
Variable Mapping of System Level Design

Lukai Cai and Daniel Gajski

CECS Technical Report 02-32
Oct 08, 2002

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{lcai, gajski}@ics.uci.edu

1

Variable Mapping of System Level Design

Lukai Cai and Daniel Gajski

CECS Technical Report 02-32
Oct 08, 2002

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425,USA

(949) 824-8059

{lcai, gajski}@ics.uci.edu

Abstract

This report presents a variable-memory mapping approach of the system level design, which maps the variables of the
system behavior to the memories of the system architecture. It first introduces a novel memory size model to compute the
required minimal memory sizes when allowing variables with un-overlapped lifetime to share the same memory portion. It
then presents variable mapping algorithms for different design assumptions. The variable mapping algorithms are applied
before obtaining some implementation details, such as bus topology and bus protocols, which moves the variable mapping to
the earliest design stage.

2

Contents

1. Introduction 1

2. Related Work 2

3. Variable Mapping in System Design Flow 3

4. System Model 4
4.1 Behavior Model . 4
4.2 Architecture model . 4
4.3 Variable Classification . 5

4.3.1 Function Variable . 5
4.3.2 Static Behavior Variable . 5
4.3.3 Dynamic Behavior Variable . 5

4.4 Variable-Memory Mapping Mechanism . 5
4.4.1 Mapping to Each Local Memory . 5
4.4.2 Mapping to One Local Memory . 6
4.4.3 Mapping to a Global Memory . 6

5. Design Flow of Variable Mapping 6
5.1 Input . 6
5.2 Global/Local Variable Identification . 6
5.3 Stack Mapping . 7
5.4 Local Variable Mapping . 7
5.5 Global Variable Mapping . 7
5.6 Output . 7

6. Memory Size Model 7
6.1 Behavior Hierarchy Tree . 8
6.2 Lifetime Analysis . 8

6.2.1 Lifetime of Behavior . 8
6.2.2 Lifetime of Stack . 9
6.2.3 Lifetime of Dynamic Behavior Variable . 9
6.2.4 Lifetime of Static Behavior Variable . 9

6.3 Memory-Size Model . 9
6.3.1 Self-Used Memory Sizeα . 9
6.3.2 Hierarchically-Used Memory Sizeβ . 9
6.3.3 Remaining Memory Sizeλ . 10
6.3.4 Memory Type Model . 10
6.3.5 Variable-Memory Mapping Judgement . 11

7. Problem Definition and Solution 11
7.1 Design Problem 1 . 12

7.1.1 Design Assumption . 12
7.1.2 Problem Definition . 12
7.1.3 Solution . 12

7.2 Design Problem 2 . 15
7.2.1 Design Assumption . 15
7.2.2 Problem Definition . 15
7.2.3 Solution . 15

7.3 Design Problem 3 . 16
7.3.1 Design Assumption . 16
7.3.2 Problem Definition . 17

i

7.3.3 Solution . 17
7.4 Design Problem 4 . 22

7.4.1 Design Assumption . 22
7.4.2 Problem Definition . 22
7.4.3 System Estimation Model . 22
7.4.4 Solution . 23

8. Experimental Result 23
8.1 JPEG Project . 23

8.1.1 Introduction . 23
8.1.2 Pure SW solution . 25
8.1.3 HW-SW Codesign . 25

8.2 Vocoder Project . 25
8.2.1 Introduction . 25
8.2.2 Pure SW Solution . 25
8.2.3 HW-SW Codesign . 27
8.2.4 SoC Design . 27

9. Conclusion 29

ii

List of Figures

1 Extended Gajski and Kuhn’s Y chart . 1
2 The task dependencies between behavior-PE mapping, variable-memory mapping, and channel-bus mapping 3
3 A simple example of variable mapping problem . 3
4 Design flow of system synthesis . 4
5 System behavior example 1 . 4
6 A general system architecture . 5
7 The design flow of variable-memory mapping . 6
8 Behavior hierarchy tree of example 1 . 8
9 Lifetime of behavior variables in the example 1 . 8
10 Example ofparallel(ω, ρ) computation for local memory of SW PE, local memory of HW PE and global

memory. 11
11 System behavior example 2 . 12
12 Behavior hierarchy tree of example 2 . 12
13 The system architecture for behavior example 2 . 12
14 Behavior-PE mapping solution of the example 2. 13
15 Initial memory size models for PE1 and PE2. 13
16 Memory size models of PE1 and PE2 after stack memory mapping. 14
17 Memory size models of PE1 and PE2 after local variable mapping in problem 1. 14
18 Memory size models of PE1 and PE2 after global variable mapping in problem 1. 15
19 Memory size models of PE1 and PE2 after local variable mapping in problem 2 16
20 Memory size models of PE1 and PE2 after global variable mapping in problem 2. 17
21 Memory size models of PE1 and PE2 after local variable mapping in problem 3. 18
22 Algorithm 1: global variable mapping algorithm for problem 3. 19
23 Memory size models before global variable mapping in problem 3. 20
24 Memory size models after mapping global variable v2 to local memories in problem 3 20
25 Memory size models after mapping global variable v4 to local memories in problem 3. 21
26 Memory size models after mapping global variable v3 to the global memory in problem 3. 21
28 Block diagram of JPEG encoder . 23
27 Algorithm 2: the global variable mapping algorithm for problem 4 . 24
29 Block diagram of encoding part of vocoder . 26
30 The chart of the require global memory size, decreased local memory size, and generated traffic for SoC

design of Vocoder project . 28

iii

List of Tables

1 Behavior-PE mapping decisions and the produced variable identification for behavior example 1. 7
2 The variable-memory mapping alternatives for stack, local variable, and global variable. 8
3 Occupied memory sizes of variables in example 2 . 12
4 Occupied memory sizes of stacks of leaf behaviors in example 2 . 12
5 Variable-PE connection table in example 2 . 13
6 Variable traffic in example 2 . 18
7 Required local memory size of ColdFire microprocessor in pure SW solution of JPEG project 25
8 Required local memory sizes of PEs in HW-SW co-design of JPEG project 25
9 The lower-bounds / upper-bounds of local memory sizes of PEs in HW-SW co-design of JPEG project (with

optimization) . 25
10 Required memory size of Motorola DSP56600 microprocessor in pure SW solution of Vocoder project . . . 27
11 Required memory sizes of PEs in HW-SW co-design of Vocoder project . 27
12 The lower-bounds / upper-bounds of local memory sizes of PEs in HW-SW co-design of Vocoder project

(with optimization) . 27
13 Behavior-PE mapping Solution in SoC design of Vocoder project . 28
14 Table of required global memory sizes and generated traffic for different sets of given local memory sizes in

SoC design of Vocoder project . 28

iv

Variable Mapping of System Level Design

Lukai Cai and Daniel Gajski
Center for Embedded Computer Systems

Information and Computer Science
University of California, Irvine

Abstract

This report presents a variable-memory mapping ap-
proach of the system level design, which maps the variables
of the system behavior to the memories of the system ar-
chitecture. It first introduces a novel memory size model
to compute the required minimal memory sizes when al-
lowing variables with un-overlapped lifetime to share the
same memory portion. It then presents variable mapping
algorithms for different design assumptions. The variable
mapping algorithms are applied before obtaining some im-
plementation details, such as bus topology and bus proto-
cols, which moves the variable mapping to the earliest de-
sign stage.

1. Introduction

In order to handle the ever increasing complexity
and time-to-market pressures in the design of system-on-
chips(SOCs) or embedded systems, the design has been
raised to the system level to increase productivity. Figure 1
illustrates extended Gajski and Kuhn’s Y chart representing
the entire design flow, which is composed of four differ-
ent levels: system level, RTL level, logic level, and tran-
sistor level. The thick arc represents the system level de-
sign. It starts from the behavior specification representing
the designs’ functionality (also called application or sys-
tem behavior), which is denoted by point S. The behav-
ior specification contains a set of functional blocks (also
called behavior). It also contains a set of variables that re-
serve the data transferred between intra-block operations or
inter-block operations. The system level design then syn-
thesizes the behavior specification to the system architec-
ture denoted by point A. A system architecture consists of
a number of PEs (processing elements) and a number of
global memory connected by buses. Different PEs can be-
long to different PE types. Each PE implements a number
of functional blocks of the behavior specification.

We divide the systhesis process of system level design to
three steps: behavior-PE mapping, variable-memory map-

Behavioral
 System

RTL

Logic

Transistor

S

A

Architectural

Physical

Figure 1. Extended Gajski and Kuhn’s Y chart

ping, and channel-bus mapping.Behavior-PE mapping
selects PEs to assemble the system architecture and maps
the behaviors (functional blocks) in the behavior specifica-
tion to PEs. Variable-memory mapping selects sizes of
local memories of PEs and the global memories on the sys-
tem architecture and maps the variables of behaviors to the
memories.Channel-bus mappingselects bus topology of
the system architecture, selects bus protocols and maps the
communication among behaviors to the selected buses. In
this report, we focus on the variable-memory mapping step.

Variable-memory mapping is critical because it heavily
affects the chip area and the execution time of design. 70%
of the chip area is dedicated to memory, which is deter-
mined by the memory size. Furthermore, different variable-
mapping alternatives will produce different amount of traf-
fic among PEs and global memories, which determines the
communication time of design. Taking the chip area and the
execution time into consideration, we have two objectives
during variable-memory mapping: to minimize the size of
memories and to minimize either the amount of traffic or
the communication time on the system architecture.

1

This report presents a novel but straightforward variable-
mapping approach, which contains three parts: memory
size computation, traffic amount computation, and variable-
memory mapping algorithm. During memory size compu-
tation, we analyze lifetime of variables and compute the re-
quired minimal local memory sizes of PEs and global mem-
ory sizes. During traffic amount computation, we compare
the produced amount of traffic for different variable map-
ping alternatives. Finally, we introduce a straightforward
variable-mapping heuristics.

Compared with other works introduced later in section
2, we aim to handle the very complex design at the earliest
design stage. As a result, we tailor our approach to fulfill
the need of very complex design by considering following
three issues:

1. We adopt the hierarchy specification as input, which
ensures system behavior’s scalability.

2. We implement variable-memory mapping in the earli-
est design stage, even before deriving implement de-
tails such as bus topology and bus protocols.

3. We adopt a constructive algorithm, which reduces the
algorithm’s complexity.

This report is organized as followed: section 2 describes
the related work and our contribution. Section 3 describes
when variable-memory mapping is implemented in the sys-
tem design flow. Section 4 introduces the system model.
The design flow of variable mapping is given in section 5.
Section 6 introduces the model for memory size computa-
tion. Section 7 defines the detailed variable mapping prob-
lems and provides corresponding solutions. Experimental
result is described in section 8. Finally, section 9 gives the
conclusion.

2. Related Work

Lots of research has been done on system level design for
years. Some of them took the memory issue into account.

Research in [13][10] involves cache issues. [13] solves
the application-specific multiprocessor synthesis problem
to optimize cache hierarchy size of periodic real time sys-
tems. [10] maps variables into Scratch-Pad memory and
off-chip DRAM accessed through data cache, to maximize
the performance.

Research in [11] implements behavior-architecture map-
ping for the application-specific multiprocessor systems by
using mixed integer linear programming. It adds the cost
of memories determined by the amount of memories to
the cost equation of design. It chooses message-passing
communication mechanism. Thus, the variable through
which two tasks in different PEs are communicated has a

local copy at the local memory of each PE. It also assumes
that the tasks mapped to one PE are executed sequentially.
Therefore the amount of memory required by the PE must
equal to the largest amount that is required by any of the
task mapped to that PE.

Research in [12] uses the similar memory model as [11]
to implement behavior-architecture mapping. The differ-
ence between [12] and [11] is that when two tasks commu-
nicate through a variable, [12] reserves the memory for the
variable in the sending task until the value of the variable
is transferred to the receiving task. [12] adopts constraint
logic programming paradigm as the basic algorithm.

The goal of [9] is the same as our goal, which is to im-
plement variable-memory mapping. Its targeted architec-
ture model contains a set of PEs with local memories and a
global memory. Unlike [11][12], it choose shared-memory
mechanism for communication. Therefore, the variable is
mapped to either one of the local memories of PEs or the
global memory. It computes communication time by adding
up the read access time and write access time of variables.
It computes the memory size by adding up the size of vari-
ables mapped to the memories. It uses integer linear pro-
gram to produce the optimal mapping result.

The register allocation and variable-register binding
problem has been discussed in the field of high level synthe-
sis. [5] introduces some related algorithms including clique
partitioning, left-edge algorithm, and weighted-bipartite-
matching algorithm. We notice that the difference between
variable-memory mapping problem in the system synthesis
domain and variable-register binding problem in the high
level synthesis domain can be classified into the following
two aspects:

1. Size of variable. In the high level synthesis domain,
the sizes of variables are same, which is determined
by the memory/register width. In the system synthesis
domain, the sizes of variables can be ranged from 1 bit
of bit type to 10000 byte of structure type.

2. Estimation accuracy of lifetime of variable. In the high
level synthesis domain, the lifetime of variable is com-
puted based on clock cycles. Therefore, it can be accu-
rately estimated according to the finite state machine.
However, in the system synthesis domain, the lifetime
of variable is computed based on the system estimation
model. If the system estimation model is not accurate,
then the estimation of lifetime of variable is not accu-
rate, which will make lifetime analysis useless. Un-
fortunately, the system level estimation model such as
VCC[2] never guarantees accuracy.

Our work don’t consider cache optimization, which is
different from [13] and [10]. In comparison to research in
[11][12][9], our work has the following contributions:

2

Behavior-PE

mapping

Var-memory

mapping

Channel-Bus

mapping

traffic

Variable

location

Figure 2. The task dependencies between
behavior-PE mapping, variable-memory map-
ping, and channel-bus mapping

1. Our input system behavior is modeled hierarchically.
On the other hand, the system behaviors in [11][12][9]
are flat models.

2. We support message-passing mechanism and shared-
memory mechanism, while [11][12] do not support
shared-memory mechanism and [9] does not support
message-passing mechanism.

3. We analyze the lifetime of variables independent of
the system estimation model. We also take preemptive
RTOS into consideration. On the other hand, [9] does
not analyze lifetime of variables. The lifetime anal-
ysis in [11][12] is much easier than our analysis be-
cause they don’t support hierarchical behavior model,
shared-memory communication mechanism, and pre-
emptive RTOS.

4. We implement variable mapping according to the
amount of traffic, rather than the communication time
used in [11][12][9]. Therefore, we can implement
variable mapping before channel-bus mapping, while
[11][12][9] implement variable mapping after channel-
bus mapping.

5. We use straight-forward heuristics to solve the prob-
lem, rather than use time-consuming ILP adopted by
[11][12][9]. This enables us to solve the variable-
mapping problem for very complex designs within af-
fordable time.

3. Variable Mapping in System Design Flow

Before implementing variable mapping, we must under-
stand when the variable mapping should be applied in the
design flow.

PE1
 PE2

A
 B
v

Figure 3. A simple example of variable map-
ping problem

Figure 2 shows task dependencies amongbehavior-PE
mapping, variable-memory mapping, andchannel-bus map-
pingsteps.

First, behavior-PE mappingdetermines computation
time of behaviors. In addition to that, it also determines
the variable location: whether a variable is used only by a
certain PE, or by more than one PE. As explained later in
section 5, this knowledge is required byvariable-memory
mapping. Therefore,variable-memory mappingmust be
implemented afterbehavior-PE mapping.

It is obvious that thechannel-bus mappingmust be im-
plemented afterbehavior-PE mappingbecause the bus only
handles the communication between behaviors mapped to
different PEs, which is determined bybehavior-PE map-
ping. However, the amount of traffic on bus is not only
influenced bybehavior-PE mapping, but also influenced by
variable-memory mapping. For example, in Figure 3, be-
havior A in PE1 is communicated with behaviorB in PE2
through variablev. BehaviorA readsv 100 times and be-
haviorB writesv once. In this case, if we map variablev to
the local memories ofPE1andPE2, the amount of traffic is
1. On the other hand, if we map variablev to a global mem-
ory , then the amount of traffic is 101. Because the amount
of traffic on bus is influenced byvariable-memory mapping
and is used as input ofchannel-bus mapping, we implement
variable-memory mappingbeforechannel-bus mapping.

The Figure 4(a) displays the system design flow used
in [11] [12] [9]. The Figure 4(b) displays our system de-
sign flow. We move thevariable-memory mappingfrom the
position afterchannel-bus mappingto the position before
channel-bus mapping.

Thevariable-memory mappingin design flow (a) and (b)
is in different level of accuracy when estimating the traffic.
The former one estimates the communication time because
the bus protocol is known. However, the latter one estimates
amount of traffic because the bus protocol is undecided. To
extend the variable-memory mapping to a more accurate
level, we also extend the design flow in Figure 4(b) to the
design flow in Figure 4(c). In in Figure 4(c), thevariable-
memory mappingis based on the amount of traffic, while
variable-memory re-mappingis based on the communica-

3

(b) Basic

design flow

Behavior-PE

 mapping

Var-memory

mapping

Channel-bus

mapping

(a) Design flow of

previous work

Behavior-PE

 mapping

Channel-bus

mapping

Var-memory

mapping

(c) Extended

design flow

Behavior-PE

 mapping

Channel-bus

mapping

Var-memory

mapping

Var-memory

re-mapping

Figure 4. Design flow of system synthesis

tion time. Thevariable-memory re-mappingis introduced
in section 7.4

4. System Model

4.1 Behavior Model

We use SpecC language[6] to model the system behav-
ior. SpecC language is a C-language based system level
design language that supports behavior hierarchy, behavior
concurrency, behavior pipeline, and state transitions in be-
havior level.

SpecC usesbehavior to represent a functional block.
Among behaviors,leaf behavior represents the undivided
unit. One leaf behavior can only be mapped to one PE.
It contains a number of hierarchically called functions but
no sub-behavior instances. In addition to leaf behavior,hi-
erarchy behavior consists of a number of sub-behavior in-
stances that are executed in parallel, sequential, pipeline, or,
FSM fashion [6]. We call that sub-behaviors instances are
the children of the hierarchy behavior and the hierarchy be-
havior is the parent of the sub-behavior instances. In Figure
5, A, B, andC are leaf behaviors.AC andAB are hierarchy
behaviors. In behaviorAB, leaf behaviorA andB are ex-
ecuted parallel, which is denoted by a thick doted line. In
behaviorAC, behaviorAB is executed before the execution
of behaviorC, which is a denoted by thick arrow.

Each behavior has a set of ports to connect with other
behaviors. It also has a set of variables that connect the
ports of its sub-behaviors instances. In Figure 5, variable is
denoted by shaded rectangle and port is denoted by framed
rectangle. For example, behaviorAB’s variablev1connects
port a1 of behaviorA and portb1 of behaviorB. The ports
of behaviors can also connects to its parent behavior’s ports.
For example, portb2 of behaviorB is connected to portp1

a1

A

b2

B

p1
AB

v1

b1
 v2

AC

c1

C

Figure 5. System behavior example 1

of behaviorAB. Since the behaviors are in different hierar-
chy levels, variables are also declared in different hierarchy
levels.

Although we adopt SpecC as our input modeling lan-
guage, the idea introduced in this report can also be applied
to other system level design languages such as SystemC[1].
This is because the behavior hierarchy is supported by most
of system level design languages.

4.2 Architecture model

We choose multi-PE architecture as the system architec-
ture, which is shown in Figure 6. Each PE in the architec-
ture contains a micro-processor, a custom hardware, a vir-
tual component, or an IP, It also contains a local memory.
The above two parts of PE are connected to each other by
a local bus. If a PE contains a microprocessor, we call it
SW PE. If a PE contains a custom hardware, we call itHW
PE. The system architecture also contains a set of global
memories. A global memory may be either single port,
dual port, or special purpose memory such as FIFO. The
interconnection network consists of several buses. The PEs
and global memories are connected by one or more system
buses via corresponding interfaces. The system bus is as-
sociated with a well-defined protocol with the components
on the bus have to respect. The protocol may be standard,
such as itVME bus, or custom. An interface bridges the gap
between a local bus of a PE/memory and system buses.

Each PE communicates with every other PE within the
multi-PE system, using one of the two communication
mechanisms. In ashared-memory mechanism, all the
PEs are connected to a common shared memory through
an interconnection network, which means that each pro-
cessor can access any data in the shared memory. In a
message-passing mechanism, on the other hand, each pro-
cessor tends to have a large local memory, and sends data to

4

Proc1
 LM1

PE1

Lbus1

GM1

Lbus2

Proc2
 LM2

PE2

Lbus3

IF1
 IF2
 IF3

Sbus1
 Sbus2

Arbiter2
Arbiter1

Figure 6. A general system architecture

other processors in the form of messages through an inter-
connection network.

4.3 Variable Classification

We classify variables in the behavior specification to
three types: function variable, static behavior variable, and
dynamic behavior variable.

4.3.1 Function Variable

Function variable is a variable declared in functions of leaf
behaviors. The function variable in SpecC is similar to the
function variable in C language. The lifetime of function
variable equals to the lifetime of the function in which it is
declared. Since the lifetime of any two sequential executing
functions is un-overlapped, any two function variables de-
clared in two sequential executing functions can share the
same portion of the memory.

In our behavior model,hierarchy behavioris not allowed
to contain any function variables. Forleaf behavior, we
compute the sum of its function variables as a whole. We
call it stack sizeof leaf behavior.

Since functions in leaf behaviors can be called hierar-
chically, we compute the stack size of functionf Sstack(f)
following the equation:

Sstack(f) = max
fi∈S C(f)

(Sstack(fi)) +
∑

vj∈S V (f)

(S(vj))

where S C(f) is the set of function calls inf and
S V (f) is the set of declared variables inf . The stack size
equals to the largest stack size of its calling functions plus
the sum of sizesS(vj) of variables declared inf .

Thestack size of leaf behaviorSstack(A) of behaviorA
equals to the stack size ofA’s main function, which repre-
sents the root function of leaf behaviorA in SpecC.

4.3.2 Static Behavior Variable

Static behavior variable is a behavior variable declared in-
side behavior and outside any functions.Behavior variable
is the variable usually declared in thehierarchy behaviorto
connect the ports of sub-behavior instances. The static be-
havior variable in SpecC is similar to the static variable in
C language. The lifetime of static behavior variable is the
same as the lifetime of the entire system behavior. As a re-
sult, any two static behavior variables cannot share the same
portion of the same memory.

4.3.3 Dynamic Behavior Variable

Dynamic behavior variable is also a behavior variable de-
clared inside behavior and outside any functions. Unlike
the static behavior variable, the lifetime of dynamic behav-
ior variable equals to the execution interval of the behavior
in which the variable is declared. If we treat the behav-
ior in SpecC as the function in C language, the dynamic
behavior variable is similar to function variable in C. Two
dynamic variables declared in two sequential executing be-
haviors can share the same portion of the same memory.

4.4 Variable-Memory Mapping Mechanism

There are three mechanisms of variable-memory map-
ping: map variable to each local memory of its connecting
PEs, map variable to only one local memory of its connect-
ing PEs, and map variable to the global memory. We define
thatv is connected to behaviorω if and only if v is declared
in behaviorω or v is connected to the port of behaviorω.
We define that a variablev is connected to PEρ if and only
if any v’s connecting behaviorω is mapped to PEρ.

4.4.1 Mapping to Each Local Memory

In mapping to each local memorymechanism, we map a
variable to each local memory of its connecting PEs. This
mechanism is applied if we choose message-passing mech-
anism for communication. This mapping mechanism en-
sures that each connecting PE of the variable has a vari-
able’s local copy.

In mapping to each local memorymechanism, the read
access of variable is achieved by accessing the local mem-
ory of PE. Therefore, it doesn’t produce any traffic on the
interconnection network. On the other hand, when write ac-
cess of the variable connecting to several PEs happens, the
system must update local copy of the variable in all of its
connecting PEs. As a result, write access produces traffic
on the interconnection network.

5

4.4.2 Mapping to One Local Memory

In mapping to one local memorymechanism, we map a
variable to only one local memory of its connecting PEs.
This mechanism is applied when we choose shared-memory
mechanism for communication and the variable is mapped
to a local memory of PE rather than a global memory.

In mapping to one local memorymechanism, assuming
a variablev is mapped to the local memory of its connect-
ing PEρ. The read/write access of variablev from/to the
behaviors mapped to PEρ doesn’t produce any traffic on
the interconnection network. The read/write access of vari-
ablev from/to the behaviors mapped to the PEs other than
ρ produces the traffic.

4.4.3 Mapping to a Global Memory

In mapping to a global memory mechanism, we map a
variable connecting to more than one PE to a global mem-
ory. This mechanism is applied when we choose shared-
memory mechanism for communication and the variable
connecting to more than one PEs is mapped to a global
memory.

In mapping to a global memorymechanism, every read-
/write access of the variable mapped to the global memories
produces traffic on the interconnection network.

5. Design Flow of Variable Mapping

Figure 7 describes the design flow of variable-memory
mapping, which consists of four steps:global/local vari-
able identification, stack mapping, local variable mapping,
andglobal variable mapping.

5.1 Input

Variable-memory mapping requiresbehavior specifica-
tion andbehavior-PE mapping decisionas input. We use
behavior model described in section 4.1 as the behavior
specification. It only reflects the functionality of design,
which is independent of implementation. It is an un-timed
model. Behavior-PE mapping decision contains the system
architecture and behavior-PE mapping information. It in-
cludes: which types of PEs and how many PEs are selected
in the system architecture; which behaviors are mapped
to which PEs; whether the system architecture contains a
global memory; what are the sizes of local memories of
PEs. Since variable-memory mapping is implemented be-
fore channel-bus mapping, the topology of interconnection
network and the bus protocols are unknown. In our project,
we specify behavior-PE mapping decision in the format of
annotation of the behavior specification.

Behavior

specification

Global/local

var Identification

Stack mapping

Local variable

mapping

Global variable

 mapping

Behavior-PE

 mapping decision

Var - memory

mapping result

Figure 7. The design flow of variable-memory
mapping

5.2 Global/Local Variable Identification

With the behavior specification and behavior-PE map-
ping decision as inputs, the first step of variable-memory
mapping isglobal/local variable identification. The glob-
al/local variable identification identifies whether a static/-
dynamic behavior variable is a global variable or is a local
variable. If a variable’s connecting behaviors are mapped
to one PE, then the variable is alocal variable of that PE.
Otherwise, if a variable ’s connecting behaviors are mapped
to more than one PEs, then it is aglobal variable.

Global/local variable identification is the step of link-
ing the implementation-independent behavior specification
to the behavior-PE mapping decision. For the same behav-
ior specification, the behavior-PE mapping decision deter-
mines the variable identification. For example, as shown
in Table 1, if different behavior-PE mapping decisions are
made for the behavior specification described in Figure 5,
then the variablesv1 andv2 have different identifications.
If we map the behaviorAC toPE1 as shown in the raw 1 of
Table 1, thenv1 andv2 become the local variables ofPE1.
However, if we map behaviorAB to PE1 and map behav-
ior C toPE2 as shown in the raw 2 of Table 1, then variable
v1 becomes the local variable ofPE1 andv2 becomes the
global variable. This is because thatv2 is connected to both
behaviorAB and behaviorC, which are mapped to differ-

6

Behavior-PE mapping Variable identification

PE1 PE2 Local Local Global
(PE1) (PE2)

AC - v1, v2 - -
AB C v1 - v2
A, C B - - v1, v2
A B, C - v2 v1

Table 1. Behavior-PE mapping decisions and
the produced variable identification for be-
havior example 1.

ent PEs.

5.3 Stack Mapping

The second step of variable-memory mapping isstack-
mapping, which maps the stack of leaf behavior to the local
memory of the PE to which the leaf behavior is mapped.
The stack cannot be mapped to the global memory or the
local memories of PEs other than the one to which the leaf
behavior is mapped. Otherwise, each stack access will pro-
duce traffic on the interconnection network. As a result, the
size of local memory of PE must be greater than the stack
size of the leaf behavior that is mapped to that PE.

5.4 Local Variable Mapping

The third step of variable-memory mapping islocal
variable-mapping, which attempts to map the local behav-
ior variables to the local memories of the variables’ connect-
ing PEs. If the local memories of PEs are not large enough
to store all the local behavior variables, we either ask de-
signers to increase the local memory size, or map some lo-
cal behavior variables to the global memory, according de-
signers’ assumption. The different design assumptions are
discussed in section 7.

5.5 Global Variable Mapping

The fourth step of variable-memory mapping isglobal
variable mapping, which chooses different variable-
memory mapping mechanisms introduced in section 4.4 to
map global behavior variables to either local memories or
global memories. We will discuss the global variable map-
ping under different design assumptions in section 7.

5.6 Output

After global-variable mapping, we annotate the variable
mapping results into the behavior specification which al-
lows the architecture refinement tool to refine the behavior

specification to the specification reflecting the system archi-
tecture.

In the design flow, we implementstack mappingbefore
local variable mapping, implementlocal variable mapping
beforeglobal variable mapping. We choose this mapping
sequence because we observed that stack must be mapped
to the local memories of PEs, the local variables prefer to
be mapped to the local memories of PEs, and the global
variables can be mapped to either local memories or global
memories, which are described in Table 2. Since sometimes
the local memory sizes of PEs are pre-defined, following
this mapping sequence helps us to first check the required
local memory sizes.

It should be noted that we don’t compute the memory
required for storing the code instruction when behaviors are
mapped to software PEs. The size of code instruction is
not changed during the execution of design. Therefore, for
the software PEs, we assume the size of local memory of
PE used in this report equals to the original size of local
memory subtracted by the size of memory required to store
the code instruction of behaviors mapped to that PE.

Following the variable-mapping design flow, we make
the variable-memory mapping decisions without changing
the behavior specification(the behavior specification anno-
tation only add notes to the specification). The complete
separating the design space exploration from the behavior
specification avoid tedious and time-consuming specifica-
tion updating, which makes the design space exploration
flexible and fast.

6. Memory Size Model

One objective of variable-memory mapping is to mini-
mize memory sizes. To accomplish this objective, we map
the variables which have un-overlapped lifetime to the same
portion of the memory.

In this section, we first analyze the lifetime of variables
on the base of data dependencies among behaviors. Accord-
ing to the lifetime analysis, we then compute the memory
size model of each memory. For each memory, the memory
size model records the used memory size and the remaining
memory size for each behavior. The used memory size of
behaviorω on memoryρ denotes the size of memoryρ oc-
cupied by the variables that are declared in behaviorω and
have been mapped to memoryρ. The remaining memory
size of behaviorω on memoryρ denotes the size of mem-
ory ρ that can be allocated to the variables that are declared
in behaviorω and will be mapped toρ . By computing
the memory size model after mapping each variable, we not
only derive the required memory size for local/global mem-
ories, but also determine whether the next unmapped vari-
able can be mapping to the local memories of its connecting
PEs or the global memory, without exceeding the memory

7

Local mem of connecting PEsLocal mem of un-connecting PEsGlobal memory

Stack Mandatory No No
Local variable Prefer No Yes
Global variable Yes Yes Yes

Table 2. The variable-memory mapping alternatives for stack, local variable, and global variable.

A
 B

AC

AB
 C

Figure 8. Behavior hierarchy tree of example
1

size limit.
In this section, we first introduce the behavior hierarchy

tree representing the behavior hierarchy in section 6.1. Then
we analyze the lifetime of variables in section 6.2. In sec-
tion 6.3, we introduce the memory size model.

6.1 Behavior Hierarchy Tree

We usebehavior hierarchy treeto describe the behavior
hierarchy. The behavior hierarchy tree of behavior example
1 in Figure 5 is displayed in Figure 8.

Behavior hierarchy tree consists of a set of node, each of
which represents a behavior. If the node does not have child
nodes, such as behaviorA, B, and,C in Figure 8, then it rep-
resents a leaf behavior. Otherwise, it represents hierarchy
behavior, such as behaviorAB andAC. The child behaviors
of behaviorω are denoted by the child nodes of the node
representing the behaviorω. For example, nodesA andB
are the child nodes of nodeAB. In the following sections,
we use both namenodeandbehaviorto represent a behav-
ior in the specification or a node in the hierarchy tree in-
terchangeably We useS B(w) to denote the set of child be-
haviors of behaviorsω. In Figure 8,S B(AC) = {AB,C}.

Child behaviors of behaviorω can be executed ei-
ther sequentially or concurrently, which is denoted by
parallel(ω). If the child behaviors are executed con-
currently, as described by symbol ”o” in Figure 8, then
parallel(ω) = 1. If the child behaviors are executed se-
quentially, as described by symbol ”-” in Figure 8, then
parallel(ω) = 0. For example, behaviorAB contains
two parallel executing child behaviorsA and B, there-
fore parallel(AB) = 1. In behaviorAC, behaviorAB
is executed before the execution of behaviorC, therefore

A
 B

AC

AB
 C
v1

v2

(a) If v1 and v2 are

dynamic variables

A
 B

AC

AB
 C

v1, v2

(b) If v1 and v2 are

static variables

Figure 9. Lifetime of behavior variables in the
example 1

parallel(AC) = 0.

We also useS V (ω) to indicate a set of variables associ-
ated with behavior/nodeω. A behavior/nodeω is aassoci-
ated behavior/nodeof variablev if and only if the lifetime
of the variablev and the behavior/nodeω are the same. Ac-
cording to the definition, all of the static behavior variables
are associated with the behavior representing the entire sys-
tem behavior, which is denoted by the root node. A dynamic
behavior variable is associated with the behavior in which
it is declared. For example, ifv1 andv2 in Figure 5 are
dynamic variables, thenS V (AB) = {v1}, S V (AC) =
{v2}, which is shown in Figure 9(a). On the other hand,
if v1 and v2 are static variables, thenS V (AB) = {},
S V (AC) = {v1, v2}, which is shown in Figure 9(b).

6.2 Lifetime Analysis

6.2.1 Lifetime of Behavior

First, we define the lifetime of behavior/node. The lifetime
of behaviorω is defined as the duration betweenω’s starting
execution time to its ending execution time. Rather than
using the exact time to describe the lifetime, we use the
lifetime of leaf behaviors to represent the lifetime of all the
behaviors. For example, for the behaviors in Figure 8:

8

lifetime(A) =lifetime(A);
lifetime(B) =lifetime(B);
lifetime(C) =lifetime(C);

lifetime(AB) =lifetime(A)
⋃

lifetime(B);

lifetime(AC) =lifetime(AB)
⋃

lifetime(C)

=lifetime(A)
⋃

lifetime(B)
⋃

lifetime(C)

If both two nodes in the behavior hierarchy tree contain
the lifetime of the same leaf node, then they are over-
lapped. For example, nodeB and nodeAB are overlapped
because both of them containslifetime(B). However, if
two nodes don’t contain the lifetime of the same leaf node,
we can not conclude that they are un-overlapped. This is
because whether two leaf nodes are overlapped are not de-
termined.

Based on the fact that two sequential executing behaviors
are un-overlapped and two parallel executing behaviors are
overlapped, we define the following three rules to determine
whether two nodes are overlapped to each other.

Rule1: For a nodeω, if parallel(ω) = 0(sequential), then
all of its child nodes are un-overlapped to each other.

Rule2: If nodesω1 andω2 are un-overlapped nodes, then
any node in the sub-tree lead byω1 is un-overlapped
to the any node in the sub-tree lead byω2.

Rule3: If two nodes do not satisfy the rule 1 & 2, they are
overlapped.

For example, in Figure8, nodesC and AB are un-
overlapped because they satisfy the Rule1. NodesC and
A are also un-overlapped because they satisfy the Rule2.

6.2.2 Lifetime of Stack

The lifetime of stack of leaf nodeω is equal to the lifetime
of nodeω. For example, in Figure 8,

lifetime(stack(A)) = lifetime(A);
lifetime(stack(B)) = lifetime(B);
lifetime(stack(C)) = lifetime(C);

6.2.3 Lifetime of Dynamic Behavior Variable

The lifetime of a dynamic behavior variablev is equal to
the lifetime ofv’s associated nodeω. For example, for the
example in Figure 5, ifv1 andv2 are dynamic variables as
shown in Figure 9(a), then

lifetime(v1) = lifetime(AB)
lifetime(v2) = lifetime(AC)

6.2.4 Lifetime of Static Behavior Variable

The lifetime of the static behavior variablev is equal to the
lifetime of v’s associated nodeω. For example, for the ex-
ample in Figure 5, ifv1 andv2 are static variables as shown
in Figure 9(b), then

lifetime(v1) = lifetime(AC)
lifetime(v2) = lifetime(AC)

6.3 Memory-Size Model

In this seciton, we define the memory size model.
For each pair(ω, ρ), whereω denotes a node in the be-

havior hierarchy tree, andρ denotes a local memory of PE
or a global memory, we define the memory size model as

M(ω, ρ) = (α(ω, ρ), β(ω, ρ), λ(ω, ρ))

whereα denotes the self-used memory size,β denotes
the hierarchically-used memory size, andλ denotes remain-
ing memory size.

6.3.1 Self-Used Memory Sizeα

α(ω, ρ) denotes nodeω’s self-used memory size in memory
ρ, which represents the occupied memory size ofρ by the
ω’s associated variables and stacks that have been mapped
to ρ.

a(ω, ρ) is defined as:
If ω is a leaf node, then

α(ω, ρ) = size(stack(ω), ρ) +
∑

vi∈S MV (ω,ρ)

size(vi, ρ)

If ω is a non-leaf node, then

a(ω, ρ) =
∑

vi∈S MV (ω,ρ)

size(vi, ρ)

where S MV (ω, ρ) denotes the set ofω’s associated
variables which have been mapped toρ.

6.3.2 Hierarchically-Used Memory Sizeβ

β(ω, ρ) denotesω’s hierarchically-used memory size inρ.
It does not only contain self-used memory sizeα(ω, ρ), but
also contains the used memory size of the nodes in the sub-
tree lead byω.

9

β(ω, ρ) is defined as:
If parallel(ω, ρ) = 1, then

β(ω, ρ) = α(ω, ρ) +
∑

θ∈S B(ω)

β(θ, ρ)

If parallel(ω, ρ) = 0, then

β(ω, ρ) = α(ω, ρ) + max
θ∈S B(ω)

β(θ, ρ)

where S B(ω) denotes the set ofω’s child nodes.
parallel(ω, ρ) represents whether the child nodes ofω are
executed concurrently(=1) or sequentially(=0) in memory
ρ, which is explained in section 6.3.4.

The formulation is achieved according to the following
fact: if the child nodes ofω are executed concurrently, then
the lifetime of them are overlapped. Therefore, the memory
required byω’s child nodes equals to sum of hierarchically-
used memory sizes ofω’s child nodes.

On the other hand, if child nodes ofω are executed
sequentially, then the lifetime of them are un-overlapped.
Therefore, The child nodes can share the same port of mem-
ory ρ. Therefore, the memory required byω’s child nodes
equals to the largest hierarchically-used memory size ofω’s
child behaviors.

6.3.3 Remaining Memory Sizeλ

λ(ω, ρ) denotesω’s remaining memory size inρ, which rep-
resent the available memory size ofρ for unmapped vari-
ables associated withω. It can be computed only when
memory size ofρ size(ρ) is known.

λ(ω, ρ) is defined as:
If ω is the root node, then

λ(ω, ρ) = size(ρ)− β(ω, ρ)

Otherwise,
if parallel(Parent(ω), ρ) = 1,

λ(ω, ρ) = λ(parent(ω, ρ))

if parallel(Parent(ω), ρ) = 0,

λ(ω, ρ) =λ(Parent(ω), ρ) + β(Parent(ω), ρ)
− α(Parent(ω), ρ)− β(ω, ρ).

whereParent(ω) denotes the parent node of nodeω.
The formulation is achieved according to the following

fact: if ω is the root node, then remaining memory size
equals to the total memory sizesize(ρ) subtracted by used
memory sizeβ(ω, ρ).

If ω is not the root node, then there are two possibili-
ties. First, ifparallel(Parent(ω)) = 1, thenω is concur-
rently executed withparent(ω)’s other child nodes. In this

case, nodeω needs to reserve memory not only for itself,
but also forparent(ω)’s other child node because the life-
time of them are overlapped. As a result,λ(ω, ρ) equals to
λ(parent(ω, ρ)).

On the other hand, ifparallel(parent(ω)) = 0, then
ω is executed sequentially withparent(ω)’s other child
nodes. In this case,ω and parent(ω)’s other child be-
haviors can share the same memory portion. Because
parent(ω) reserves memory for the largest hierarchically-
used memory size of its child nodes andω only reserves the
memory to store hierarchically-used memory size of itself,
the difference between them is added onλ(parent(ω, ρ))
to representλ(ω, ρ). Since the largest hierarchically-
used memory size ofparent(ω)’s child nodes equals to
β(parent(ω), ρ) subtracted byα(Parent(ω), ρ). There-
fore, λ(ω, ρ) = λ(Parent(ω), ρ) + β(Parent(ω), ρ) −
α(Parent(ω), ρ)− β(ω, ρ).

6.3.4 Memory Type Model

There are three types of memories, local memory of
SW PE (namedSW), local memory of HW PE (named
HW), and global memory (namedGlobal). We compute
parallel(ω, ρ) according to the type ofρ. If parallel(ω, ρ)
equals to 0, then it indicates that at any timeρ only reserves
memory for one ofω’s child nodes that are mapped toρ.
Otherwise,ρ must reserve memory for all ofω’s child nodes
that are mapped toρ.

In any SW PE, all the nodes mapped to it are executed
sequentially. However, if SW PE’s operation system
supports preemptive schedule, then one behavior may be
preempted by another. In this case, local memoryρ of
the SW PE reserves memory not only for the preempting
node, but also for the preempted node. Also, one node can
only be preempted by its overlapped nodes. Therefore, we
define,

if (ρ = SW) then
if (os preemptive(ρ) = 1)

then ifparallel(ω) = 1
thenparallel(ω, ρ) = 1;

if parallel(ω) = 0
thenparallel(ω, ρ) = 0;

else // (os preemptive(ρ) = 0)
parallel(ω, ρ) = 0;

In any HW PE, all the nodes mapped to it are executed
sequentially. Since no preemptive schedule is allowed.
Therefore, we define,

if ρ = HW , thenparallel(ω, ρ) = 0;

The parallel analysis for global memory is a little more

10

complex. In general, if the lifetime of child nodes of
nodeω are overlapped in terms of functionality, the global
memoryρ must reserve the memory for all the variables
of these child nodes that are mapped to it. This is because
that different child nodes may be mapped to different PEs,
and nodes in different PEs can be executed concurrently if
the functionality allows concurrent execution. However, all
the nodes in the same HW PE have been sequentialized.
As a result, we disable the concurrency existing in the
sub-tree which is mapped to the same HW PE. This rules
can also be applied to the node for the same SW PE with
non-preemptive schedule. Therefore, we define:

if (ρ = Global)
then ifparallel(ω) = 0

thenparallel(ω, ρ) = 0;
else //parallel(ω) = 1

if all the nodes in the subtree lead byω are
mapped to the same HW PE,

thenparallel(ω, ρ) = 0;
else if all the nodes in the subtree

lead by ω are mapped to the same SW PEρ and
os preemptive(ρ) = 0,

thenparallel(ω, ρ) = 0;
elseparallel(ω, ρ) = 1;

We illustrateparallel(ω, ρ) computation by Figure 10.
Figure 10(a) shows the original behavior hierarchy tree re-
flecting the system behavior. For any nodeω, ”o” de-
notesparallel(ω) = 1 while ”-” denotesparallel(ω) =
0. Assume we map the nodes in dotted circle to a HW
PE PE2 and map other nodes to a SW PEPE1 with
preemptive schedule. Figure 10(b),(c), and (d) display
the value ofparallel(ω, ρ) in the behavior hierarchy tree,
for the local memory ofPE1(SW), the local memory of
PE2(HW), and the global memory respectively. In these
figures, ”o” denotesparallel(ω, ρ) = 1 while ” -” denotes
parallel(ω, ρ) = 0.

6.3.5 Variable-Memory Mapping Judgement

After defining memory size model, we define two judge-
ments for variable-memory mapping.

Judgement1: The required memory size of memoryρ for
nodeω equals toβ(ω, ρ). The required memory size
of memoryρ for design equals toβ($, ρ), where$
denotes the root node .

Judgement2: Assuming an unmapped variablev is asso-
ciated with nodeω. For any memoryρ, if λ(ω, ρ) <
size(v, ρ), then variablev cannot be mapped to the
memoryρ. Otherwise, it can be mapped to memoryρ.

(a) Behavior hierarchy

tree

(b) The tree

reflecting the

parallellism in SW PE1

(c) The tree

reflecting the

parallellism in HW PE2

(d) The tree reflecting

the parallellism in

global memory

Figure 10. Example of parallel(ω, ρ) computa-
tion for local memory of SW PE, local memory
of HW PE and global memory.

7. Problem Definition and Solution

Different designs have different assumptions for system
behavior and system architecture. They also have different
given constraints such as memory size constraint and time
constraint. In this section, we derive five variable-memory
mapping problems according to the most common applied
design assumptions and given design constraints. We solve
these problems based on the memory size model introduced
in section 6.

To illustrate the problems and the solutions, we use a sys-
tem behavior described in Figure 11 as an design example.
Figure 12 displays its behavior hierarchy tree.

During the design process, we adopt a system architec-
ture described in Figure 13, which contains two PEs.PE1
is a SW PE.PE2 is a HW PE. Each PEs has a local mem-
ory LM . The global memory in the system architecture is
denoted byGM .

In the system behavior, there are four behavior variables
v1, v2, v3, andv4. There are six stacks of leaf behaviors,
stack(A), stack(B), stack(C), stack(D), stack(E), and
stack(F). When a variable or a stack is mapped to differ-
ent memories, the size of its occupied memory is different.
For example, an integer variable may occupy 16 bit in 16-
bit microprocessor but occupies 32 bit in 32-bit micropro-
cessor. Table 3 and Table 4 displays the occupied memory
size of variables and stacks of leaf behaviors on different
memories. We use spec profiler[3] to compute the occupied
memory sizes.

11

v2

d1
 d2

D

c1
 c2

C

p3
 p4
CD

e1
 e2

E

f1

F

p5
 p6
EF

v3

p7
CF

a1
 a2

A

b2

B

p6
AB

v1

b1
 v4

AF

Figure 11. System behavior example 2

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

Figure 12. Behavior hierarchy tree of example
2

Proc1
 LM1

PE1

GM

ASIC
 LM2

PE2

Figure 13. The system architecture for behav-
ior example 2

size LM in LM in GM
(byte) PE1 PE2

v1 7 14 14
v2 10 20 20
v3 9 18 18
v4 5 10 10

Table 3. Occupied memory sizes of variables
in example 2

size LM in LM in GM
(byte) PE1 PE2

A 1 2 2
B 2 3 4
C 3 5 6
D 4 6 8
E 5 8 10
F 6 10 12

Table 4. Occupied memory sizes of stacks of
leaf behaviors in example 2

7.1 Design Problem 1

7.1.1 Design Assumption

Problem 1 allows two types of variables: function vari-
able and static behavior variable. Problem 1 allows only
message-passing mechanism. Each variable has a local
copy in the local memory of connecting PEs. Since prob-
lem 1 doesn’t allow shared-memory mechanism, there is no
global memory in the system architecture.We assume that
the sizes of local memories of PEs are unknown.

7.1.2 Problem Definition

The goal of problem 1 is to find the minimal sizes of local
memories of PEs.

7.1.3 Solution

We follow the design flow described in section 5 to solve
problem 1.

Global/Local Variable Identification We first identify
global/local variables following the approach introduced in
section 5.2. In the example, if we map behaviorA, B, and
C toPE1, andD, E, andF toPE2, as shown in Figure 14,
thenv1 is a local variable ofPE1 andv2, v3, andv4 are
the global variables which are connected to bothPE1 and
PE2. The variable-PE connection table is displayed in Ta-
ble 5.

12

Architecture

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

PE1
 PE2

Behavior

(V1)

(V4)

(V2)

(V3)

Mapping

Figure 14. Behavior-PE mapping solution of
the example 2.

Variable v1 v2 v3 v4

PE1 Yes Yes Yes Yes
PE2 No Yes Yes Yes

Table 5. Variable-PE connection table in ex-
ample 2

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)
(0, 0, -)

(0, 0, -)
 (0, 0, -)
(0, 0, -)
 (0, 0, -)

(0, 0, -)
(0, 0, -)

(0, 0, -)

(0, 0, -)

(0, 0, -)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)
 (0, 0, -)

(0, 0, -)
(0, 0, -)
(0, 0, -)
 (0, 0, -)

(0, 0, -)
(0, 0, -)

(0, 0, -)

(0, 0, -)

(0, 0, -)

(b) PE2

Figure 15. Initial memory size models for PE1
and PE2.

Stack Mapping First, we generate the behavior hierarchy
tree for the local memories ofPE1 andPE2. Symbol ”-”
representsparallel(ω, ρ) = 0 and symbol ”o” represents
parallel(ω, ρ) = 1. Initially, we assign(0, 0,−) to each
(α, β, λ) in the memory size models . The value ofλ is ”-”,
which refers to ”not consider”. This is because for design
problems 1, the local memory sizes are unknown. The ini-
tial behavior hierarchy trees and the memory size models
are displayed in Figure 15.

Second, we add the stack size to the self-used memory
sizeα of the memory models. Since behaviorsA, B, andC
are mapped toPE1, their stacks sizes are added to the mem-
ory size model ofPE1. Similarly, the stacks of behaviorsD,
E, andF are added to the memory size model ofPE2. The
self-used memory sizeα and the hierarchically-used mem-
ory sizeβ are computed accordingly. The resulting memory
size models are displayed in Figure 16.

Local Variable Mapping We map local variables to the
local memories of their connecting PEs. Since all the vari-
ables are static variables, they are associated with the root
node. As a result, we adds them into theα of the root node.
In our example, since Table 5 tells thatv1 is the local vari-
able ofPE1, in the memory size model ofPE1,

13

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(1, 1, -)
(2, 2, -)

(3, 3, -)
(0, 0, -)
(0, 0, -)
(0, 0, -)

(0, 0, -)
(0, 3, -)

(0, 3, -)

(0, 3, -)

(0, 3, -)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)
(0, 0, -)

(0, 0, -)
 (6, 6, -)
(8, 8, -)
(10, 10, -)

(0, 10, -)
(0, 6, -)

(0, 0, -)

(0, 10, -)

(0, 10, -)

(b) PE2

Figure 16. Memory size models of PE1 and
PE2 after stack memory mapping.

α(AF, PE1) =α(AF, PE1) + size(v1, PE1)
=0 + 7 = 7(byte)

After computingα, we updateβ in the memory size
model. In our example, sinceparallel(AF,PE1) = 0,

β(AF,PE1) =α(AF,PE1)+
max(β(AB, PE1), β(CF, PE1))

=7 + max(3, 3) = 10(byte)

The resulting memory size models are displayed in Fig-
ure 17.

After local variable mapping, the required memory sizes
of PE1 and PE2 are both 10 bytes.

Global Variable Mapping We map the global variables
to the local memories of its connecting PEs. Similar to lo-
cal variable mapping, since the all the variables are static
variables, they are associated with the root node. We first
add them toα of the root node. In our example, Table 5
tells that global variablesv2, v3, andv4 are connected to
bothPE1 andPE2,

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(1, 1, -)
(2, 2, -)

(3, 3, -)
 (0, 0, -)
(0, 0, -)
 (0, 0, -)

(0, 0, -)
(0, 3, -)

(0, 3, -)

(7, 10, -)

(0, 3, -)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)
(0, 0, -)

(0, 0, -)
(6, 6, -)
(8, 8, -)
(10, 10, -)

(0, 10, -)
(0, 6, -)

(0, 0, -)

(0, 10, -)

(0, 10, -)

(b) PE2

Figure 17. Memory size models of PE1 and
PE2 after local variable mapping in problem
1.

14

α(AF,PE1) =α(AF,PE1) + size(v2, PE1)+
size(v3, PE1) + size(v4, PE1)

=7 + 10 + 9 + 5
=31(byte)

α(AF,PE2) =α(AF,PE2) + size(v2, PE2)+
size(v3, PE2) + size(v4, PE2)

=0 + 20 + 18 + 10
=48(byte)

After updatingα, we updateβ in the memory size model,

β(AF,PE1) =α(AF,PE1)+
max(β(AB, PE1), β(CF, PE1))

=31 + max(3, 3)
=34(byte)

β(AF,PE2) =α(AF,PE2)+
max(β(AB, PE2), β(CF, PE2))

=48 + max(0, 10)
=58(byte)

The resulting memory size models are displayed in Fig-
ure 18.

Result The required minimal sizes of local memories of
PEs equal toβ of the root nodes in memory size model of
ρ. In the example, the minimal local memory size ofPE1
is 34 byte. The minimal local memory size ofPE2 is 58
byte. Based on the computed minimal local memory sizes,
designers can select the local memory sizes accordingly.

7.2 Design Problem 2

7.2.1 Design Assumption

The design assumption of problem 1 and problem 2 are the
same except the supported variable types. In comparison to
problem 1 that allows function variable and static behavior
variable, problem 2 allows function variable and dynamic
behavior variable.

The difference between static behavior variable and dy-
namic behavior variable are their lifetime and their associ-
ated nodes. If a variable is static, it associates with the root
node. On the hand, if a variable is dynamic, it associates
with the node that it is declared in.

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(1, 1, -)
(2, 2, -)

(3, 3, -)
(0, 0, -)
(0, 0, -)
 (0, 0, -)

(0, 0, -)
(0, 3, -)

(0, 3, -)

(31, 34, -)

(0, 3, -)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)
 (0, 0, -)

(0, 0, -)
 (6, 6, -)
(8, 8, -)
 (10, 10, -)

(0, 10, -)
(0, 6, -)

(0, 0, -)

(48, 58, -)

(0, 10, -)

(b) PE2

Figure 18. Memory size models of PE1 and
PE2 after global variable mapping in problem
1.

7.2.2 Problem Definition

The goal of problem 2 is to find the minimal sizes of local
memories of PEs.

7.2.3 Solution

Similar to problem 1, we follow the design flow described
in section 5 to solve this problem.

Global/Local Variable Identification The step of glob-
al/local variable identification is the same as it in the prob-
lem 1.

Stack Mapping The step of stack mapping is the same as
it in the problem 1.

Local Variable Mapping We first reserve local memories
for local variables in their connecting PEs. For example,
Table 5 tells thatv1 is the local variable ofPE1, andv1 is
associated with nodeAB

α(AB,PE1) = α(AB,PE1) + size(v1, PE1)
= 0 + 7 = 7(byte)

15

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(1, 1, -)
(2, 2, -)

(3, 3, -)
(0, 0, -)
(0, 0, -)
(0, 0, -)

(0, 0, -)
(0, 3, -)

(7, 10, -)

(0, 10, -)

(0, 3, -)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)
(0, 0, -)

(0, 0, -)
(6, 6, -)
(8, 8, -)
 (10, 10, -)

(0, 10, -)
(0, 6, -)

(0, 0, -)

(0, 10, -)

(0, 10, -)

(b) PE2

Figure 19. Memory size models of PE1 and
PE2 after local variable mapping in problem 2

After computingα, we updateβ in the memory size
model according. In the example,

β(AB, PE1) =α(AB,PE1)+
(β(A, PE1) + β(B, PE1))

=7 + (1 + 2) = 10(byte)

β(AF,PE1) =α(AF,PE1)+
max(β(AB, PE1), β(CF, PE1))

=0 + max(10, 3) = 10(byte)

The resulting memory size models are displayed in Fig-
ure 19.

After local variable mapping, the required memory sizes
of PE1andPE2are both 10 bytes.

Global Variable Mapping We map the global variables
to the local memories of it connecting PEs . In the example,
variablesv2, v3, andv4are connected to bothPE1andPE2.
We computeα in the memory size models of PE1 and PE2
as follows:

α(CD,PE1)+ = size(v2, PE1) = 10;
α(CF, PE1)+ = size(v3, PE1) = 9;
α(AF, PE1)+ = size(v4, PE1) = 5;

α(CD,PE2)+ = size(v2, PE2) = 20
α(CF, PE2)+ = size(v3, PE2) = 18
α(AF, PE2)+ = size(v4, PE2) = 10

We them computeβ for nodes inPE1,

β(AB,PE1) =α(AB, PE1) + (β(A,PE1)+
β(B, PE1))

=7 + (2 + 1) = 10(bytes)
β(CD,PE1) =α(CD, PE1)+

max(β(C,PE1), β(D,PE1))
=10 + max(3, 0) = 13

β(CF, PE1) =α(CF, PE1) + (β(CD,PE1)+
β(EF, PE1))

=9 + (13 + 0) = 22;
β(AF, PE1) =α(AF, PE1)+

max(β(AB, PE1), β(CF,PE1))
=5 + max(10, 22) = 27

Theβ for nodes in PE2 are also computed accordingly.
The updated memory size models are displayed in Fig-
ure 20.

Result In problem 2, the required memory sizes ofPE1
is 27 byte, the memory size ofPE2 is 54 byte, which are 7
bytes and 4 bytes smaller than the result computed in prob-
lem 1. This is because the some of the global variables can
share the same portions of memories. After computing re-
quired memory sizes, designers can select the local memory
accordingly.

7.3 Design Problem 3

7.3.1 Design Assumption

Problem 3 allows three types of variables: function vari-
able, static behavior variable, and dynamic behavior vari-
able. Furthermore, problem 3 not only allows message-
passing communication mechanism, but also allows shared-
memory communication mechanism. Local variables must
be mapped to the local memory of its connecting PE. A
global variable can be either mapped to the local memory
of each of its connecting PEs, or to the global memory.

In the example,v4 is the static variable.V 1, v2, andv3
are dynamic variables.

16

(
5
, 27, -)

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(1, 1, -)
 (2, 2, -)

(3, 3, -)
(0, 0, -)
(0, 0, -)
 (0, 0, -)

(0, 0, -)
(
10
, 13, -)

(
7
, 10, -)
 (
9
, 22, -)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)
(0, 0, -)

(0, 0, -)
(6, 6, -)
(8, 8, -)
(10, 10, -)

(0, 10, -)
(20, 26, -)

(0, 0, -)

(10, 54, -)

(18, 44, -)

(b) PE2

Figure 20. Memory size models of PE1 and
PE2 after global variable mapping in problem
2.

7.3.2 Problem Definition

Assuming designers have selected the local memory sizes
of PEs, the goal is to find a variable-memory mapping so-
lution to minimize the required global memory size and to
minimize the traffic amount on the interconnection network
of the system architecture.

To help designers to select the local memory sizes of
PEs, we can compute the lower-bounds and upper-bounds
of the local memories sizes. The lower-bounds of local
memory sizes equal to theβ of root nodes after the local
variable mapping step of problem 1 and problem 2, which
guarantees that all the stacks and local variables are mapped
to local memories. The upper-bounds of local memory sizes
equal to theβ of root nodes after the global variable map-
ping step of problem 1 and problem 2, which guarantees
that all the stacks and variables are mapped to local memo-
ries. The selected local memories size must be greater than
the lower-bounds. If all of the selected local memories sizes
are greater than the upper-bounds, then the global memory
is not needed in the system architecture.

7.3.3 Solution

Similar to problem 1, we follow the design flow described
in section 5 to solve this problem.

Global/Local Variable Identification The global/local
variable identification in problem 3 is the same as it in prob-
lem 1.

Stack Mapping The stack mapping in problem 3 is the
same as it in problem 1.

Local Variable Mapping The local variable mapping in
problem 3 is the similar to it in problem 2. In the given
example, the memory size models after local variable map-
ping are displayed in Figure 21.

Global Variable Mapping In the problem 3, the local
memories may not be large enough to store every global
variable. As a result, we must map some global variables
to the global memory. We determine which global variables
are mapped to the global memory according the amount of
traffic of variables.

Global Variable Traffic Computation For each
global variablev, if we choose shared-memory communi-
cation mechanism and map it to the global memory, then
the amount of traffic thatv generates on the interconnection
network equals to

17

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(1, 1, -)
(2, 2, -)

(3, 3, -)
(0, 0, -)
(0, 0, -)
(0, 0, -)

(0, 0, -)
(0, 3, -)

(7, 10, -)

(0, 10, -)

(0, 3, -)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)
 (0, 0, -)

(0, 0, -)
(6, 6, -)
(8, 8, -)
(10, 10, -)

(0, 10, -)
(0, 6, -)

(0, 0, -)

(0, 10, -)

(0, 10, -)

(b) PE2

Figure 21. Memory size models of PE1 and
PE2 after local variable mapping in problem
3.

traffic(v, global mem) = read(v) + write(v)

where read(v) is the amount ofv’s read access and
write(v) is the amount ofv’s write access.

However, if we choose message-passing communication
mechanism and mapv to local memories of its connecting
PEs, the amount of trafficv generates on the interconnection
network equals to

traffic(v, local mem) = write(v)

This is because when a nodeω read fromv, it reads from
the local memory of the PE to whichω is mapped. On
the contrary, when a nodeω write to v, it updatesv’s lo-
cal copies in all the local memories ofv’s connecting PEs.

Obviously, the difference of the amount of traffic be-
tween two communication mechanisms isread(v). As a
result, we prefer mapping the global variables with larger
amount of read access to local memories.

Global Variable Mapping Algorithm We first order
global variables in the listGlobal V ar in the decreasing
order of read access. Then we map one global variablev at

Traffic v2 v3 v4

Read(Kbyte) 60 25 35
Write(Kbyte) 14 16 12

Table 6. Variable traffic in example 2

each iteration. If all of the local memories ofv’s connect-
ing PEs have enough unused memory to storev, then we
mapv to these local memories. Otherwise, we mapv into
the global memory. Whether variablev can be mapped to
the local memory is based onJudgement2in section 6.3.5.
After the mapping decision ofv is made, theα, β, andλ of
corresponding memory size models are updated. The global
variable mapping algorithm is described in Figure 22.

In the given example, we assume that designers select
20-byte local memory forPE1 and 40-byte local memory
for PE2. The traffic of global variablesv2, v3, andv4 are
displayed in Table 6. The algorithm first sorts variables ac-
cording to their read traffic. The mapping order isv2, v4,
andv3.

Figure 23 shows the memory size models before global
variable mapping. Since the local memory sizes are given,
we compute theλ of the memory size models for the local
memories. On the other hand, since the memory size of the
global memory is unknown, we setλ of the global memory
as ”-”, which refers ”not consider”.

First, we mapv2 to the system architecture. The
v2 is associated with nodeCD. The λ(CD, PE1) is
17 andλ(CD,PE2) is 34. Size(v2, PE1) is 10 and
size(v2, PE2) is 20. Sinceλ(CD, PE1) is greater
than size(v2, PE1) and λ(CD, PE2) is greater than
size(v2, PE2), we can mapv2 to local memories of PEs.
The updated memory size models afterv2 mapping are dis-
played in Figure 24.

Second, we mapv4 to the system archiecture. The
v4 is decleared in node AF. Theλ(AF, PE1) is 7 and
λ(AF, PE2) is 14. The size(v4, PE1) is 5 and the
size(v4, PE2) is 10. Since λ(AF,PE1) is greater
than size(v4, PE1), and λ(AF, PE2) is greater than
size(v4, PE2), we can mapv4 to the local memories of
PEs. The updated memory size models afterv4 mapping
are displayed in Figure 25.

Last, we mapv3 to the system archiecture. Thev3 is de-
cleared in node CF. Theλ(CF, PE1) is 2 andλ(CF, PE2)
is 4. Thesize(v3, PE1) is 9 and thesize(v3, PE2) is
18. Sinceλ(AF,PE1) is smaller thansize(v3, PE1),
andλ(AF, PE2) is smaller thansize(v3, PE2), we can-
not mapv3 to the local memories of PEs. Therefore, we
mapv3 to the global memory. The updated memory size
models afterv3 mapping are displayed in Figure 26. After
mapping ,β(AF,Global Mem) is 9 byte, which equals to
the required global memory size.

18

map_to_local = TRUE;
Global_Var = SortVariableBasedOnRead();

// Check whether v can be mapped to the local
//memories of all of its connecting PEs
for v in Global_Var do

ω = AssoicateBehavior(v);
for each ρ to which v is connecting do

if (λ(ω, ρ) < size(v, ρ)) do
map_to_local = FALSE

endif
endfor

//Update memory size models according
//to v’s mapping decision.
if (map_to_local == TRUE) do

for each ρ to which v is connecting do
α(ω, ρ) = α(ω, ρ) + size(v, ρ) ;
Update(β, ρ);
Update(λ, ρ);

endfor
else

α(ω, Global_Mem) = α(ω, Global_Mem)
+ size(v, Global_Mem);

Update(β,Global_Mem);
Update(λ,Global_Mem);

endif
endfor

Figure 22. Algorithm 1: global variable mapping algorithm for problem 3.

19

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(1, 1, 10)
(2, 2, 10)

(3, 3, 17)
(0, 0, 20)
(0, 0, 17)
(0, 0, 17)

(0, 0, 17)
(0, 3, 17)

(7, 10, 10)

(0, 10, 10)

(0, 3, 17)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, 40)
(0, 0, 40)

(0, 0, 40)
(6, 6, 34)
(8, 8, 32)
(10, 10, 30)

(0, 10, 30)
(0, 6, 34)

(0, 0, 40)

(0, 10, 30)

(0, 10, 30)

(b) PE2

(c) Global memory

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -
)

(0, 0, -
)
 (0, 0, -
)
 (0, 0, -
)
 (0, 0, -
)

(0, 0, -
)
(0, 0, -
)

(0, 0, -
)

(0, 0, -
)

(0, 0, -
)

Figure 23. Memory size models before global
variable mapping in problem 3.

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(1, 1, 10)
(2, 2, 10)

(3, 3, 7)
(0, 0, 20)
(0, 0, 7)
(0, 0, 7)

(0, 0, 7)
(10, 13, 7)

(7, 10, 10)

(0, 13, 7)

(0, 13, 7)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, 40)
(0, 0, 40)

(0, 0, 20)
(6, 6, 14)
(8, 8, 32)
(10, 10, 30)

(0, 10, 30)
(20, 26, 14)

(0, 0, 40)

(0, 26, 14)

(0, 26, 14)

(b) PE2

(c) Global memory

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)

(0, 0, -
)

(0, 0, -
)
 (0, 0, -)
 (0, , -)
 (0, 0 -)

(0, 0, -
)
(0, 0, -
)

(0, 0, -
)

(0, 0, -
)

(0, 0,-
)

Figure 24. Memory size models after mapping
global variable v2 to local memories in prob-
lem 3

20

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(1, 1, 5)
(2, 2, 5)

(3, 3, 2)
(0, 0, 15)
(0, 0, 2)
(0, 0, 2)

(0, 0, 2)
(10, 13, 2)

(7, 10, 5)

(5, 18, 2)

(0, 13, 2)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, 30)
(0, 0, 30)

(0, 0, 10)
(6, 6, 4)
(8, 8, 22)
(10, 10, 20)

(0, 10, 20)
(20, 26, 4)

(0, 0, 30)

(10, 36, 4)

(0, 26, 4)

(b) PE2

(c) Global memory

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)

(0, 0, -)

(0, 0, -)
(0, 0, -)

(0, 0, -)

(0, 0, -)

(0, 0, -)

(0, 0, -)

(0, 0, -)
(0, 0, -)
 (0, 0, -)

Figure 25. Memory size models after mapping
global variable v4 to local memories in prob-
lem 3.

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(1, 1, 5)
(2, 2, 5)

(3, 3, 2)
(0, 0, 15)
(0, 0, 2)
(0, 0, 2)

(0, 0, 2)
(10, 13, 2)

(7, 10, 5)

(5, 18, 2)

(0, 13, 2)

(a) PE1

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, 30)
(0, 0, 30)

(0, 0, 10)
(6, 6, 4)
(8, 8, 22)
(10, 10, 20)

(0, 10, 20)
(20, 26, 4)

(0, 0, 30)

(10, 36, 4)

(0, 26, 4)

(b) PE2

(c) Global memory

A
 B

C
 D
 E
 F

AB

CD
 EF

CF

AF

(0, 0, -)

(0, 0,
-)

(0, 0,
-)
 (0, 0,
-)
 (0, 0,
-)
 (0, 0,
-)

(0, 0,
-)
(0, 0,
-)

(0, 0,
-)

(0, 9,
-)

(9, 9,
-)

Figure 26. Memory size models after mapping
global variable v3 to the global memory in
problem 3.

21

Result In the given example, variablev1 is mapped to the
local memory of PE1. Variablev2 andv4 are mapped to the
local memories ofPE1 andPE2. Variablev3 is mapped
to the global memory.

The total amount of traffic on the interconnection net-
work is:

traffic(total) =Traffic(v1) + Traffic(v2)+
Traffic(v3) + Traffic(v4)

=14 + 12 + 16 + 25
=67(Kbyte)

7.4 Design Problem 4

7.4.1 Design Assumption

From design problem 1 to design problem 3, the task
variable-memory mappingis implemented before deriving
all the architecture implementation details, such as the per-
formance of PEs, the real time operation systems of SW
PEs, the interconnection network topology, and the bus pro-
tocols. The decision made in variable-mapping is the basis
for making such implementation decisions. For example,
variable-memory mapping determines the amount of traf-
fic, which influences bus protocol selection.

However, in some cases, designers want to reduce the
communication time byvariable-memory re-mappingintro-
duced in Figure 7(c). The communication time is estimated
according to the system estimation model, after all the re-
lated implementation details are known.

Problems 4 describes the variable-memory re-mapping
problem. In problem 4, we use behavior model described
in section 4.1 and use the target architecture model de-
scribed in 4.2. Problem 4 allows three types of variables:
function variable, static behavior variable, and dynamic
behavior variable. Problem 4 not only allows message-
passing communication mechanism, but also allows shared-
memory communication mechanism. Problem 4 allows
three variable-mapping mechanisms: a global variable is ei-
ther mapped to each local memory of its connecting PEs, or
to only one local memory of its connecting PEs, or to the
global memory. We assume that the sizes of local memo-
ries of PEs are predefined. The size of global memory is
unknown.

7.4.2 Problem Definition

For the problem 4, the goal is to produce a variable-memory
mapping solution to minimize the communication time on
the interconnection network of the system architecture. The
communication time is defined as the summation of the

communication time of all the PEs in the system architec-
ture.

7.4.3 System Estimation Model

We estimate the communication time according to different
variable-mapping mechanisms. In general, for each data
transfer, we compute the communication time by:

comm time =ready time + transfer time+
arbitration time

The ready time refers to the maximin of ready time
of sender and receiver. Thetransfer time refers to the
communication time over the interconnection network. The
arbitration time refers to the time required by bus arbiter
to assign the bus to a bus master. In this report, we assume
that thearbitration time is 0.

Mapping to Each Local Memory If we map a vari-
able v to each local memory of its connecting PEs, then
v’s read access do not produce any traffic over the intercon-
nection network. However, whenv’s write access happens,
the write access must be broadcasted to all ofv’s connect-
ing PEs. Therefore, thev’s communication time of anyv’s
connecting PE$ is computed as:

ready time(v, $) = max
θ∈S P (v)

ready time(v, θ)∗

num(write, v);
transfer time(v, $) =transfer time(v, τ)∗

num(write, v);
comm time(v, $) =ready time(v, $)+

transfer time(v,$)

whereS P (v) is the set ofv’s connecting PEs,τ is the
selected bus,transfer time(v, τ) is the bus transfer time
of bus τ per v’s transmission, andnum(write, v) is the
amount ofv’s write access.

Because each PE inS P (v) takescomm time(v,$)
for communication, the total communication time of
variablev for all its connecting PEs is:

comm time(v) = num(S P (v)) ∗ comm(v, $);
where num(S P (v)) refers to the number of PEs in

S P (v).

Mapping to One Local Memory We map a global vari-
able v to only one local memory of its connecting PEs,
called ρ. In this case, bothv’s read access from the be-
haviors mapped to PEρ and write access to the behaviors

22

mapped to PEρ don’t produce traffic on the interconnection
network. However, bothv’s read access and write access for
the behaviors mapped tov’ connecting PEs other thanρ pro-
duce traffic on the interconnection network. In this case, the
v’s communication time of anyv’s connecting PE$ other
thanρ is computed as:

ready time(v, $) =(max(ready time(v, $),
ready time(v, ρ)))∗
(num(v, read, $)+
num(v, write,$))

transfer time(v, $) =transfer time(v, τ)∗
(num(write, v, $)+
num(read, v,$));

comm time(v, $) =ready time(v, $)+
transfer time(v, $)

where num(write, v,$)/num(read, v, $) refers to
the amount ofv’s write/read access to/from PE$. During
each read/write access, both PEρ and PE$ are involved in
communication, therefore, the total communication time is
computed as:

comm time(v) =
∑

($∈S P (v))∩($ 6=ρ)

comm time(v,$)

∗ 2

It should be noted that that mappingv to the local
memory of different PEs produces different communication
time.

Mapping to Global Memory If we map a variablev
to a global memoryρ, then each read/write access of
v produces traffic on the interconnection network. The
v’s communication time of anyv’s connecting PE$ is
computed as

ready time(v, $) =(max(ready time(v, $),
ready time(v, ρ)))∗
(num(v, read, $)+
num(v, write,$))

transfer time(v, $) =transfer time(v, τ)∗
(num(write, v, $)+
num(read, v,$));

comm time(v, $) =ready time(v, $)+
transfer time(v, $)

BMP

image

file

Image

fragmen-

tation

Image

fragmen-

tation

Quanti-

zation

Entropy-

Coding

JPEG

Image

Fire

Figure 28. Block diagram of JPEG encoder

For each variable access, only one PE is involved,
therefore,

comm time(v) =
∑

$∈S P (v) comm time(v, $)

7.4.4 Solution

We follow the design flow described in section 5 to solve
this problem. The steps of global/local variable identifi-
cation, stack mapping, and local variable mapping are the
same as the steps in design problem 3.

Global Variable Mapping The global variable algorithm
of variable-memory remapping is displayed in Figure 27.

We first order global variables in the listGlobal Var in
the decreasing order of variable’s total access. Then we map
one global variable at each iteration.

For each variablev, we compute the total com-
munication time for three different types of mapping.
Total comm1 refers to the communication time when
mappingv to each local memory ofv’s connecting PEs.
Total comm2 refers to the communication time when
mappingv to the global memory. Total comm3 refers
to the communication time when mappingv to only one
local memory ofv’s connecting PEs. Fortotal comm1
and total comm3, when any local memory doesn’t have
enough memory to storev, then the returned value equals
to ∞. After communication time computation, we select
the mapping mechanism that has the smallest communica-
tion time. After the mapping mechanism is selected, the
corresponding memory size models are updated according.

8. Experimental Result

First of all, we implement the introduced approach by
programming around 3000 lines of C++ code. We then test
it on 10 random generated examples. In this section, we
introduce the experimental results of two real design exam-
ples: JPEG[4] project and Vocoder[8] project.

8.1 JPEG Project

8.1.1 Introduction

JPEG is an image compression standard. It is designed for
compressing either full-color or gray-scale images of natu-

23

Global_Var = SortVariable();
for v in Global_Var do

ω = Associtate_Behavior(v);
// Map to each local memory
total_comm1 = ComputeTrafficMapToEachLocalMemory(v);
// Map to global memory
total_comm2 = ComputeTrafficMapToGlobalMemory(v);

// Map to one local memory
total_comm3 = ∞;
mapped_pe = NULL;
for each $ ∈ S_P(v) do

temp = ComputeTrafficMapToLocalMem($, v);
if (temp < total_comm3) do

Total_comm3 = temp;
mapped_pe = $;

endif
endfor

//Update memory size model
switch min(total_comm1, total_comm2, total_comm3) do

case total_comm1:
for each ρ ∈ S_P(v) do

α(ω, ρ) = α(ω, p) + size(v, ρ) ;
Update(β, p);
Update(λ, p);

enddo
break ;

case total_comm2:
α(ω, Global_Mem) = α(ω, Global_Mem) + size(v, Global_Mem);
Update(β,Global_Mem);
Update(λ,Global_Mem);
break ;

case total_comm3:
α(ω, mapped_pe) = α(ω, mapped_pe) + size(v, mapped_pe);
Update(β, mapped_pe);
Update(λ, mapped_pe);

endswitch
endfor

Figure 27. Algorithm 2: the global variable mapping algorithm for problem 4

24

without optimization with optimization

6.466kB 4.268kB

Table 7. Required local memory size of Cold-
Fire microprocessor in pure SW solution of
JPEG project

PE without optimization with optimization

ColdFire 6.466kB 4.268kB
HW 0.39kB 0.39kB

Table 8. Required local memory sizes of PEs
in HW-SW co-design of JPEG project

ral scenes. Figure 28 shows the block diagram of the DCT
based encode for a gray scale image. It consists of four
blocks: the image fragmentation block, the DCT block,
the quantization block, and the entropy coding block. We
model JPEG using SpecC language. The SpecC specifica-
tion of JPEG contains 29 behaviors and 37 behavior vari-
ables. All the behavior variables are dynamic.

8.1.2 Pure SW solution

First, we implement the entire JPEG encoder on a Motorola
ColdFire microprocessor. All the stack and behavior vari-
ables are mapped to the local memory of ColdFire proces-
sor. The estimated required memory size is displayed in
Table 7.

The result for design problem 1 is displayed in column
without optimization. In this case, we treat all the behavior
variables as static variables which cannot share the same
memory portion. The result of design problem 2 is dis-
played in columnwith optmization. In this case, we treat all
the behavior variables as dynamic variables which can share
the same memory portion according their lifetime. Since
JPEG is data-domain application, preemptive schedule is
not required. As a result, we choose the non-preemptive op-
eration system for the ColdFire microprocessor. As shown
in Table 7, we reduce the required memory size of ColdFire
by 34% when we analyze the lifetime of behavior variables
and allow behavior variables with un-overlapped lifetime to
share the same memory portion.

8.1.3 HW-SW Codesign

Second, we implement HW-SW Codesign. The system
archiecture contains two PEs: a custom hardware(HW) and
a ColdFire microprocessor(ColdFire). According to [4],
we mapDCT behavior toHW and map rest of behaviors
to ColdFire. We choose massage-passing communication

PE lowerbound upperbound

ColdFire 4.268kB 4.268kB
HW 0.13kB 0.39kB

Table 9. The lower-bounds / upper-bounds
of local memory sizes of PEs in HW-SW co-
design of JPEG project (with optimization)

mechanism. The required memory sizes for design problem
1 and design problem 2 are displayed in Table 8.

In comparison to pureColdFire solution described in
section 8.1.2, the required memory sizes for ColdFire
doesn’t change. To find the reason, we analyzed the code
and found that 256 Byte of memory inHW is for global
variables and 134 Byte of memory is for the DCT’s stack.
ColdF ire reserves 256B memory for the global variable of
DCT in both pureColdFiresolution and HW-SW co-design
solution. Furthermore, other behaviors mapped toColdFire
share the same memory portion withDCT’s stack in both
pure ColdFire solution and the HW-SW co-design solution.
This proves that the result is reasonable.

We also attempt solve the design problem 3. To provide
the local memory sizes ofHW andColdF ire, we compute
the lower-bound/upper-bound of local memory sizes of PEs
with optimization, which is displayed in Table 9. The lower-
bound and upperbound of local memory size ofColdF ire
are the same. Therefore, the local memory size of Cold-
Fire must be no less than 4.268kB. In this case, since all the
global variables can be mapped to the local memories, the
global memory is not required.

8.2 Vocoder Project

8.2.1 Introduction

The Vocoder[8] project implements the voice encoding part
of the GSM standard for mobile telephony encoding stan-
dard. The block diagram of Vocoder is displayed in Fig-
ure 29. It contains 13,000 lines of code, 102 behaviors, and
156 dynamic behavior variables.

8.2.2 Pure SW Solution

First, we implement the entire Vocoder encoder on the Mo-
torola DSP56600 microprocessor. All the stack and behav-
ior variables are mapped to the local memory of DSP56600.
The estimated required memory is displayed in Table 10.

Similar to JPEG design, the result for design problem
1 is displayed in columnwithout optimization. The result
of design problem 2 is displayed in columnwith optmiza-
tion. Since Vocoder is data-domain application, preemptive
schedule is not required. As a result, we choose the non-
preemptive schedule mechanism for DSP56600. As shown

25

Prefilter
 pitch_con
tr

G_code
Prefilter

cor_h_x

set_sign

cor_h

search_10i40

build_cod$

Codebook

Syn_filt

upd_mem

excitation

q_gain_code

Updat

e

Enc_lag6

Pred_lt_6

Convolv$

G_pitch

q_gain_pitch

R$sidu

Syn_filt

Residu

Syn_filt

Syn_filt

Syn_filt

Closed_lo
 o

p

Pitch_fr6

2 subframes

Residu

Syn_filt

Weight_Ai
 Weight_Ai

2

su

bfr

a

m

es

Open_loop

Pitch_ol

Az_lsp
 Az_lsp

LP_analysi

s

Levinson
Levinson

Autocorr

Lag_window

Autocorr

Lag_window

Q_plsf_5

Int_lpc

Int_lpc2

2x per frame

code_12

k2

Figure 29. Block diagram of encoding part of vocoder

26

without optimization with optimization

5.369kB 3.872kB

Table 10. Required memory size of Motorola
DSP56600 microprocessor in pure SW solu-
tion of Vocoder project

PE without optimization with optimization

DSP56600 3.454kB 2.217kB
HW 2.308kB 2.308kB

Table 11. Required memory sizes of PEs in
HW-SW co-design of Vocoder project

in Table 10, we reduce the required memory size of Cold-
Fire by 28% when we analyze the lifetime of behavior vari-
ables and allow behavior variables with un-overlapped life-
time to share the same memory portion.

8.2.3 HW-SW Codesign

Mapping to Local Memory According to design project
[8], a Motorola DSP 56600 microprocessor(DSP) and a cus-
tom hardware(HW) are selected to assemble the system ar-
chitecture. The timing-consuming functionCodebookis
mapped toHW while rest behaviors are mapped to theDSP.
The massage passing mechanism is chosen. We compute
the required memory sizes forDSPandHW, which are dis-
played in Table 11.

We also compute the lower-bounds/upper-bounds of lo-
cal memory sizes of PEs with optimization, which is dis-
played in Table 12. The difference between the lowerbound
and the upperbound ofDSP is 128B. The difference be-
tween the lowerbound and the upperbound ofHW is 283B.
The difference ofDSPis smaller than the difference ofHW.
This is because that inDSP, the global memories shares the
same memory portion with some local memories of other
behaviors .

Since the total size of the global variable is 283B, we
don’t allocate a global memory to explore the shared-
memory mechanism. As a result, we select 4k local memory
for bothDSPandHW.

PE lowerbound upperbound

DSP 56600 2.089kB 2.217kB
HW 2.015kB 2.308kB

Table 12. The lower-bounds / upper-bounds
of local memory sizes of PEs in HW-SW co-
design of Vocoder project (with optimization)

8.2.4 SoC Design

In the example, the selected system architecture contains
four PEs.DSP1 andDSP2 are the Motorola DSP56600
microprocessors.HW1 and HW2 are the two custom
hardware. One global memoryMem is also instantiated in
the system architecture. We choose non-preemptive sched-
uler for DSP1 andDSP2. The behavior-PE mapping de-
cision is described in Table 13.

Table 14 displays the required global memory size and
generated traffic on the interconnection network for differ-
ent sets of given local memory sizes. The local memory
sizes in case 1(raw1) equal to the upperbound of sizes of lo-
cal memories. Case 1 doesn’t require mapping any variable
to the global memory. Therefore, the global memory can be
removed from the system architecture. The local memory
sizes in case 6 equal to the lowerbounds of sizes of local
memories. The upperbounds/lowerbounds of the sizes of
local memories are computed according to the solution of
design problem 2. In addition to case 1 and case 6, we also
design four other cases, from case 2 to case 5. The differ-
ence between the local memory size of same PE in neighbor
cases are the same.

ColumnDecreased local memdenotes the difference be-
tween the summation of the local memory size of the se-
lected case and the summation of the local memory sizes
of case 6. ColumnGlobal memdenotes the required global
memory size. ColumnTotal added memequals to the sum
of the values in columnDecreased local memand in col-
umn Global mem. ColumnTraffic denotes the amount of
generated traffic on the interconnection network. The value
in columnGlobal memandTraffic are computed according
to the solution of design problem 3.

Figure 30 displays the values in columnGlobal mem,
Total added mem, Decreased local mem, andTraffic. As
the size of local memory decreases proportionately denoted
by Decreased local memory, the size of global memory
increases unproportionately. This is because a variable is
overlapped with different variables in local memories of
PEs and in the global memory. The total memory size de-
noted byTotal added memis decreasing when more vari-
ables are mapped to the global memory rather than to the
local memory. This is because when we map a global vari-
able to the local memory, the global variable has a copy at
each of its connecting PEs. The slope of generated traf-
fic represented byTraffic increases with the decreasing of
the local memory size. This proves that our approach of
mapping the heavy read traffic variable to local memory is
efficient.

27

PE DSP1 DSP2 HW1 HW2
Bhvr coder, LPanalys Openloop Closedloop, Update Codebook

Table 13. Behavior-PE mapping Solution in SoC design of Vocoder project

Input local memory sizes Output global memory size & generated traffic

PE1 PE2 PE3 PE4 Added local Global Total added Traffic
(Byte) (Byte) (Byte) (Byte) mem(Byte) mem(Byte) mem(Byte) (KByte)

Case 1 1870 720 784 2308 810 0 810 145.7
Case 2 1858 708 699 2249 648 164 812 181.6
Case 3 1846 696 614 2190 486 214 700 220.7
Case 4 1834 684 529 2131 324 324 648 332.6
Case 5 1822 672 444 2072 162 389 551 432.7
Case 6 1810 662 361 2015 0 485 485 2016.0

Table 14. Table of required global memory sizes and generated traffic for different sets of given local
memory sizes in SoC design of Vocoder project

0

500

1000

1500

2000

c,1
 c,2
 c,3
 c,4
 c,5
 c,6

Decreased local mem(Byte)

Global mem(Byte)

Total added mem(Byte)

Traffic(KByte)

Figure 30. The chart of the require global memory size, decreased local memory size, and generated
traffic for SoC design of Vocoder project

28

9. Conclusion

In this report, we introduce a variable-mapping algo-
rithm of system level design. To our knowledge, this is
the first variable-mapping algorithm to support hierarchi-
cal behavior specification. It is also the first to evaluate the
tradeoff between message-passing communication mecha-
nism and shared-memory mechanism, and the first to take
the operation system of SW PE into account. Furthermore,
we present a novel memory size model to analyze the vari-
able lifetime in the task level. This model not only com-
putes the required minimal memory sizes but also deter-
mines whether a memory has room for the next mapped
variable. Finally, our algorithm is independent of many im-
plementation details including bus topology of system ar-
chitecture, selected bus protocols, and PE’s performance.
This attribute allows to move the variable-memory mapping
into the earliest design stage. We apply the algorithm on the
JPEG and Vocoder project. The computed memory sizes us-
ing our algorithm are 34% and 28% smaller than the sizes
without using our algorithm for JPEG and Vocoder respec-
tively.

References

[1] SystemC, OSCI[online]. Available:
http://www.systemc.org/.

[2] VCC[online]. Available:
http://www.cadence.com/products/vcc.html.

[3] L. Cai and D. Gajski. Introduction of Design-Oriented
Profiler of SpecC Language. Technical Report ICS-
TR-00-47, University of California, Irvine, June 2001.

[4] L. Cai, J. Peng, and D. Gajski. Design of a JPEG
Encoding System. Technical Report ICS-TR-99-54,
University of California, Irvine, Nov 1999.

[5] D. Gajski, N. Dutt, S. Lin, and A. Wu.High Level
Synthesis: Introduction to Chip and System Design.
Kluwer Academic Publishers, 1992.

[6] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

[7] Lovic Gauthier, Sunjoo Yoo, and Ahmed Amine
Jerraya. Automatic generation and targeting of
application-specific operating systems and embedded
systems software.IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
November 2001.

[8] A. Gerstlauer, S. Zhao, and D. Gajski. Design of
a GSM Vocoder using SpeccC Methodology. Tech-
nical Report ICS-TR-99-11, University of California,
Irvine, Feb 1999.

[9] Samy Meftali, Ferid Gharsalli, Frederic Rousseau,
and Ahmed A. Jerraya. An optimal memory allo-
cation for apllocation-specific multiprocessor system-
on-chip. InProceedings of the International Sympo-
sium on System Synthesis, 2001.

[10] P.R. Panda and A. Nicolau N. Dutt.Memory Issues in
Embedded System-on-chip: Optimization and explo-
ration. Kluwer Academic Publishers, 1999.

[11] S. Prakash and A.C. Parker. Synthesis of application-
specific multiprocessor systems including memory
components.IEEE Transactions on VLSI Signal Pro-
cessing, 1994.

[12] R. Szymanek and K. Kuchcinski. Design space explo-
ration in system level synthesis under memory con-
straints. InEuromicro 25, September 1999.

[13] Y.Li and W. Wolf. Hardware/software co-synthesis
with memory hierarchies. IEEE transaction on
computer-aided design of integrated circuit and Sys-
tems, October 1999.

29

