m0

i = mi ; using theorem 4

B(mi) = par(PE1;PE2:::;PEn)

Therefore,

Lea f s(B(mi)) =
n[

i=1

Lea f s(PEi)

=
n[

i=1

partitioni

= Lea f s(B(m)) by partitioning rules.

This implies,

B(m0

i) = par(Lea f s(B(mi)));

= par(Lea f s(B(m)))

= B(m0) using theorem 4

Now, let us try to prove that the immediate predecessor
relations are unchanged as we transformm to mi .
8b1 2 partitioni;b2 2 partitionj ;

if i = j; thenb1
m
� b2 , x

mi
� y;

since each PE is a copy of B(m)
if i 6= j; then

b1
m
� b2 , b1; b2 2 R(mi);

since m has no synchronization relations

Also b1; b2 2 R(mi), b1
mi
� b2

sinceb1/PEi ^b2/PEj and
PEi andPEj are composed in parallel

Thereforeb1
m
� b2 , b1

mi
� b2

For the relations inm0

i , we have

R(m0

i) = (R(mi)�fx; yjx; y2 R(mi)g)[

[fx; yjx
mi
� y^x;y2 Lea f s(B(mi))g

= (R(m)�fx; yjx; y2 R(m)g)[

[fx; yjx
mi
� y^x;y2 Lea f s(B(mi))g;

since data-transfer relations are preserved inmi

= (R(m)�fx; yjx; y2 R(m)g)[

[fx; yjx
m
� y^x;y2 Lea f s(B(m))g;

since immediate predecessors are unchanged

= R(m0)

Therefore,

m0

i = m0

=)mi = m

Part 2

We now prove that executing steps 3 and 4 of our parti-
tioning algorithm on the intermediate modelmi produces
an equivalent modelmp.

Let b1;b2/B(mi) andb1
v
! b2;b1; b2 2 R(m). By def-

inition of predecessorb1
mi
< b2. Using axiom 5, we have

b1 = seq(b1;e1);e1 2 I and

b2 = seq(e2;b2);e2 2 I

henceB(mi) = B(mp)

10

We now prove equivalence of relations in the two mod-
els,

b1; b2 = seq(b1;e1); b2; using axiom 5

= e1; b2; using axiom 3

= e1; seq(e2;b2;) using axiom 5

= e1; e2; using axiom 3

Also,

b1
v
! b2 = b1

v
! e1;e1

v
! b2 using axiom 6

= b1
v
! e1;e1

v
! e2;e2

v
! b2 using axiom 6

Using the above results, we have

R(mi) = (R(mi)�fb1
v
! b2;b1; b2g)[

fb1
v
! e1;e1

v
! e2;e2

v
! b2;e1; e2g

= (R(mi)�fb1
v
! b2;b1; b2g)[

fb1
v
! e1;e1

v
! c;c

v
! e2;e2

v
! b2g;

c2 C using axiom 7

= R(mp)

If there is no data transfer relation betweenb1 andb2,
butb1; b2 2 R(mi), we have

R(mi) = (R(mi)�fb1; b2g)[fb1; b2g

= (R(mi)�fb1; b2g)[fe1; e2g

= (R(mi)�fb1; b2g)[fe1
0
! c;c

0
! e2g;

c2 C using axiom 7

= R(mp)

Hence under all cases

B(mi) = B(mp)^R(mi) = R(mp) =)mi = mp

Using results from Part 1 and Part 2 of the proof, we get
m= mp

Hence proved.

4 Conclusion and Future Work

In this report, we presented an algebra and a formal ver-
ification scheme based on model refinement. This is a new
concept wherein we perform formal verification in a sys-
tem design process by deriving one model from another,
rather than the traditional way of comparing two indepen-
dently written models. We showed how models at differ-
ent abstraction levels may be expressed in the proposed
model algebra and how their transformations can be proved
to be correct. The system design partitioning produced a

new model that was derived from the specification model
through a series of well defined refinement steps. A theo-
rem was established and proved to show that this refinement
produced a model that is functionally equivalent to the spec-
ification model.

This approach to system level design validation shows
a lot of promise. In the future, we will try to expand the
algebra to incorporate powerful modeling capabilities like
FSM and pipeline compositions. This will enable us to de-
velop theorems that will be used to verify more general and
complex refinement algorithms.

References

[1] D. Gajski, R. Domer, A. Gerstlauer, and J. Peng.Sys-
tem Design with SpecC. Kluwer Academic Publishers,
January 2002.

[2] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

[3] J. Peng, S. Abdi, and D. Gajski. Automatic model re-
finement for fast architecture exploration. InProceed-
ings of the Asia-Pacific Design Automation Conference,
pages 332–337, January 2002.

11

