Variable Mapping of System Level Design

Lukai Cai and Daniel Gajski

CECS Technical Report 02-32
Oct 08, 2002

Center for Embedded Computer Systems
Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{Icai, gajski} @ics.uci.edu

Variable Mapping of System Level Design
Lukai Cai and Daniel Gajski

CECS Technical Report 02-32
Oct 08, 2002

Center for Embedded Computer Systems
Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425,USA
(949) 824-8059

{Icai, gajski @ics.uci.edu

Abstract

This report presents a variable-memory mapping approach of the system level design, which maps the variables of the
system behavior to the memories of the system architecture. It first introduces a novel memory size model to compute the
required minimal memory sizes when allowing variables with un-overlapped lifetime to share the same memory portion. It
then presents variable mapping algorithms for different design assumptions. The variable mapping algorithms are applied
before obtaining some implementation details, such as bus topology and bus protocols, which moves the variable mapping to
the earliest design stage.

Contents

1. Introduction 1
2. Related Work 2
3. Variable Mapping in System Design Flow 3
4. System Model 4
4.1 BehaviorModel 4
4.2 Architecture model e 4
4.3 \Variable Classification e e 5
4.3.1 FunctionVariable L 5
4.3.2 Static Behavior Variable 5
4.3.3 Dynamic Behavior Variable 5
4.4 Variable-Memory Mapping Mechanism 5
44,1 Mappingto EachLocalMemory e e 5
4.4.2 Mappingto One Local Memory e 6
4.4.3 MappingtoaGlobalMemory e 6
5. Design Flow of Variable Mapping 6
5.1 INpUL . . . e e e e 6
5.2 Global/Local Variable Identification 6
5.3 Stack Mapping e 7
5.4 Local Variable Mapping 7
5.5 Global Variable Mapping e e e 7
5.6 OULPUL . . . L o e e e e e e 7
6. Memory Size Model 7
6.1 Behavior Hierarchy Tree e e 8
6.2 Lifetime Analysis 8
6.2.1 Lifetime of Behavior 8
6.2.2 LifetimeofStack 9
6.2.3 Lifetime of Dynamic Behavior Variable L 9
6.2.4 Lifetime of Static Behavior Variable 9
6.3 Memory-Size Model e e 9
6.3.1 Self-UsedMemory Size e 9
6.3.2 Hierarchically-Used Memory Size. o e 9
6.3.3 Remaining Memory Size. 10
6.3.4 Memory Type Model e e e e 10
6.3.5 \Variable-Memory Mapping Judgement 11
7. Problem Definition and Solution 11
7.1 DesignProblem 1 e 12
7.1.1 Design ASSUMPLION o o o e e 12
7.1.2 Problem Definition e 12
7.1.3 Solution L e e 12
7.2 DesignProblem?2 e 15
7.2.1 Design ASSUMPLION L 15
7.2.2 ProblemDefinition e 15
7.2.3 SolUtion L e e 15
7.3 DesignProblem 3 16
7.3.1 Design ASSUmMPLioNo e 16
7.3.2 Problem Definition e 17

7.3.3 Solution e e 17

7.4 DesignProblem 4 . . . 22
7.4.1 Design ASSUMPLION o o e e 22
7.4.2 Problem Definition L 22
7.4.3 System Estimation Model 22
T.4.4 SOIULION e 23
8. Experimental Result 23
8.1 JPEGProject e e 23
8.1.1 IntroduCtion e 23
8.1.2 Pure SWsOIUtiON e e 25
8.1.3 HW-SW Codesign o 25
8.2 Mocoder Project e 25
8.2.1 INtroduCtion e 25
8.2.2 Pure SWSOIULION 25
8.2.3 HW-SW Codesign o 27
8.24 SOCDESION . . . o o o e 27
9. Conclusion 29

List of Figures

1 Extended Gajskiand Kuhn'sY chart e 1
2 The task dependencies between behavior-PE mapping, variable-memory mapping, and channel-bus mapping 3
3 Asimple example of variable mapping problem oL 3
4 Design flow of system synthesis 4
5 System behaviorexample 1 L e e 4
6 Ageneral systemarchitecture L e 5
7 The design flow of variable-memory mapping 6
8 Behavior hierarchy tree of example 1 8
9 Lifetime of behavior variablesinthe example 1 o o 8
10 Example ofparallel(w, p) computation for local memory of SW PE, local memory of HW PE and global
MEMOIY. . . o o o e e e e e e e e e e e e e 11
11 Systembehaviorexample 2 L e 12
12 Behavior hierarchy tree of example 2 12
13 The system architecture for behaviorexample 2 12
14 Behavior-PE mapping solution of the example 2. e 13
15 Initial memory size models for PEL1and PE2. e 13
16 Memory size models of PE1 and PE2 after stack memory mapping. 14
17 Memory size models of PE1 and PE2 after local variable mapping inproblem 1. 14
18 Memory size models of PE1 and PE2 after global variable mapping in problem 1. 15
19 Memory size models of PE1 and PE2 after local variable mapping in problem2 16
20 Memory size models of PE1 and PE2 after global variable mapping in problem2. 17
21 Memory size models of PE1 and PE2 after local variable mapping in problem 3. 18
22 Algorithm 1: global variable mapping algorithm for problem 3. 19
23 Memory size models before global variable mappinginproblem 3. 0 oL 20
24 Memory size models after mapping global variable v2 to local memories in problem3. 20
25 Memory size models after mapping global variable v4 to local memories in problem 3. 21
26 Memory size models after mapping global variable v3 to the global memory in problem3. 21
28 Blockdiagram of IPEG encoder 23
27 Algorithm 2: the global variable mapping algorithm for problem4 24
29 Block diagram of encoding part of vocoder 26

30 The chart of the require global memory size, decreased local memory size, and generated traffic for SoC
design of VOCOdEr Project e e 28

List of Tables

©CoOo~NOoOUTh~, WNE

Behavior-PE mapping decisions and the produced variable identification for behavior example 1. 7
The variable-memory mapping alternatives for stack, local variable, and global variable. 8
Occupied memory sizes of variablesinexample 2 L 12
Occupied memory sizes of stacks of leaf behaviorsinexample2 12
Variable-PE connectiontable inexample 2 13
Variable trafficinexample 2 e e 18
Required local memory size of ColdFire microprocessor in pure SW solution of JPEG project 25
Required local memory sizes of PEs in HW-SW co-design of JPEG project 25
The lower-bounds / upper-bounds of local memory sizes of PEs in HW-SW co-design of JPEG project (with
optimization) e e 25
Required memory size of Motorola DSP56600 microprocessor in pure SW solution of Vocoder project . . . 27
Required memory sizes of PEs in HW-SW co-design of Vocoder project 27
The lower-bounds / upper-bounds of local memory sizes of PEs in HW-SW co-design of Vocoder project

(with optimization) e e e 27
Behavior-PE mapping Solution in SoC design of Vocoder project 28
Table of required global memory sizes and generated traffic for different sets of given local memory sizes in

SoC design of Vocoder project e e e e e 28

Variable Mapping of System Level Design

Lukai Cai and Daniel Gajski
Center for Embedded Computer Systems
Information and Computer Science
University of California, Irvine

Abstract
Behavi or al System Architectural
This report presents a variable-memory mapping ap-
proach of the system level design, which maps the variables
of the system behavior to the memories of the system ar-
chitecture. It first introduces a novel memory size model
to compute the required minimal memory sizes when al-
lowing variables with un-overlapped lifetime to share the
same memory portion. It then presents variable mapping
algorithms for different design assumptions. The variable
mapping algorithms are applied before obtaining some im-
plementation details, such as bus topology and bus proto-
cols, which moves the variable mapping to the earliest de-
sign stage.

Physi cal

1. Introduction Figure 1. Extended Gajski and Kuhn’s Y chart

In order to handle the ever increasing complexity
and time-to-market pressures in the design of system-on-
chips(SOCs) or embedded systems, the design has beeping, and channel-bus mappindg3ehavior-PE mapping
raised to the system level to increase productivity. Figure 1 selects PEs to assemble the system architecture and maps
illustrates extended Gajski and Kuhn's Y chart representingthe behaviors (functional blocks) in the behavior specifica-
the entire design flow, which is composed of four differ- tion to PEs. Variable-memory mapping selects sizes of
ent levels: system level, RTL level, logic level, and tran- local memories of PEs and the global memories on the sys-
sistor level. The thick arc represents the system level de-tem architecture and maps the variables of behaviors to the
sign. It starts from the behavior specification representing memories.Channel-bus mappingselects bus topology of
the designs’ functionality (also called application or sys- the system architecture, selects bus protocols and maps the
tem behavior), which is denoted by point S. The behav- communication among behaviors to the selected buses. In
ior specification contains a set of functional blocks (also this report, we focus on the variable-memory mapping step.
called behavior). It also contains a set of variables that re- Variable-memory mapping is critical because it heavily
serve the data transferred between intra-block operations oaffects the chip area and the execution time of design. 70%
inter-block operations. The system level design then syn-of the chip area is dedicated to memory, which is deter-
thesizes the behavior specification to the system architec-mined by the memory size. Furthermore, different variable-
ture denoted by point A. A system architecture consists of mapping alternatives will produce different amount of traf-
a number of PEs (processing elements) and a number ofic among PEs and global memories, which determines the
global memory connected by buses. Different PEs can be-communication time of design. Taking the chip area and the
long to different PE types. Each PE implements a numberexecution time into consideration, we have two objectives
of functional blocks of the behavior specification. during variable-memory mapping: to minimize the size of

We divide the systhesis process of system level design tomemories and to minimize either the amount of traffic or
three steps: behavior-PE mapping, variable-memory map-the communication time on the system architecture.

This report presents a novel but straightforward variable- local copy at the local memory of each PE. It also assumes
mapping approach, which contains three parts: memorythat the tasks mapped to one PE are executed sequentially.
size computation, traffic amount computation, and variable- Therefore the amount of memory required by the PE must
memory mapping algorithm. During memory size compu- equal to the largest amount that is required by any of the
tation, we analyze lifetime of variables and compute the re- task mapped to that PE.
quired minimal local memory sizes of PEs and global mem- Research in [12] uses the similar memory model as [11]
ory sizes. During traffic amount computation, we compare to implement behavior-architecture mapping. The differ-
the produced amount of traffic for different variable map- ence between [12] and [11] is that when two tasks commu-
ping alternatives. Finally, we introduce a straightforward nicate through a variable, [12] reserves the memory for the
variable-mapping heuristics. variable in the sending task until the value of the variable

Compared with other works introduced later in section is transferred to the receiving task. [12] adopts constraint
2, we aim to handle the very complex design at the earliestlogic programming paradigm as the basic algorithm.

design stage. As a result, we tailor our approach to fulfil The goal of [9] is the same as our goal, which is to im-
the need of very complex design by considering following plement variable-memory mapping. Its targeted architec-
three issues: ture model contains a set of PEs with local memories and a

global memory. Unlike [11][12], it choose shared-memory
1. We adopt the hierarchy specification as input, which mechanism for communication. Therefore, the variable is
ensures system behavior's scalability. mapped to either one of the local memories of PEs or the
global memory. It computes communication time by adding
up the read access time and write access time of variables.
It computes the memory size by adding up the size of vari-
ables mapped to the memories. It uses integer linear pro-
3. We adopt a constructive algorithm, which reduces the gram to produce the optimal mapping result.
algorithm’s complexity. The register allocation and variable-register binding
problem has been discussed in the field of high level synthe-
This report is organized as followed: section 2 describessis. [5] introduces some related algorithms including clique
the related work and our contribution. Section 3 describespartitioning, left-edge algorithm, and weighted-bipartite-
when variable-memory mapping is implemented in the sys- matching algorithm. We notice that the difference between
tem design flow. Section 4 introduces the system model.variable-memory mapping problem in the system synthesis
The design flow of variable mapping is given in section 5. domain and variable-register binding problem in the high
Section 6 introduces the model for memory size computa- level synthesis domain can be classified into the following
tion. Section 7 defines the detailed variable mapping prob-two aspects:
lems and provides corresponding solutions. Experimental
result is described in section 8. Finally, section 9 gives the 1. Size of variable. In the high level synthesis domain,

2. We implement variable-memory mapping in the earli-
est design stage, even before deriving implement de-
tails such as bus topology and bus protocols.

conclusion. the sizes of variables are same, which is determined
by the memory/register width. In the system synthesis
2. Related Work domain, the sizes of variables can be ranged from 1 bit

of bit type to 10000 byte of structure type.

Lots of research has been done on system level design for 2. Estimation accuracy of lifetime of variable. In the high
years. Some of them took the memory issue into account. level synthesis domain, the lifetime of variable is com-

Research in [13][10] involves cache issues. [13] solves puted based on clock cycles. Therefore, it can be accu-
the application-specific multiprocessor synthesis problem rately estimated according to the finite state machine.

to optimize cache hierarchy size of periodic real time sys- However, in the system synthesis domain, the lifetime
tems. [10] maps variables into Scratch-Pad memory and of variable is computed based on the system estimation
off-chip DRAM accessed through data cache, to maximize model. If the system estimation model is not accurate,
the performance. then the estimation of lifetime of variable is not accu-
Research in [11] implements behavior-architecture map- rate, which will make lifetime analysis useless. Un-
ping for the application-specific multiprocessor systems by fortunately, the system level estimation model such as

using mixed integer linear programming. It adds the cost VCC[2] never guarantees accuracy.

of memories determined by the amount of memories to

the cost equation of design. It chooses message-passing Our work don’t consider cache optimization, which is
communication mechanism. Thus, the variable through different from [13] and [10]. In comparison to research in
which two tasks in different PEs are communicated has a[11][12][9], our work has the following contributions:

Vari abl e

Behavi or - PE | ocat | on. Var - menory

mappi ng mappi ng A

. PE1 PE2
traffic ¢
Channel - Bus Figure 3. A simple example of variable map-
mappi ng ping problem

Figure 2. The task dependencies between

behavior-PE mapping, variable-memory map- Figure 2 shows task dependencies ambebavior-PE
ping, and channel-bus mapping mapping variable-memory mappin@ndchannel-bus map-
ping steps.

First, behavior-PE mappingdetermines computation
time of behaviors. In addition to that, it also determines
the variable location: whether a variable is used only by a
certain PE, or by more than one PE. As explained later in
section 5, this knowledge is required bgriable-memory

2. We support message-passing mechanism and shared"@PPing Therefore,variable-memory mappingust be
memory mechanism, while [11][12] do not support 'MPlemented aftebehavior-PE mapping

shared-memory mechanism and [9] does not support It is obvious that theehannel-bus mappinmust be im-
message-passing mechanism. plemented aftebehavior-PE mappingecause the bus only

handles the communication between behaviors mapped to

3. We analyze the lifetime of variables independent of different PEs, which is determined tyehavior-PE map-
the system estimation model. We also take preemptivePing. However, the amount of traffic on bus is not only
RTOS into consideration. On the other hand, [9] does influenced bybehavior-PE mappingout also influenced by
not analyze lifetime of variables. The lifetime anal- Variable-memory mappingFor example, in Figure 3, be-
ysis in [11][12] is much easier than our analysis be- havior A in F"El is commqnlcated with beh{;\vnB in PE2
cause they don’t support hierarchical behavior model, through variables. BehaviorA readsv 100 times and be-

shared-memory communication mechanism, and pre_haviorB writesv once. In this case, if we map variabi¢o
emptive RTOS. the local memories dPE1andPE2 the amount of traffic is

1. On the other hand, if we map variaméo a global mem-

4. We implement variable mapping according to the Ory,then the amount of traffic is 101. Because the amount
amount of traffic, rather than the communication time ©f traffic on bus is influenced byariable-memory mapping
used in [11][12][9]. Therefore, we can implement andis used as inputehannel-bus mappingve implement
variable mapping before channel-bus mapping, while variable-memory mappinigeforechannel-bus mapping
[11][12][9] implement variable mapping after channel- ~ The Figure 4(a) displays the system design flow used
bus mapping. in [11] [12] [9]. The Figure 4(b) displays our system de-

sign flow. We move thgariable-memory mappinigom the

5. We use straight-forward heuristics to solve the prob- position afterchannel-bus mapping the position before
lem, rather than use time-consuming ILP adopted by channel-bus mapping

1. Our input system behavior is modeled hierarchically.
On the other hand, the system behaviors in [11][12][9]
are flat models.

[11][12][9]. This enables us to solve the variable- Thevariable-memory mappinig design flow (a) and (b)
mapping problem for very complex designs within af- is in different level of accuracy when estimating the traffic.
fordable time. The former one estimates the communication time because

the bus protocol is known. However, the latter one estimates
amount of traffic because the bus protocol is undecided. To
extend the variable-memory mapping to a more accurate
level, we also extend the design flow in Figure 4(b) to the
Before implementing variable mapping, we must under- design flow in Figure 4(c). In in Figure 4(c), tivariable-
stand when the variable mapping should be applied in thememory mappings based on the amount of traffic, while
design flow. variable-memory re-mapping based on the communica-

3. Variable Mapping in System Design Flow

Behavi or - PE Behavi or - PE Behavi or - PE AC
mappi ng mappi ng mappi ng
1
¥ w AB P
Channel - bus Var - menor y _| Var-nenory
mappi ng A mapping g mappi ng Vi ﬂ
i - | [BOE] | W2
Y y
Var - menory Channel -bus Channel - busg A | B
mappi ng mappi ng mappi ng
y Y
4 Var-nenory
r e- mappi ng
(a) Design flow of (b) Basic (c) lExt ended
previ ous work design flow design flow

Figure 5. System behavior example 1
Figure 4. Design flow of system synthesis

o . o of behaviorAB. Since the behaviors are in different hierar-
tion time. Thevariable-memory re-mappinig introduced chy levels, variables are also declared in different hierarchy

in section 7.4 levels.
Although we adopt SpecC as our input modeling lan-
4. System Model guage, the idea introduced in this report can also be applied
to other system level design languages such as SystemCJ[1].
4.1 Behavior Model This is because the behavior hierarchy is supported by most

of system level design languages.

We use SpecC language[6] to model the system behav-]
ior. SpecC language is a C-language based system leveft-2 Architecture model
design language that supports behavior hierarchy, behavior
concurrency, behavior pipeline, and state transitions in be- We choose multi-PE architecture as the system architec-
havior level. ture, which is shown in Figure 6. Each PE in the architec-

SpecC usedehavior to represent a functional block. ture contains a micro-processor, a custom hardware, a vir-
Among behaviorsleaf behavior represents the undivided tual component, or an IP, It also contains a local memory.
unit. One leaf behavior can only be mapped to one PE.The above two parts of PE are connected to each other by
It contains a number of hierarchically called functions but a local bus. If a PE contains a microprocessor, we call it
no sub-behavior instances. In addition to leaf behavier, = SW PE. If a PE contains a custom hardware, we calW
erarchy behavior consists of a number of sub-behavior in- PE. The system architecture also contains a set of global
stances that are executed in parallel, sequential, pipeline, onmemories. A global memory may be either single port,
FSM fashion [6]. We call that sub-behaviors instances aredual port, or special purpose memory such as FIFO. The
the children of the hierarchy behavior and the hierarchy be-interconnection network consists of several buses. The PEs
havior is the parent of the sub-behavior instances. In Figureand global memories are connected by one or more system
5, A, B, andC are leaf behaviorsAC andAB are hierarchy buses via corresponding interfaces. The system bus is as-
behaviors. In behaviofAB, leaf behaviorA andB are ex- sociated with a well-defined protocol with the components
ecuted parallel, which is denoted by a thick doted line. In on the bus have to respect. The protocol may be standard,
behaviorAC, behaviorAB is executed before the execution such as itVME bus, or custom. An interface bridges the gap
of behaviorC, which is a denoted by thick arrow. between a local bus of a PE/memory and system buses.

Each behavior has a set of ports to connect with other Each PE communicates with every other PE within the
behaviors. It also has a set of variables that connect themulti-PE system, using one of the two communication
ports of its sub-behaviors instances. In Figure 5, variable ismechanisms. In @&hared-memory mechanism all the
denoted by shaded rectangle and port is denoted by framedPEs are connected to a common shared memory through
rectangle. For example, behavidB's variablevlconnects an interconnection network, which means that each pro-
portal of behaviorA and portbl of behaviorB. The ports cessor can access any data in the shared memory. In a
of behaviors can also connects to its parent behavior’s portsmessage-passing mechanisran the other hand, each pro-
For example, porb2 of behaviorB is connected to poiil cessor tends to have a large local memory, and sends data to

PEL PE2 4.3.2 Static Behavior Variable

Proct M o Proc2 He Static behavior variableis a behavior variable declared in-
| | | | side behavior and outside any functioBehavior variable
‘ Lbus1 Lbus2 ‘ Lbus3 is the variable usually declared in thesrarchy behavioto
I IE | [] connect the ports of sub-behavior instances. The static be-
‘ ‘ ‘ ‘ havior variable in SpecC is similar to the static variable in
Sbus1 Sbus2 C language. The lifetime of static behavior variable is the
same as the lifetime of the entire system behavior. As a re-

sult, any two static behavior variables cannot share the same

Figure 6. A general system architecture portion of the same memory.

other processors in the form of messages through an inter4-3-3 Dynamic Behavior Variable

connection network. . . : : . .
Dynamic behavior variableis also a behavior variable de-

clared inside behavior and outside any functions. Unlike
4.3 Variable Classification the static behavior variable, the lifetime of dynamic behav-
ior variable equals to the execution interval of the behavior
in which the variable is declared. If we treat the behav-
ior in SpecC as the function in C language, the dynamic
behavior variable is similar to function variable in C. Two
dynamic variables declared in two sequential executing be-
haviors can share the same portion of the same memory.

We classify variables in the behavior specification to
three types: function variable, static behavior variable, and
dynamic behavior variable.

4.3.1 Function Variable

. . . . , , 4.4 Variable-Memory Mapping Mechanism
Function variable is a variable declared in functions of leaf

behaviors. The function variable in SpecC is similar to the

function variable in C language. The lifetime of function ~ There are three mechanisms of variable-memory map-
variable equals to the lifetime of the function in which itis Ping: map variable to each local memory of its connecting
declared. Since the lifetime of any two sequential executing PEs, map variable to only one local memory of its connect-
functions is un-overlapped, any two function variables de- ing PEs, and map variable to the global memory. We define
clared in two sequential executing functions can share thethatv is connected to behaviarif and only if v is declared

same portion of the memory. in behaviorw or v is connected to the port of behavior
In our behavior modehierarchy behaviois notallowed e def!ne that a variableis connected to P if and only
to contain any function variables. Fégaf behavioy we If @nyv's connecting behaviar is mapped to Plp.

compute the sum of its function variables as a whole. We
call it stack sizeof leaf behavior.

Since functions in leaf behaviors can be called hierar-
chically, we compute the stack size of functiols;qcr (f)
following the equation:

4.4.1 Mapping to Each Local Memory

In mapping to each local memorymechanism, we map a
variable to each local memory of its connecting PEs. This
mechanism is applied if we choose message-passing mech-
anism for communication. This mapping mechanism en-
Sstack(f) = fggag(f)(sstack(fi)) +) (S@y) sures that each connecting PE of the variable has a vari-
T v, €SV (S) able’s local copy.
In mapping to each local memorgechanism, the read
where S_C(f) is the set of function calls irf and access of variable is achieved by accessing the local mem-
S_V(f) is the set of declared variables fn The stack size ory of PE. Therefore, it doesn’t produce any traffic on the
equals to the largest stack size of its calling functions plus interconnection network. On the other hand, when write ac-

the sum of sizes/(v;) of variables declared iff . cess of the variable connecting to several PEs happens, the

The stack size of leaf behavidf;;..r(A) of behaviorA system must update local copy of the variable in all of its
equals to the stack size #fs mainfunction, which repre- connecting PEs. As a result, write access produces traffic
sents the root function of leaf behaviéiin SpecC. on the interconnection network.

4.4.2 Mapping to One Local Memory

Behavi or - PE
mappi ng deci si on

(Behavi or J
In mapping to one local memorymechanism, we map a speci fication
variable to only one local memory of its connecting PEs.
This mechanism is applied when we choose shared-memory
mechanism for communication and the variable is mapped

yy

to a local memory of PE rather than a global memory. d obal / | ocal
In mapping to one local memomechanism, assuming var ldentification

a variablev is mapped to the local memory of its connect- ¢

ing PEp. The read/write access of variahlerom/to the

behaviors mapped to PEdoesn’'t produce any traffic on Stack mappi ng

the interconnection network. The read/write access of vari-

ablev from/to the behaviors mapped to the PEs other than ¢

p produces the traffic. Local variable
mappi ng

4.4.3 Mapping to a Global Memory Q obal ‘Vari abl o

In mapping to a global memory mechanism, we map a TapPpI Ng

variable connecting to more than one PE to a global mem-
ory. This mechanism is applied when we choose shared- Var - memory
memory mechanism for communication and the variable mappi ng resul t
connecting to more than one PEs is mapped to a global
memory.

In mapping to a global memomyechanism, every read- i
/write access of the variable mapped to the global memories mapping
produces traffic on the interconnection network.

Figure 7. The design flow of variable-memory

5. Design Flow of Variable Mapping 5.2 Global/Local Variable Identification

With the behavior specification and behavior-PE map-
ping decision as inputs, the first step of variable-memory
mapping isglobal/local variable identification The glob-
al/local variable identification identifies whether a static/-
dynamic behavior variable is a global variable or is a local
variable. If a variable’s connecting behaviors are mapped
5.1 Input to one PE, then the variable idacal variable of that PE.

Otherwise, if a variable 's connecting behaviors are mapped

Variable-memory mapping requirdghavior specifica- to more than one PEs, then it igtbal variable.
tion and behavior-PE mapping decisiaas input. We use Global/local variable identification is the step of link-
behavior model described in section 4.1 as the behavioring the implementation-independent behavior specification
specification. It only reflects the functionality of design, to the behavior-PE mapping decision. For the same behav-
which is independent of implementation. It is an un-timed ior specification, the behavior-PE mapping decision deter-
model. Behavior-PE mapping decision contains the systemmines the variable identification. For example, as shown
architecture and behavior-PE mapping information. It in- in Table 1, if different behavior-PE mapping decisions are
cludes: which types of PEs and how many PEs are selectednade for the behavior specification described in Figure 5,
in the system architecture; which behaviors are mappedthen the variables1 andv2 have different identifications.
to which PEs; whether the system architecture contains alf we map the behavioAC to PE1 as shown in the raw 1 of
global memory; what are the sizes of local memories of Table 1, theny1 andv2 become the local variables &fE1.
PEs. Since variable-memory mapping is implemented be-However, if we map behaviod B to PE1 and map behav-
fore channel-bus mapping, the topology of interconnection ior C' to PE2 as shown in the raw 2 of Table 1, then variable
network and the bus protocols are unknown. In our project, v1 becomes the local variable 6fE'1 andv2 becomes the
we specify behavior-PE mapping decision in the format of global variable. This is because th&tis connected to both
annotation of the behavior specification. behaviorAB and behavioC', which are mapped to differ-

Figure 7 describes the design flow of variable-memory
mapping, which consists of four stepglobal/local vari-
able identificationstack mappinglocal variable mapping
andglobal variable mapping

| Behavior-PE mapping Variable identification | specification to the specification reflecting the system archi-

PE1 | PE2 Local | Local | Global tecture.
(PE1) | (PE2) In the design flow, we implemeistack mappindgefore
AC | - vl v2] - - local variable mappingimplementiocal variable mapping
AB | C vl N V2 beforeglobal variable mapping We choose this mapping
AC | B . - viv2 sequence because we observed that stack must be mapped
A B.C : Vo vl to the local memories of PEs, the local variables prefer to
be mapped to the local memories of PEs, and the global
Table 1. Behavior-PE mapping decisions and variables can be mapped to either local memories or global
the produced variable identification for be- memories, which are described in Table 2. Since sometimes
havior example 1. the local memory sizes of PEs are pre-defined, following

this mapping sequence helps us to first check the required
local memory sizes.

It should be noted that we don’'t compute the memory
required for storing the code instruction when behaviors are
mapped to software PEs. The size of code instruction is
not changed during the execution of design. Therefore, for
the software PEs, we assume the size of local memory of
PE used in this report equals to the original size of local
memory subtracted by the size of memory required to store
the code instruction of behaviors mapped to that PE.

ent PEs.
5.3 Stack Mapping

The second step of variable-memory mappingtack-
mapping which maps the stack of leaf behavior to the local
memory of the PE to which the leaf behavior is mapped.

The stack cannot be mapped to the global memory or the Following the variable-mapping design flow, we make

L?Cr?l memories of (I;’Eét(r)]ther.than thi o?e tko which thglzl leaf e variable-memory mapping decisions without changing
ehavior IS mapped. EIWISE, each stack access Wl Proy,q pepayior specification(the behavior specification anno-
duce traffic on the interconnection network. As a result, the

size of local memory of PE must be greater than the Stacktation only add notes to the specification). The complete
. . . separating the design space exploration from the behavior
size of the leaf behavior that is mapped to that PE. parafing 'an sp xP : Vi

specification avoid tedious and time-consuming specifica-
tion updating, which makes the design space exploration

5.4 Local Variable Mapping flexible and fast

The third step of variable-memory mapping lscal)
variable-mappingwhich attempts to map the local behav- 6. Memory Size Model
ior variables to the local memories of the variables’ connect-
ing PEs. If the local memories of PEs are not large enough One objective of variable-memory mapping is to mini-
to store all the local behavior variables, we either ask de- mize memory sizes. To accomplish this objective, we map
signers to increase the local memory size, or map some lo-the variables which have un-overlapped lifetime to the same
cal behavior variables to the global memory, according de- portion of the memory.
signers’ assumption. The different design assumptions are In this section, we first analyze the lifetime of variables

discussed in section 7. on the base of data dependencies among behaviors. Accord-
ing to the lifetime analysis, we then compute the memory
5.5 Global Variable Mapping size model of each memory. For each memory, the memory
size model records the used memory size and the remaining
The fourth step of variable-memory mappinggiebal memory size for each behavior. The used memory size of

variable mapping which chooses different variable- behaviorw on memoryp denotes the size of memopyoc-
memory mapping mechanisms introduced in section 4.4 tocupied by the variables that are declared in behaviand
map global behavior variables to either local memories or have been mapped to memasy The remaining memory
global memories. We will discuss the global variable map- size of behaviorw on memoryp denotes the size of mem-

ping under different design assumptions in section 7. ory p that can be allocated to the variables that are declared
in behaviorw and will be mapped t@ . By computing
5.6 Output the memory size model after mapping each variable, we not

only derive the required memory size for local/global mem-
After global-variable mapping, we annotate the variable ories, but also determine whether the next unmapped vari-
mapping results into the behavior specification which al- able can be mapping to the local memories of its connecting
lows the architecture refinement tool to refine the behavior PEs or the global memory, without exceeding the memory

] | Local mem of connecting PEs Local mem of un-connecting PEsGlobal memory|

Stack Mandatory No No
Local variable | Prefer No Yes
Global variable| Yes Yes Yes

Table 2. The variable-memory mapping alternatives for stack, local variable, and global variable.

AC— va e AC 1, v2—» ACT
vl —» Al C C

A C
A B A B
A B (a) If vl and v2 are (b) If vl and v2 are
dynami c vari abl es static variabl es

Figure 8. Behavior hierarchy tree of example

1 Figure 9. Lifetime of behavior variables in the

example 1

size limit.
In this section, we first introduce the behavior hierarchy
tree representing the behavior hierarchy in section 6.1. Thenparallel(AC) = 0.

we analyze the lifetime of variables in section 6.2. In sec- o))
tion 6.3, we introduce the memory size model. We also uses_V (w) to indicate a set of variables associ-

ated with behavior/node. A behavior/nodev is aassoci-

ated behavior/nodeof variablev if and only if the lifetime

of the variablev and the behavior/node are the same. Ac-
cording to the definition, all of the static behavior variables

. o . are associated with the behavior representing the entire sys-
hierarchy. The behavior hierarchy tree of behavior exampletem behavior, which is denoted by the root node. A dynamic

Lin Flgur_e 5 IS displayed in F'gl.”e 8. behavior variable is associated with the behavior in which
Behavior hierarchy tree consists of a set of node, each of.

which represents a be_havior. If thg no_de does not have childgyliadnfgzilrae:ijéb:?sr’ fr)](:gj ?)E(EAQE) i‘d{ﬁ;? S':ngé;fc‘r; Ze
nodest, su?h afsbbehha_/l/éer(,)?hnd,C_m F!?ure 8, thetn |';]_rep- h {v2}, which is shown in Figure 9(a). On the other hand,
resents a feal behavior. JINETWISE, 1t represents Nierarchye . 1 onq 9 are static variables, thef_V(AB) = {},
behavior, such as behavidB andAC. The child behaviors S_V(AC) = {v1,v2}, which is shown in Figure 9(b)
of behaviorw are denoted by the child nodes of the node ~~ ['
representing the behaviar. For example, noded and B
are the child nodes of nodéB. In the following sections,
we use both nameodeandbehaviorto represent a behav- o)
ior in the specification or a node in the hierarchy tree in- 6-2 Lifetime Analysis
terchangeably We us& B(w) to denote the set of child be-
haviors of behaviors. In Figure 8,5S_B(AC) = {AB,C}.

Child behaviors of behaviow can be executed ei-
ther sequentially or concurrently, which is denoted by 6.2.1 Lifetime of Behavior
parallel(w). If the child behaviors are executed con-
currently, as described by symbad™in Figure 8, then
parallel(w) = 1. If the child behaviors are executed se- First, we define the lifetime of behavior/node. The lifetime
quentially, as described by symbol’’in Figure 8, then of behaviorw is defined as the duration betwees starting
parallel(w) = 0. For example, behavioAB contains execution time to its ending execution time. Rather than
two parallel executing child behaviord and B, there- using the exact time to describe the lifetime, we use the
fore parallel(AB) = 1. In behaviorAC, behaviorAB lifetime of leaf behaviors to represent the lifetime of all the
is executed before the execution of behavigrtherefore behaviors. For example, for the behaviors in Figure 8:

6.1 Behavior Hierarchy Tree

We usebehavior hierarchy tre¢o describe the behavior

lifetime(A) =lifetime(A);
lifetime(B) =lifetime(B
lifetime(C) =lifetime(C

(
(
(
lifetime(AB) =lifetime(
(
(
(

)

);
).
)

)

) A)|Jtifetime(B);
lifetime(AC) =lifetime(AB) | Jlifetime(C)
=lifetime(A) | Jlifetime(B)| J
lifetime(C)

If both two nodes in the behavior hierarchy tree contain
the lifetime of the same leaf node, then they are over-
lapped. For example, nodg and nodeA B are overlapped
because both of them contaitig etime(B). However, if

two nodes don’t contain the lifetime of the same leaf node,
we can not conclude that they are un-overlapped. This is

lifetime(vl) = lifetime(AB)
lifetime(v2) = lifetime(AC)

6.2.4 Lifetime of Static Behavior Variable

The lifetime of the static behavior variablds equal to the
lifetime of v's associated node. For example, for the ex-
ample in Figure 5, iiy1 andv?2 are static variables as shown
in Figure 9(b), then

lifetime(vl) = lifetime(AC)
lifetime(v2) = lifetime(AC)

6.3 Memory-Size Model

because whether two leaf nodes are overlapped are not de- In this seciton, we define the memory size model.

termined.

For each paifw, p), wherew denotes a node in the be-

Based on the fact that two sequential executing behaviorshavior hierarchy tree, and denotes a local memory of PE
are un-overlapped and two parallel executing behaviors areor a global memory, we define the memory size model as

overlapped, we define the following three rules to determine

whether two nodes are overlapped to each other.

Rulel: For a nodev, if parallel(w) = 0(sequential), then
all of its child nodes are un-overlapped to each other.

Rule2: If nodesw1 andw?2 are un-overlapped nodes, then
any node in the sub-tree lead by is un-overlapped
to the any node in the sub-tree leadds.

Rule3: If two nodes do not satisfy the rule 1 & 2, they are
overlapped.

For example, in Figure8, nodes and AB are un-
overlapped because they satisfy the Rulel. Nadesnd
A are also un-overlapped because they satisfy the Rule2.

6.2.2 Lifetime of Stack

The lifetime of stack of leaf node is equal to the lifetime
of nodew. For example, in Figure 8,

lifetime(stack(A)) = lifetime(A);
lifetime(stack(B)) = lifetime(B);
lifetime(stack(C)) = lifetime(C);

6.2.3 Lifetime of Dynamic Behavior Variable

The lifetime of a dynamic behavior variableis equal to
the lifetime ofv’s associated node. For example, for the
example in Figure 5, ib1 andv2 are dynamic variables as
shown in Figure 9(a), then

M(wv p) = (a(wv P)» 6("‘}7 p)v)‘(w’ P))

wherea denotes the self-used memory sizedenotes
the hierarchically-used memory size, andenotes remain-
ing memory size.

6.3.1 Self-Used Memory Sizex

a(w, p) denotes node’s self-used memory size in memory
p, which represents the occupied memory size oy the
w's associated variables and stacks that have been mapped
to p.
a(w, p) is defined as:
If wis a leaf node, then

>

v; €S-MV (w,p)

a(w, p) = size(stack(w), p) + size(vy, p)

If wis a non-leaf node, then

D

v; €S- MV (w,p)

alw,p) = size(vi, p)

where S_MV (w, p) denotes the set ab’s associated
variables which have been mappedgto

6.3.2 Hierarchically-Used Memory Sizes

B(w, p) denotesy’s hierarchically-used memory size in

It does not only contain self-used memory sige, p), but

also contains the used memory size of the nodes in the sub-
tree lead byw.

B(w, p) is defined as: case, nodev needs to reserve memory not only for itself,

If parallel(w, p) = 1, then but also forparent(w)’s other child node because the life-
time of them are overlapped. As a resulfw, p) equals to
Bw, p) = aw, p) + Z B(0,p) Aparent(w, p)).
0€S-B(w) On the other hand, iparallel(parent(w)) = 0, then

w is executed sequentially witharent(w)’s other child
nodes. In this casey and parent(w)'s other child be-
Bw, p) = aw,p) + max B(6,p) haviors can share the same memory portion. Because
9€5-B(w) parent(w) reserves memory for the largest hierarchically-
used memory size of its child nodes andnly reserves the
memory to store hierarchically-used memory size of itself,
the difference between them is added Xparent(w, p))
to representA(w,p). Since the largest hierarchically-
The formulation is achieved according to the following US€d memory size oparent(w)'s child nodes equals to
fact: if the child nodes of are executed concurrently, then 2(Parent(w), p) subtracted byx(Parent(w), p). There-
the lifetime of them are overlapped. Therefore, the memory 0r€: Mw, p) = MParent(w), p) + B(Parent(w), p) —
required byw’s child nodes equals to sum of hierarchically- a(Parent(w), p) = B(w, p).
used memory sizes af's child nodes.
On the other hand, if child nodes of are executed 634 Memory Type Model
sequentially, then the lifetime of them are un-overlapped.
Therefore, The child nodes can share the same port of memThere are three types of memories, local memory of
ory p. Therefore, the memory required bys child nodes ~ SW PE (namedSW), local memory of HW PE (named
equals to the largest hierarchically-used memory sizeof ~ HW), and global memory (name@lobal). We compute

If parallel(w, p) = 0, then

where S_B(w) denotes the set ofs’s child nodes.
parallel(w, p) represents whether the child nodes.ofre
executed concurrently(=1) or sequentially(=0) in memory
p, Which is explained in section 6.3.4.

child behaviors. parallel(w, p) according to the type gf. If parallel(w, p)
equals to 0, then it indicates that at any timenly reserves
6.3.3 Remaining Memory Size\ memory for one ofu’s child nodes that are ma_lpped po
Otherwise p must reserve memory for all afs child nodes
A(w, p) denotesu’s remaining memory size ip, which rep- that are mapped to.
resent the available memory size @for unmapped vari- In any SW PE, all the nodes mapped to it are executed
ables associated with. It can be computed only when sequentially. However, if SW PE’'s operation system
memory size op size(p) is known. supports preemptive schedule, then one behavior may be
A(w, p) is defined as: preempted by another. In this case, local memorgf
If w is the root node, then the SW PE reserves memory not only for the preempting

Mw, p) = size(p) — Blw, p) node, but also for the preempted node. Also, one node can
’ ’ only be preempted by its overlapped nodes. Therefore, we
Otherwise, define,
if parallel(Parent(w), p) = 1,
if (p = SW)then
AMw, p) = A(parent(w, p)) if (os_preemptive(p) = 1)
then if parallel(w) = 1
thenparallel(w, p) = 1;
if parallel(w) =0
Mw, p) =A(Parent(w), p) + B(Parent(w), p) thenparallel(w, p) =0;
— a(Parent(w), p) — B(w, p). else I/ ps_preemptive(p) = 0)

parallel(w, p) = 0;
whereParent(w) denotes the parent node of nade
The formulation is achieved according to the following In any HW PE, all the nodes mapped to it are executed
fact: if w is the root node, then remaining memory size sequentially. Since no preemptive schedule is allowed.
equals to the total memory sizéze(p) subtracted by used Therefore, we define,
memory size3(w, p).

if parallel(Parent(w), p) =0,

If w is not the root node, then there are two possibili- if p = HW, thenparallel(w, p) = 0;
ties. First, ifparallel(Parent(w)) = 1, thenw is concur-
rently executed withparent(w)’s other child nodes. In this The parallel analysis for global memory is a little more

10

complex. In general, if the lifetime of child nodes of
nodew are overlapped in terms of functionality, the global
memory p must reserve the memory for all the variables

of these child nodes that are mapped to it. This is because(:
that different child nodes may be mapped to different PEs,

and nodes in different PEs can be executed concurrently if
the functionality allows concurrent execution. However, all

the nodes in the same HW PE have been sequentialized.

As a result, we disable the concurrency existing in the
sub-tree which is mapped to the same HW PE. This rules

;m/(b) The tree

reflecting the
parallellismin SWPEL

(a) Behavior hierarchy
tree

can also be applied to the node for the same SW PE with /[

non-preemptive schedule. Therefore, we define:

if (p = Global)
then if parallel(w) =0
thenparallel(w, p) = 0;
else llparallel(w) =1
if all the nodes in the sukree lead byw are
mapped to the same HW PE,
thenparallel(w, p) = 0;
else if all the nodes in the subee
lead by w are mapped to the same SW PE and
os_preemptive(p) = 0,
thenparallel(w, p) = 0;
elseparallel(w, p) = 1;

We illustrateparallel(w, p) computation by Figure 10.
Figure 10(a) shows the original behavior hierarchy tree re-
flecting the system behavior. For any node "0” de-
notesparallel(w) = 1 while "-" denotesparallel(w) =
0. Assume we map the nodes in dotted circle to a HW
PE PFE2 and map other nodes to a SW HEE1 with
preemptive schedule. Figure 10(b),(c), and (d) display
the value ofparallel(w, p) in the behavior hierarchy tree,
for the local memory ofP E1(SW), the local memory of
PE2(HW), and the global memory respectively. In these
figures, '0” denotesparallel(w, p) = 1 while ” -” denotes
parallel(w, p) = 0.

6.3.5 Variable-Memory Mapping Judgement

After defining memory size model, we define two judge-
ments for variable-memory mapping.

Judgementl: The required memory size of memapyfor
nodew equals to8(w, p). The required memory size
of memoryp for design equals t@(w, p), wherew
denotes the root node .

Judgement2: Assuming an unmapped variahleis asso-
ciated with nodev. For any memorny, if A(w, p) <
size(v, p), then variablev cannot be mapped to the
memoryp. Otherwise, it can be mapped to memery

11

(c) The tree
reflecting the
parallellismin HW PE2

(d) The tree reflecting
the parallellismin
gl obal nenory

Figure 10. Example of parallel(w, p) computa-
tion for local memory of SW PE, local memory
of HW PE and global memory.

7. Problem Definition and Solution

Different designs have different assumptions for system
behavior and system architecture. They also have different
given constraints such as memory size constraint and time
constraint. In this section, we derive five variable-memory
mapping problems according to the most common applied
design assumptions and given design constraints. We solve
these problems based on the memory size model introduced
in section 6.

To illustrate the problems and the solutions, we use a sys-
tem behavior described in Figure 11 as an design example.
Figure 12 displays its behavior hierarchy tree.

During the design process, we adopt a system architec-
ture described in Figure 13, which contains two PBP#1
isa SW PE.PE2is a HW PE. Each PEs has a local mem-
ory LM. The global memory in the system architecture is
denoted byG M.

In the system behavior, there are four behavior variables
vl, v2, v3, andv4. There are six stacks of leaf behaviors,
stack(A), stack(B), stack(C), stack(D), stack(FE), and
stack(F). When a variable or a stack is mapped to differ-
ent memories, the size of its occupied memory is different.
For example, an integer variable may occupy 16 bit in 16-
bit microprocessor but occupies 32 bit in 32-bit micropro-
cessor. Table 3 and Table 4 displays the occupied memory
size of variables and stacks of leaf behaviors on different
memories. We use spec profiler[3] to compute the occupied
memory sizes.

AF
—
AB [ee])
(4] az]] | [[ba][b2] 7N
A |I| B
Y
CF [p7]
‘ N
S RN :
| [EF sl lef |
[eile2]] ! [[ig]
I
| LE JILF
\ A | |
[d1] [a2] |
D |
|

Figure 11. System behavior example 2

AF =—
AB? CF
CD == EF
A B ’J

C D E F

Figure 12. Behavior hierarchy tree of example

Figure 13. The system architecture for behav-
ior example 2

12

size LMin | LMin | GM
(byte) | PE1 | PE2

vl 7 14 14
v2 10 20 20
v3 9 18 18
v4 5 10 10

Table 3. Occupied memory sizes of variables
in example 2

size LMin | LMin | GM
(byte) | PE1 PE2

A 1 2 2

B 2 3 4

C 3 5 6

D 4 6 8

E 5 8 10
F 6 10 12

Table 4. Occupied memory sizes of stacks of
leaf behaviors in example 2

7.1 Design Problem 1

7.1.1 Design Assumption

Problem 1 allows two types of variables: function vari-
able and static behavior variable. Problem 1 allows only
message-passing mechanism. Each variable has a local
copy in the local memory of connecting PEs. Since prob-
lem 1 doesn't allow shared-memory mechanism, there is no
global memory in the system architecture.We assume that
the sizes of local memories of PEs are unknown.

7.1.2 Problem Definition

The goal of problem 1 is to find the minimal sizes of local
memories of PEs.

7.1.3 Solution

We follow the design flow described in section 5 to solve
problem 1.

Global/Local Variable Identification We first identify
global/local variables following the approach introduced in
section 5.2. In the example, if we map behavigrB, and
CtoPE1,andD, E, andF to PE2, as shown in Figure 14,
thenwl is a local variable ofP £'1 andv2, v3, andv4 are
the global variables which are connected to bBth1 and
PE?2. The variable-PE connection table is displayed in Ta-
ble 5.

Behavi or

AF - (V4)
(V3)

AB? (V1) CF
CD (V2) EF
A B
\ C D

E F

T
PR v

PE1
\ \

s

PE2

Archi tectur

[]

Figure 14. Behavior-PE mapping solution of
the example 2.

[Variable[vi [v2 [v3 [v4 |
PE1 Yes | Yes | Yes | Yes
PE2 No | Yes | Yes | Yes

Table 5. Variable-PE connection table in ex-
ample 2

13

AB (0, 0, -)
)
A B
(0, 0, -)(0, 0, -)
(0, 0, -) (0, O, - X0, O, -) (0, O, -)
(a) PE1
AF - (0,0, -)
AB®== (0, 0, -) CFe== (0, 0, -)
CcD (0, 0, -)EF===(0, 0, -)
A B
(0, 0, -) (0, 0, -)
C D E F
(0, 0, -)(0, 0, -)0, 0, -) (0,0, -)
(b) PE2

Figure 15. Initial memory size models for PE1
and PE2.

Stack Mapping First, we generate the behavior hierarchy
tree for the local memories ¢(fE1and PE2 Symbol ™"
representgarallel(w, p) = 0 and symbol & represents
parallel(w, p) = 1. Initially, we assign(0,0,—) to each

(a, B8, \) in the memory size models . The valueois ™",
which refers to "not consider”. This is because for design
problems 1, the local memory sizes are unknown. The ini-
tial behavior hierarchy trees and the memory size models
are displayed in Figure 15.

Second, we add the stack size to the self-used memory
sizea of the memory models. Since behavietsB, andC
are mapped t®EL their stacks sizes are added to the mem-
ory size model oPEL Similarly, the stacks of behavior3,
E, andF are added to the memory size modeP&2 The
self-used memory size and the hierarchically-used mem-
ory sizeg are computed accordingly. The resulting memory
size models are displayed in Figure 16.

Local Variable Mapping We map local variables to the
local memories of their connecting PEs. Since all the vari-
ables are static variables, they are associated with the root
node. As a result, we adds them into thef the root node.

In our example, since Table 5 tells that is the local vari-
able of PE'1, in the memory size model dPFE1,

(3, 3, -)(0, 0, -)(0, 0, -)(0, 0 -)

(a) PEL
AF 1— (0, 10, -)
ABe== (0, 0, - @mmm (0, 10, -)
-) EF (0, 10, -)
A -)
(0,0, -)(o, 0, - E =
(0, 0, -) (6 6 -)(8 8 -)(10, 10, -)
(b) PE2 (3,3 -)(0 0, -§0, 0 -) (0,0 -)
Figure 16. Memory size models of PE1 and (a) PEL
PE2 after stack memory mapping.
AF 1— (0, 10, -)
AB=m= (0, 0, - = (0, 10, -)
-) EF====(0, 10, -)
a(AF, PE1l) =a(AF, PE1) + size(vl, PE1) A
= = (0, O,) (0, O, -
0+ 7="7(byte) E F
. . . . 0, .6, - X8 8 -)(10, 10, -)
After computinga, we updates in the memory size (008 0 X8 8)
model. In our example, singeurallel(AF, PE1) = 0, (b) PE2
B(AF, PE1) =a(AF, PE1)+ Figure 17. Memory size models of PE1 and
PE2 after local variable mapping in problem

max(3(AB, PE1), 3(CF, PE1))
=7+ max(3,3) = 10(byte)

1.

The resulting memory size models are displayed in Fig-
ure 17.

After local variable mapping, the required memory sizes
of PE1 and PE2 are both 10 bytes.

Global Variable Mapping We map the global variables
to the local memories of its connecting PEs. Similar to lo-
cal variable mapping, since the all the variables are static
variables, they are associated with the root node. We first
add them ton of the root node. In our example, Table 5
tells that global variables2, v3, andv4 are connected to
both PE1 and PE?2,

14

AF == (3L 34)
a(AF, PE1) =a(AF, PE1) + size(v2, PE1)+ ABO (0 3 -)
size(v3, PE1) + size(v4, PE1)
=7T+10+9+5 A B
=31(byte) (L 1 -)(2 2 -)

(3, 3, -)(0, 0, - X0, 0, -) (0, O, -)

a(AF, PE2) =a(AF, PE2) + size(v2, PE2)+ (a) PEL
size(v3, PE2) + size(v4, PE2)

=0+20+ 18+ 10 AF == (48, 58 -)
=48(byte) ‘
AB === (0, 0, -

) CF ==
After updatingr, we update? in the memory size model,
p (02 pdate? y ’7*‘ oD © 6 -) EFem(0. 10, -)
A B
e D

B(AF, PE1) =a(AF, PE1)+ (0. 0, -) (o, o, - £ F
max(8(AB, PE1),3(CF, PE1)) (0. 0, -) (6, 6 - X8 & -) (10 10, -)
=31 + max(3, 3)
=34(byte) (b) PE2

— (0, 10, -)

Figure 18. Memory size models of PE1 and
B(AF, PE2) —a(AF, PE2)+ PE2 after global variable mapping in problem

1.
max(3(AB, PE2), 3(CF, PE2))
=48 + max(0, 10)
=58(byte) 7.2.2 Problem Definition

The resulting memory size models are displayed in Fig- The goal of problem 2 is to find the minimal sizes of local
ure 18. memories of PEs.

Result The required minimal sizes of local memories of 7.2.3 Solution

PEs equal tg? of the root nodes in memory size model of

p. In the example, the minimal local memory sizeRE1

is 34 byte. The minimal local memory size BE2is 58

byte. Based on the computed minimal local memory sizes,

designers can select the local memory sizes accordingly. Global/Local Variable Identification The step of glob-
al/local variable identification is the same as it in the prob-

7.2 Design Problem 2 lem 1.

Similar to problem 1, we follow the design flow described
in section 5 to solve this problem.

7.2.1 Design Assumption Stack Mapping The step of stack mapping is the same as

it in the problem 1.
The design assumption of problem 1 and problem 2 are the P

same except the supported variable types. In comparison to |Variabl , G local ,
problem 1 that allows function variable and static behavior]I(_ocla Velma .ebl\l/lappm?] We first rgser\F/)(IaE oca|1: memone?
variable, problem 2 allows function variable and dynamic 'f 'ocal variables In their connecting PEs. For example,
behavior variable. Table 5 tells that1 is the local variable oPE1, andvl is
The difference between static behavior variable and dy- 2SSociated with nodd 5
namic behavior variable are their lifetime and their associ-
ated nodes. If a variable is static, it associates with the root)
. . - .. . AB,PF1l) = a(AB,PE1 1, PE1
node. On the hand, if a variable is dynamic, it associates (4B,) = (4B,) + size(vl,)
with the node that it is declared in. =047 =T(byte)

15

(3, 8 -)(0, 0, -)(0, 0, -)(0, O, -)
(a) PE1
AF 1— (0, 10, -)
AB®=== (0, 0, -) CF o= (0, 10, -)
CcD (0, 6 -) EF (0, 10, -)
A B
(0, 0, -) N
o) c D E F
(0, 0, - X6, 6 -)(8, 8 -) (10, 10, -)
(b) PE2

Figure 19. Memory size models of PE1 and
PE2 after local variable mapping in problem 2

After computinga, we updates in the memory size
model according. In the example,

B(AB, PE1) =a(AB, PE1)+
(B(A, PE1) + B(B, PE1))
=7+ (1+2) =10(byte)

B(AF, PE1) =a(AF, PE1)+
max(3(AB, PE1), B(C'F, PE1))
=0 + max(10, 3) = 10(byte)

The resulting memory size models are displayed in Fig-
ure 19.

After local variable mapping, the required memory sizes
of PElandPE2are both 10 bytes.

Global Variable Mapping We map the global variables
to the local memories of it connecting PEs . In the example,
variabless2, v3, andv4 are connected to bofPElandPE2

We computex in the memory size models of PE1 and PE2
as follows:

16

a(CD, PE1)+ = size(v2, PE1) = 10;
a(CF,PE1)+ = size(v3, PE1) = 9;
a(AF, PE1)+ = size(v4, PE1) = 5;

a(CD, PE2)+ = size(v2, PE2) = 20

a(CF,PE2)+ = size(v3, PE2) = 18

a(AF, PE2)+ = size(v4, PE2) = 10
We them computg@ for nodes inPE],

B(AB, PE1) =a(AB, PE1) + (B(A, PE1)+
B(B, PE1))
=7+ (2+ 1) = 10(bytes)
B(CD,PE1) =a(CD,PE1)+
max(3(C, PE1),3(D, PE1))
=10 + maz(3,0) = 13
B(CF, PE1) =a(CF, PE1) + (8(CD, PE1)+
B(EF, PE1))
=9+ (134 0) = 22;
B(AF, PE1) =a(AF, PE1)+
max(3(AB, PE1), 3(CF, PE1))
=5 + max(10,22) = 27
The g for nodes in PE2 are also computed accordingly.

The updated memory size models are displayed in Fig-
ure 20.

Result In problem 2, the required memory sizesRIE1

is 27 byte, the memory size &E2is 54 byte, which are 7
bytes and 4 bytes smaller than the result computed in prob-
lem 1. This is because the some of the global variables can
share the same portions of memories. After computing re-
quired memory sizes, designers can select the local memory
accordingly.

7.3 Design Problem 3

7.3.1 Design Assumption

Problem 3 allows three types of variables: function vari-
able, static behavior variable, and dynamic behavior vari-
able. Furthermore, problem 3 not only allows message-
passing communication mechanism, but also allows shared-
memory communication mechanism. Local variables must
be mapped to the local memory of its connecting PE. A
global variable can be either mapped to the local memory
of each of its connecting PEs, or to the global memaory.

In the exampley4 is the static variableV'1, v2, andv3
are dynamic variables.

(3, 3, -)(0, 0, - X0, 0, -) (0, 0, -)
(a) PE1
AF 1— (10, 54, -)
AB=t= (0, 0, -) Cre== (18, 44, -)
CD (20, 26, - EF (0, 10, -)
A B
(0, 0, - §0, 0, -)
C D E F
(0, 0, -)(6, 6, -)(8, 8 -)(10, 10, -)
(b) PE2

Figure 20. Memory size models of PE1 and
PE2 after global variable mapping in problem
2.

17

7.3.2 Problem Definition

Assuming designers have selected the local memory sizes
of PEs, the goal is to find a variable-memory mapping so-
lution to minimize the required global memory size and to
minimize the traffic amount on the interconnection network
of the system architecture.

To help designers to select the local memory sizes of
PEs, we can compute the lower-bounds and upper-bounds
of the local memories sizes. The lower-bounds of local
memory sizes equal to the of root nodes after the local
variable mapping step of problem 1 and problem 2, which
guarantees that all the stacks and local variables are mapped
to local memories. The upper-bounds of local memory sizes
equal to the3 of root nodes after the global variable map-
ping step of problem 1 and problem 2, which guarantees
that all the stacks and variables are mapped to local memo-
ries. The selected local memories size must be greater than
the lower-bounds. If all of the selected local memories sizes
are greater than the upper-bounds, then the global memory
is not needed in the system architecture.

7.3.3 Solution

Similar to problem 1, we follow the design flow described
in section 5 to solve this problem.

Global/Local Variable Identification The global/local
variable identification in problem 3 is the same as it in prob-
lem 1.

Stack Mapping The stack mapping in problem 3 is the
same as it in problem 1.

Local Variable Mapping The local variable mapping in
problem 3 is the similar to it in problem 2. In the given
example, the memory size models after local variable map-
ping are displayed in Figure 21.

Global Variable Mapping In the problem 3, the local
memories may not be large enough to store every global
variable. As a result, we must map some global variables
to the global memory. We determine which global variables
are mapped to the global memory according the amount of
traffic of variables.

Global Variable Traffic Computation For each
global variablev, if we choose shared-memory communi-
cation mechanism and map it to the global memory, then
the amount of traffic that generates on the interconnection
network equals to

(3, 3 -)(0, 0, -)(0, 0, -)(0, 0, -)
(a) PE1
AF —r (0, 10, -)
AB==== (0, 0, -) CFe=m= (0, 10, -)
CD (0, 6, -) EFe==m=(0. 10, -)
A B
(0, 0, -) N
(00) ¢ D E F
(0, 0, -)(6, 6 -)(8, 8 -) (10, 10, -)
(b) PE2

Figure 21. Memory size models of PE1 and
PE2 after local variable mapping in problem
3.

traf fic(v, global_mem) = read(v) + write(v)

where read(v) is the amount ofv’s read access and
write(v) is the amount of’s write access.

| Traffic [v2[v3]v4]
Read(Kbyte) | 60 | 25 | 35
Write(Kbyte) | 14 | 16 | 12

Table 6. Variable traffic in example 2

each iteration. If all of the local memories 0% connect-

ing PEs have enough unused memory to stgrthen we
mapv to these local memories. Otherwise, we maipto

the global memory. Whether variablecan be mapped to
the local memory is based adudgement2n section 6.3.5.
After the mapping decision af is made, they, 3, and\ of
corresponding memory size models are updated. The global
variable mapping algorithm is described in Figure 22.

In the given example, we assume that designers select
20-byte local memory foPE1 and 40-byte local memory
for PE2 The traffic of global variables2, v3, andv4 are
displayed in Table 6. The algorithm first sorts variables ac-
cording to their read traffic. The mapping ordeniy v4,
andv3.

Figure 23 shows the memory size models before global
variable mapping. Since the local memory sizes are given,
we compute the\ of the memory size models for the local
memories. On the other hand, since the memory size of the
global memory is unknown, we sgtof the global memory
as "-", which refers "not consider”.

First, we mapv2 to the system architecture. The
v2 is associated with nod€’D. The A\(CD, PE1) is
17 and \(CD, PE2) is 34. Size(v2, PF1) is 10 and
size(v2, PE2) is 20. Since \(CD,PFE1) is greater
than size(v2, PE1) and A(CD, PE2) is greater than
size(v2, PE2), we can map?2 to local memories of PEs.
The updated memory size models afteémapping are dis-

However, if we choose message-passing communicationplayed in Figure 24.

mechanism and mapto local memories of its connecting
PEs, the amount of trafficgenerates on the interconnection
network equals to

traf fic(v,local_mem) = write(v)

This is because when a nodeead fromw, it reads from
the local memory of the PE to which is mapped. On
the contrary, when a node write to v, it updatesv’s lo-
cal copies in all the local memories 0% connecting PEs.

Obviously, the difference of the amount of traffic be-
tween two communication mechanismsrisid(v). As a
result, we prefer mapping the global variables with larger
amount of read access to local memories.

Global Variable Mapping Algorithm We first order
global variables in the lisGGlobal_Var in the decreasing
order of read access. Then we map one global variahte

18

Second, we map4 to the system archiecture. The
v4 is decleared in node AF. Th&(AF, PFE1) is 7 and
AMAF,PE2) is 14. Thesize(v4, PE1) is 5 and the
size(vd, PE2) is 10. Since A(AF, PE1) is greater
than size(v4, PE1), and A\(AF, PE2) is greater than
size(v4, PE2), we can map4 to the local memories of
PEs. The updated memory size models aftemapping
are displayed in Figure 25.

Last, we map3 to the system archiecture. Tha is de-
cleared innode CF. The(C'F, PE1) is 2 and\(CF, PE2)
is 4. Thesize(v3, PEL) is 9 and thesize(v3, PE2) is
18. SinceA\(AF, PE1) is smaller thansize(v3, PE1),
and A\(AF, PE2) is smaller tharsize(v3, PE2), we can-
not mapwv3 to the local memories of PEs. Therefore, we
mapv3 to the global memory. The updated memory size
models aftew3 mapping are displayed in Figure 26. After
mapping ,6(AF, Global_Mem) is 9 byte, which equals to
the required global memory size.

map_to_local = TRUE;
Global_Var = SortVariableBasedOnRead();

/I Check whether v can be mapped to the local
/Imemories of all of its connecting PEs
for v in Global Var do
w = AssoicateBehavior(v);
for each p to which v is connecting do
if (Mw, p) < size(v, p)) do
map_to_local = FALSE
endif
endfor

//lUpdate memory size models according
/lto v's mapping decision.
if (map_to_local == TRUE) do
for each p to which v is connecting do
Aw, p) = ow, p) + size(v, p);
Update(5, p);
Update(A, p);
endfor
else
o(w, Global_Mem) = «a(w, Global_Mem)
+ size(v, Global_Mem);
Update((3,Global_Mem);
Update(\,Global_Mem);
endif
endfor

Figure 22. Algorithm 1: global variable mapping algorithm for problem 3.

19

0, 13, 7
AF 1— (0, 10, 10) AF 1— ()
‘ AB (7, 10, 10) CF

(0, 13, 7))

AB (7, 10, 10) CF (0, 3, 17)

(0, 0, 17) CD .13, (0, 0, 7)

CD (0, 3, 17) EF

A B

A ® 2, 2, 10)
(1, 1, 10)(2, 2, 10)C b . . (1, 1, 10 X2, 2, c 5 £ .

0, 0, 20 X0, O, o,
(3, 3, 17 X0, 0, 20 X0, 0, 17)(0, 0, 17) (3.3 7)(X0. 0. 7)(0, 0, 7)

(a) PE1 (a) PE1

AF 1— (0, 26, 14)

AF - (0, 10, 30)

AB === (0, 0, 40) CF o= (0, 10, 30) AB*="= (0, 0, 40) CF === (0, 26, 14)
cD (0, 6, 34)EF (0, 10, 30) CD (20, 26, 14EF====(0, 10, 30)
A B o A B
(0, 0, 40)(0, 0, 40)C D E . (0, 0, 40 X0, 0, 40) c D E .

(0, 0, 40 {6, 6, 34 {8 8, 32)10, 10, 30) (0, 0, 206, 6 14 X8, 8 32)10, 10, 30)

(b) PE2 (b) PE2
AF -r (0, 0,) AF 1— (0, 0,)
AB (0, 0,) AB (0, 0, -
))
A B
A B w0
(0, 0,) (0, 0

(0, 0, -) (0, 0, (0, 0, -) (0,0, -)

(c) dobal nenory

(c) dobal nenory

Figure 24. Memory size models after mapping
global variable v2 to local memories in prob-
lem 3

Figure 23. Memory size models before global
variable mapping in problem 3.

20

AF -’- (5, 18, 2)
ABO (7, 10, 5) CFO (0, 13, 2)

A B

(1, 1, 5)(2, 2, 5)

C D E F

(3, 3, 2)(0, 0, 15)(0, 0, 2)(0, 0, 2)

(a) PEL

AF T (10, 36, 4)

AB === (0, 0, 30)
o
A B

(0, 0, 30 X0, O, 30)C

CF == (0, 26, 4)

20, 26, 4)EF (0, 10, 20)

D E F
(0, 0, 10)(6, 6, 48, 8 22(10, 10, 20)

(b) PE2

AF - (0, 0, -)

AB (0,0, -)

(0, 0, -) (0, 0, -)(O, O, -) (0O, O, -)

(c) dobal menory

Figure 25. Memory size models after mapping
global variable v4 to local memories in prob-
lem 3.

21

AF - (5, 18, 2)
AB (7, 10, 5) CF

(0, 13, 2)

A B
(1, 1, 5)(2, 2, 5)

C D E F

(3, 3, 2)(0, 0, 15 X0, 0, 2) (0, 0, 2)

(a) PEL

AF - (10, 36, 4)

AB === (0, 0, 30)

I B
B

CF === (0, 26, 4)
A

(20, 26, 4)EF (0, 10, 20)
(0, 0, 30) (0, 0, 30)

C D E F
(0, 0, 10 X6, 6, 4 X8, 8 22 (10, 10, 20)

(b) PE2
AF -r (0, 9, -)
AB (0, 0,-)
)
A B
(00 =) g o,

(0, 0,-) (0, 0,-) (0, 0,-) (0, 0,-)

(c) dobal nenory

Figure 26. Memory size models after mapping
global variable v3 to the global memory in
problem 3.

Result Inthe given example, variabte is mapped tothe communication time of all the PEs in the system architec-
local memory of PE1. Variable2 andv4 are mapped to the ture.
local memories ofPE'1 and PE2. Variablev3 is mapped

to the global memory. . _ . 7.4.3 System Estimation Model
The total amount of traffic on the interconnection net-) o . .
work is: We estimate the communication time according to different

variable-mapping mechanisms. In general, for each data
transfer, we compute the communication time by:

traf fic(total) =Traf fic(vl) + Traf fic(v2)+
Traf fic(v3) + Traf fic(vd)
=14+12+16+25
—67(Kbyte)

comm_time =ready_time + trans fer_time+

arbitration_time

The ready_time refers to the maximin of ready time
of sender and receiver. Theansfer_time refers to the
7.4 Design Problem 4 communication time over the interconnection network. The
arbitration_time refers to the time required by bus arbiter
7.4.1 Design Assumption to assign the bqs to g bu_s master. In this report, we assume
that thearbitration_time is 0.

From design problem 1 to design problem 3, the task

variable-memory mappingg implemented before deriving Mapping to Each Local Memory If we map a vari-
all the architecture implementation details, such as the per-gple » to each local memory of its connecting PEs, then
formance of PEs, the real time operation systems of SW s read access do not produce any traffic over the intercon-
PEs, the interconnection network topology, and the bus pro-nection network. However, wheris write access happens,
tocols. The decision made in variable-mapping is the baSiSthe write access must be broadcasted to all'®tonnect-
for making such implementation decisions. For example, ing PEs. Therefore, the's communication time of any’s
variable-memory mapping determines the amount of traf- connecting PEz is computed as:
fic, which influences bus protocol selection.

However, in some cases, designers want to reduce the

communication time byariable-memory re-mappirigtro- ready_time(v,w) = max ready-time(v,0)x
duced in Figure 7(c). The communication time is estimated 6€S-P(v)

according to the system estimation model, after all the re- num(write, v);

lated implementation details are known. transfer_time(v, @) =transfer_time(v, T)*

Problems 4 describes the variable-memory re-mapping
problem. In problem 4, we use behavior model described
in section 4.1 and use the target architecture model de-
scribed in 4.2. Problem 4 allows three types of variables: trans fer_time(v, @)
function variable, static behavior variable, and dynamic . , . .
behavior variable. Problem 4 not only allows message- WhereS-P(v) is the set of’s connecting PEsy is the
passing communication mechanism, but also allows sharedS¢lected bu%r,ansfe“tz_m‘?(”’ 7) is the bus transfer time
memory communication mechanism. Problem 4 allows ©f Pus ™ Pervs transmission, andwum(write,v) is the
three variable-mapping mechanisms: a global variable is ei-2Mount ofv's write access. ‘
ther mapped to each local memory of its connecting PEs, or Because each PE if_P(v) takescomm.time(v,)
to only one local memory of its connecting PES, or to the OF communication, the total communication time of
global memory. We assume that the sizes of local memo-variablev for all its connecting PEs is:
ries of PEs are predefined. The size of global memory is
unknown.

num(write, v);

comm_time (v, w) =ready_time(v,w)+

comm _time(v) = num(S_P(v)) * comm(v, w);

where num/(S_P(v)) refers to the number of PEs in
- S_P(v).
7.4.2 Problem Definition
For the problem 4, the goal is to produce a variable-memory Mapping to One Local Memory We map a global vari-
mapping solution to minimize the communication time on able v to only one local memory of its connecting PEs,
the interconnection network of the system architecture. Thecalled p. In this case, both’s read access from the be-
communication time is defined as the summation of the haviors mapped to Pk and write access to the behaviors

22

mapped to P don't produce traffic on the interconnection
network. However, both’s read access and write access for
the behaviors mapped tdconnecting PEs other tharpro-
duce traffic on the interconnection network. In this case, the
v's communication time of any’s connecting PEo other
thanp is computed as:

ready_time(v, @) =(max(ready_time(v, w),

(
)

(num(v,read, @)+

ready_time(v, p)))x*

num(v, write, w))
transfer_time(v,w) =transfer_time(v, T)x*
(num(write,v, w)+
num(read, v, w));
comm_time(v, w) =ready_time(v, w)+

transfer_time(v,w)

where num(write, v, w)/num(read,v,w) refers to
the amount ofy’'s write/read access to/from P&. During
each read/write access, both PBnd PEw are involved in
communication, therefore, the total communication time is
computed as:

comm _time(v) comm _time(v, ™)

D

(weS_P(v))N(w#p)
* 2

It should be noted that that mappingto the local
memory of different PEs produces different communication
time.

Mapping to Global Memory If we map a variablev

to a global memoryp, then each read/write access of
v produces traffic on the interconnection network. The
v's communication time of any’s connecting PEw is
computed as

ready_time(v, w) =(max(ready_time(v, w),
)

(num(v,read, @)+

ready_time(v, p)))*
num(v, write, @))
transfer_time(v,w) =transfer_time(v, T)x*
(num(write, v, w)+
num(read, v, w));
comm_time(v, w) =ready_time(v, w)+

trans fer_time(v, w)

23

BWP JPEG!

| mage
fragnen-
tation

| mage
fragmen-
tation

Ent ropy-

Quanti -
Codi ng

i mge 1 |t h | mage
zation

file Fire

Figure 28. Block diagram of JPEG encoder

For each variable access, only one PE is involved,
therefore,

comm_time(v) = 3__cq p(,) comm-time(v,w)

7.4.4 Solution

We follow the design flow described in section 5 to solve
this problem. The steps of global/local variable identifi-
cation, stack mapping, and local variable mapping are the
same as the steps in design problem 3.

Global Variable Mapping The global variable algorithm
of variable-memory remapping is displayed in Figure 27.

We first order global variables in the li&lobal Var in
the decreasing order of variable’s total access. Then we map
one global variable at each iteration.

For each variablev, we compute the total com-
munication time for three different types of mapping.
Total_comm1 refers to the communication time when
mappingv to each local memory of’'s connecting PEs.
Total_comm?2 refers to the communication time when
mappingv to the global memory. T'otal_comm3 refers
to the communication time when mappimgto only one
local memory ofv’s connecting PEs. Fototal_comml1
and total_comm3, when any local memory doesn’t have
enough memory to store, then the returned value equals
to co. After communication time computation, we select
the mapping mechanism that has the smallest communica-
tion time. After the mapping mechanism is selected, the
corresponding memory size models are updated according.

8. Experimental Result

First of all, we implement the introduced approach by
programming around 3000 lines of C++ code. We then test
it on 10 random generated examples. In this section, we
introduce the experimental results of two real design exam-
ples: JPEGJ4] project and Vocoder[8] project.

8.1 JPEG Project

8.1.1 Introduction

JPEG is an image compression standard. It is designed for
compressing either full-color or gray-scale images of natu-

Global_Var = SortVariable();

for

v in Global _Var do

w = Associtate_Behavior(v);

/I Map to each local memory

total_comml = ComputeTrafficMapToEachLocalMemory(v);
/l Map to global memory

total_comm2 = ComputeTrafficMapToGlobalMemory(v);

/I Map to one local memory
total_comm3 = oc;
mapped_pe = NULL;
for each w € S_P(v) do
temp = ComputeTrafficMapToLocalMem(w, V);
if (temp < total_comma3) do
Total_comm3 = temp;
mapped_pe = w;
endif
endfor

//Update memory size model
switch min(total_comml1, total comm2, total_comma3) do

case total_comml:
for each p € S_P(v) do
o(w, p) = a(w, p) + size(v, p)
Update(5, p);
Update(A, p);
enddo
break ;

case total_commz2;:
a(w, Global Mem) = «a(w, Global_Mem) + size(v, Global_Mem);
Update((3,Global_Mem);
Update(\,Global_Mem);
break ;

case total_comma:
a(w, mapped_pe) = «w, mapped_pe) + size(v, mapped_pe);
Update((8, mapped_pe);
Update(A\, mapped_pe);

endswitch

endfor

Figure 27. Algorithm 2: the global variable mapping algorithm for problem 4

24

| without optimization| with optimization | | PE | lowerbound| upperbound|

] 6.466kB \ 4.268kB \ ColdFire | 4.268kB 4.268kB
HW 0.13kB 0.39kB

Table 7. Required local memory size of Cold-

Fire microprocessor in pure SW solution of Table 9. The lower-bounds / upper-bounds

JPEG project of local memory sizes of PEs in HW-SW co-

design of JPEG project (with optimization)
| PE | without optimization| with optimization |

ColdFire | 6.466kB 4.268kB mechanism. The required memory sizes for design problem
HW 0.39kB 0.39kB 1 and design problem 2 are displayed in Table 8.

In comparison to puréColdFire solution described in
section 8.1.2, the required memory sizes for ColdFire
doesn’t change. To find the reason, we analyzed the code
and found that 256 Byte of memory W is for global
variables and 134 Byte of memory is for the DCT’s stack.
ral scenes. Figure 28 shows the block diagram of the DCT ColdF'ire reserves 256B memory for the global variable of
based encode for a gray scale image. It consists of fourDCT in both pureColdFire solution and HW-SW co-design
blocks: the image fragmentation block, the DCT block, solution. Furthermore, other behaviors mappe@atdFire
the quantization block, and the entropy coding block. We share the same memory portion wlICT’s stack in both
model JPEG using SpecC language. The SpecC specificapure ColdFire solution and the HW-SW co-design solution.
tion of JPEG contains 29 behaviors and 37 behavior vari- This proves that the result is reasonable.

ables. All the behavior variables are dynamic. We also attempt solve the design problem 3. To provide
the local memory sizes df W andCold Fire, we compute

the lower-bound/upper-bound of local memory sizes of PEs
with optimization, which is displayed in Table 9. The lower-

First, we implement the entire JPEG encoder on a Motorolabound and upperbound of local memory sizeCbfid Fire
ColdFire microprocessor. All the stack and behavior vari- are the same. Therefore, the local memory size of Cold-
ables are mapped to the local memory of ColdFire proces-Fife must be no less than 4.268kB. In this case, since all the
sor. The estimated required memory size is displayed inglobal variables can be mapped to the local memories, the
Table 7. global memory is not required.

The result for design problem 1 is displayed in column]
without optimization In this case, we treat all the behavior 8-2 Vocoder Project
variables as static variables which cannot share the same
memory portion. The result of design problem 2 is dis- 8.2.1 Introduction

played in colummwith optmization|n this case, we treatall e \ocoder[8] project implements the voice encoding part
the behavior variables as dynamic variables which can sharebf the GSM standard for mobile telephony encoding stan-

the same memory portion according their lifetime. Since y5rq. The block diagram of Vocoder is displayed in Fig-

JPEG is data-domain application, preemptive schedule isyre 29 |t contains 13,000 lines of code, 102 behaviors, and
notrequired. As aresult, we choose the non-preemptive op-15g dynamic behavior variables.

eration system for the ColdFire microprocessor. As shown
in Table 7, we reduce the required memory size of ColdFire
by 34% when we analyze the lifetime of behavior variables
and allow behavior variables with un-overlapped lifetime to First, we implement the entire Vocoder encoder on the Mo-

Table 8. Required local memory sizes of PEs
in HW-SW co-design of JPEG project

8.1.2 Pure SW solution

8.2.2 Pure SW Solution

share the same memory portion. torola DSP56600 microprocessor. All the stack and behav-
ior variables are mapped to the local memory of DSP56600.
8.1.3 HW-SW Codesign The estimated required memory is displayed in Table 10.

Similar to JPEG design, the result for design problem
Second, we implement HW-SW Codesign. The system 1 is displayed in columnvithout optimization The result
archiecture contains two PEs: a custom hardvidié(and of design problem 2 is displayed in columith optmiza-
a ColdFire microprocessdpldFire). According to [4], tion. Since Vocoder is data-domain application, preemptive
we mapDCT behavior toHW and map rest of behaviors schedule is not required. As a result, we choose the non-
to ColdFire. We choose massage-passing communicationpreemptive schedule mechanism for DSP56600. As shown

25

code 12

LP_analysi

Autocorr

Open_loop

Syn_filt

Pitch_ol

k2

Closed_loo

Codebook

p

Syn_filt Syn_filt
Syn_filt

’ sugrame\/

Syn_filt

2x per frame

Figure 29. Block diagram of encoding part of vocoder

26

| without optimization| with optimization | 8.2.4 SoC Design
[5.369kB | 3.872kB \

Table 10. Required memory size of Motorola
DSP56600 microprocessor in pure SW solu-
tion of Vocoder project

In the example, the selected system architecture contains
four PEs. DSP1 and DS P2 are the Motorola DSP56600
microprocessors. HW1 and HW?2 are the two custom
hardware. One global memofy em is also instantiated in

’ PE ‘ without Optimizaﬁon‘ with optimization ‘ the system architecture. We choose non-preemptive sched-
DSP56600| 3.454kB 2 217KkB uler for DSP1 and DSP2. The behavior-PE mapping de-
HW 5 308KB 5 308KB cision is described in Table 13.

Table 11. Required memory sizes of PEs in Table 14 displays the required global memory size and
HW-SW co-design of Vocoder project generated traffic on the interconnection network for differ-

ent sets of given local memory sizes. The local memory
sizes in case 1(rawl) equal to the upperbound of sizes of lo-
cal memories. Case 1 doesn’t require mapping any variable
in Table 10, we reduce the required memory size of Cold- {5 the global memory. Therefore, the global memory can be
Fire by 28% when we analyze the lifetime of behavior vari- removed from the system architecture. The local memory
ables and allow behavior variables with un-overlapped life- gjzes in case 6 equal to the lowerbounds of sizes of local

time to share the same memory portion. memories. The upperbounds/lowerbounds of the sizes of
local memories are computed according to the solution of
8.2.3 HW-SW Codesign design problem 2. In addition to case 1 and case 6, we also

design four other cases, from case 2 to case 5. The differ-
ence between the local memory size of same PE in neighbor
cases are the same.

Mapping to Local Memory According to design project
[8], a Motorola DSP 56600 microprocesdofP) and a cus-
tom hardwardW) are selected to assemble the system ar-

chitecture. The timing-consuming functid®odebookis .
. . ColumnDecreased local mertenotes the difference be-
mapped taHW while rest behaviors are mapped to I8P,))
tween the summation of the local memory size of the se-

E:aergnisirsezgagr?]zsrmgizr?aziglfamndlaﬁ (\);ﬁlzh Z\rlg gi(;tnpm%cted case and the summation of the local memory sizes
la egin Table 11 y ' of case 6. ColumGlobal menmdenotes the required global
play ; memory size. Columfiotal added memquals to the sum
We also compute the lower-bounds/upper-bounds of lo- : . i
of the values in colummecreased local merand in col

cal memory sizes of PEs with optimization, which is dis- .
: . umn Global mem ColumnTraffic denotes the amount of
played in Table 12. The difference between the lowerbound . . .
generated traffic on the interconnection network. The value

and the upperbound dSPis 128B. The difference be- in columnGlobal memandTraffic are computed accordin
tween the lowerbound and the upperboundi¥ is 283B. : . P 9
to the solution of design problem 3.

The difference oDSPis smaller than the difference biW.
This is because that IDSP, the global memories shares the
same memory portion with some local memories of other
behaviors .

Since the total size of the global variable is 283B, we
don’t allocate a global memory to explore the shared-
memory mechanism. As a result, we select 4k local memory

Figure 30 displays the values in colun@lobal mem
Total added memDecreased local merand Traffic. As
the size of local memory decreases proportionately denoted
by Decreased local memarythe size of global memory
increases unproportionately. This is because a variable is
overlapped with different variables in local memories of

for bothDSPandHW. PEs and in the global memory. The total memory size de-
noted byTotal added mens decreasing when more vari-
| PE | lowerbound| upperbound ables are mapped to the global memory rather than to the
DSP 56600] 2.089kB 2.217kB local memory. This is because when we map a global vari-
HW 2 015kB 2. 308kB able to the local memory, the global variable has a copy at
each of its connecting PEs. The slope of generated traf-
Table 12. The lower-bounds / upper-bounds fic represented byfraffic increases with the decreasing of
of local memory sizes of PEs in HW-SW co- the local memory size. This proves that our approach of
design of Vocoder project (with optimization) mapping the heavy read traffic variable to local memory is
efficient.

27

PE

DSP1

DSP2

HW1

HW2

Bhvr

coder, LPanalys

Openloop

Closedloop, Update

Codebook

Table 13. Behavior-PE mapping Solution in SoC design of Vocoder project

Input local memory sizes

| Output global memory size & generated traffic |

PE1 PE2 PE3 PE4 Added local | Global Total added| Traffic

(Byte) | (Byte) | (Byte) | (Byte) | mem(Byte) | mem(Byte) | mem(Byte) | (KByte)
Case 1| 1870 | 720 784 2308 | 810 0 810 145.7
Case 2| 1858 | 708 699 2249 | 648 164 812 181.6
Case 3| 1846 | 696 614 2190 | 486 214 700 220.7
Case 4| 1834 | 684 529 2131 | 324 324 648 332.6
Case 5| 1822 | 672 444 2072 | 162 389 551 432.7
Case 6| 1810 | 662 361 2015 | O 485 485 2016.0

Table 14. Table of required global memory sizes and generated traffic for different sets of given local
memory sizes in SoC design of Vocoder project

2000

1500

1000

—o— Decreased local mem(Byte)
—m- Global mem(Byte)
—— Total added mem(Byte)

— Traffic(KByte)

500

—

cl

c2

c4

c,5

c,6

Figure 30. The chart of the require global memory size, decreased local memory size, and generated
traffic for SoC design of Vocoder project

28

9. Conclusion

In this report, we introduce a variable-mapping algo-
rithm of system level design. To our knowledge, this is
the first variable-mapping algorithm to support hierarchi-
cal behavior specification. It is also the first to evaluate the

tradeoff between message-passing communication mecha-
nism and shared-memory mechanism, and the first to take

the operation system of SW PE into account. Furthermore,
we present a novel memory size model to analyze the vari-

able lifetime in the task level. This model not only com- [10]

putes the required minimal memory sizes but also deter-
mines whether a memory has room for the next mapped
variable. Finally, our algorithm is independent of many im-

plementation details including bus topology of system ar-

This attribute allows to move the variable-memory mapping
into the earliest design stage. We apply the algorithm on the

JPEG and Vocoder project. The computed memory sizes usy12

ing our algorithm are 34% and 28% smaller than the sizes
without using our algorithm for JPEG and Vocoder respec-

[13]

tively.
References
[1] SystemC, OSCl[online]. Available:
http://www.systemc.org/.
[2] VCCJonline]. Available:

(3]

(4]

(5]

(6]

(7]

http://www.cadence.com/products/vce.html.

L. Cai and D. Gajski. Introduction of Design-Oriented
Profiler of SpecC Language. Technical Report ICS-
TR-00-47, University of California, Irvine, June 2001.

L. Cai, J. Peng, and D. Gajski. Design of a JPEG
Encoding System. Technical Report ICS-TR-99-54,
University of California, Irvine, Nov 1999.

D. Gajski, N. Dutt, S. Lin, and A. Wu.High Level
Synthesis: Introduction to Chip and System Design
Kluwer Academic Publishers, 1992.

D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

Lovic Gauthier, Sunjoo Yoo, and Ahmed Amine
Jerraya. Automatic generation and targeting of
application-specific operating systems and embedded
systems softwarelEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems
November 2001.

29

[8] A. Gerstlauer, S. Zhao, and D. Gajski.

[11]
chitecture, selected bus protocols, and PE’s performance.

Design of
a GSM Vocoder using SpeccC Methodology. Tech-
nical Report ICS-TR-99-11, University of California,
Irvine, Feb 1999.

Samy Meftali, Ferid Gharsalli, Frederic Rousseau,
and Ahmed A. Jerraya. An optimal memory allo-
cation for apllocation-specific multiprocessor system-
on-chip. InProceedings of the International Sympo-
sium on System Synthesi901.

P.R. Panda and A. Nicolau N. Dut¥lemory Issues in
Embedded System-on-chip: Optimization and explo-
ration. Kluwer Academic Publishers, 1999.

S. Prakash and A.C. Parker. Synthesis of application-
specific multiprocessor systems including memory
componentslEEE Transactions on VLSI Signal Pro-
cessing 1994,

] R. Szymanek and K. Kuchcinski. Design space explo-

ration in system level synthesis under memory con-
straints. InEuromicro 25 September 1999.

Y.Li and W. Wolf. Hardware/software co-synthesis
with memory hierarchies. IEEE transaction on
computer-aided design of integrated circuit and Sys-
tems October 1999.

