
Technical Report CECS-02-27

Analytical Design Space Exploration of Caches for Embedded Systems

Arijit Ghosh and Tony Givargis

Technical Report CECS-2-27
September 11, 2002

Department of Information and Computer Science
Center for Embedded Computer Systems

University of California, Irvine 92697
{arijitg,givargis}@ics.uci.edu

1

Technical Report CECS-02-27

Analytical Design Space Exploration of Caches for Embedded Systems

Arijit Ghosh and Tony Givargis

Technical Report CECS-2-27
September 11, 2002

Department of Information and Computer Science
Center for Embedded Computer Systems

University of California, Irvine 92697
{arijitg,givargis}@ics.uci.edu

Abstract
The increasing use of microprocessor cores in embedded systems, as well as mobile, and portable devices,
creates an opportunity for customizing the cache subsystem for improved performance. Traditionally, a
design-simulate-analyze methodology is used to achieve desired cache performance. Here, to bootstrap the
process, arbitrary cache parameters are selected, the cache sub-system is simulated using a cache simulator,
based on performance results, cache parameters are tuned, and the process is repeated until an acceptable
design is obtained. Since the cache design space is typically very large, the traditional approach often requires
a very long time to converge. In the proposed approach, we outline an efficient algorithm that directly
computes cache parameters satisfying the desired performance. We demonstrate the feasibility of our
algorithm by applying it to a large number of embedded system benchmarks.

2

Technical Report CECS-2-27

Table of Contents
Abstract 5
Keywords 5
1. Introduction 5
2. Technical Approach 6
2.1 Overview 6
2.2 Prelude Phase 7
2.3 Postlude Phase 9
2.4 Final Remarks 10
3. Experiments 11
4. Conclusion 17
5. References 18

3

Technical Report CECS-2-27

List of Figures & Tables
Figure 1: Design space exploration: (a) traditional approach, (b) proposed approach. 6
Figure 2: Block diagram of proposed approach. 7
Figure 3: BCAT data structure. 9
Figure 4: Execution efficiency of proposed approach. 17
Table 1: Original trace. 7
Table 2: Stripped trace. 7
Table 3: Zero/one sets. 8
Table 4: MRCT data structure. 8
Table 5: Data trace statistics. 11
Table 6: Instruction trace statistics. 11
Table 7: Optimal data cache instances for adpcm. 12
Table 8: Optimal data cache instances for bcnt. 12
Table 9: Optimal data cache instances for blit. 12
Table 10: Optimal data cache instances for compress. 12
Table 11: Optimal data cache instances for crc. 12
Table 12: Optimal data cache instances for des. 13
Table 13: Optimal data cache instances for engine. 13
Table 14: Optimal data cache instances for fir. 13
Table 15: Optimal data cache instances for g3fax. 13
Table 16: Optimal data cache instances for pocsag. 14
Table 17: Optimal data cache instances for qurt. 14
Table 18: Optimal data cache instances for ucbqsort. 14
Table 19: Optimal instruction cache instances for adpcm. 14
Table 20: Optimal instruction cache instances for bcnt. 14
Table 21: Optimal instruction cache instances for blit. 15
Table 22: Optimal instruction cache instances for compress. 15
Table 23: Optimal instruction cache instances for crc. 15
Table 24: Optimal instruction cache instances for des. 15
Table 25: Optimal instruction cache instances for engine. 15
Table 26: Optimal instruction cache instances for fir. 16
Table 27: Optimal instruction cache instances for g3fax. 16
Table 28: Optimal instruction cache instances for pocsag. 16
Table 29: Optimal instruction cache instances for qurt. 16
Table 30: Optimal instruction cache instances for ucbqsort. 17
Table 31: Algorithm run time: data traces. 17
Table 32: Algorithm run time: instruction traces. 17

4

Technical Report CECS-2-27

Analytical Design Space Exploration of Caches for Embedded Systems

Arijit Ghosh and Tony Givargis
Department of Information and Computer Science

Center for Embedded Computer Systems
University of California, Irvine 92697

{arijitg,givargis}@ics.uci.edu

Abstract
The increasing use of microprocessor cores in embedded systems, as well as mobile, and portable devices,
creates an opportunity for customizing the cache subsystem for improved performance. Traditionally, a
design-simulate-analyze methodology is used to achieve desired cache performance. Here, to bootstrap the
process, arbitrary cache parameters are selected, the cache sub-system is simulated using a cache simulator,
based on performance results, cache parameters are tuned, and the process is repeated until an acceptable
design is obtained. Since the cache design space is typically very large, the traditional approach often requires
a very long time to converge. In the proposed approach, we outline an efficient algorithm that directly
computes cache parameters satisfying the desired performance. We demonstrate the feasibility of our
algorithm by applying it to a large number of embedded system benchmarks.

Keywords
Cache Optimization, Core-Based Design, Design Space Exploration, System-on-a-Chip

1. Introduction
The growing demand for embedded computing platforms, mobile systems, general-purpose handheld devices,
and dedicated servers coupled with shrinking time-to-market windows are leading to new core based system-
on-a-chip (SOC) architectures [1][2][3]. Specifically, microprocessor cores (a.k.a., embedded processors) are
playing an increasing role in such systems’ design [4][5][6]. This is primarily due to the fact that
microprocessors are easy to program using well evolved programming languages and compiler tool chains,
provide high degree of functional flexibility, allow for short product design cycles, and ultimately result in low
engineering and unit costs. However, due to continued increase in system complexity of these systems and
devices, the performance of such embedded processors is becoming a vital design concern.

The use of data and instruction caches has been a major factor in improving processing speed of today’s
microprocessors. Generally, a well-tuned cache hierarchy and organization would eliminate the time overhead
of fetching instruction and data words from the main memory, which in most cases resides off-chip and
requires power costly communication over the system bus that crosses chip boundaries.

Particularly, in embedded, mobile, and handheld systems, optimizing of the processor cache hierarchy has
received a lot of attention from the research community [7][8][9]. This is in part due to the large performance
gained by tuning caches to the application set of these systems. The kinds of cache parameters explored by
researchers include deciding the size of a cache line (a.k.a., cache block), selecting the degree of associativity,
adjusting the total cache size, and selecting appropriate control policies such as write-back and replacement
procedures. These techniques, typically, improve cache performance, in terms of miss reduction, at the
expense of silicon area, clock latency, or energy.

Traditionally, a design-simulate-analyze methodology is used to achieve optimal cache performance
[10][11][12][13]. In one approach, all possible cache configurations are exhaustively simulated, using a cache
simulator, to find the optimal solution. When the design space is too large, an iterative heuristic is used
instead. Here, to bootstrap the process, arbitrary cache parameters are selected, the cache sub-system is

5

Technical Report CECS-2-27

Figure 1: Design space exploration: (a) traditional approach, (b) proposed approach.

%
 D

es
ire

d
M

is
se

s K

Algorithmic $
Instance Generator

$ Design
Instance

Tr
ac

e
Fi

le

D

es
ire

d
M

is
se

s K

Tr
ac

e
Fi

le

$
Simulator

==

$ Design
Instance

NY

(a) (b)

Introduce $
Design Instance

simulated using a cache simulator, cache parameters are tuned based on performance results, and the process is
repeated until an acceptable design is obtained.

Central to the design-simulate-analyze methodology is the ability to quickly simulate the cache. Specifically,
cache simulation takes as input a trace of memory references generated by the application. In some of the
efforts, speedup is achieved by stripping the original trace to a provably identical (from a performance point of
view) but shorter trace [14][15]. In some of the other efforts, one-pass techniques are used in which numerous
cache configurations are evaluated simultaneously during a single simulation run [16][17]. While these
techniques reduce the time taken to obtain cache performance metrics for a given cache configuration, they do
not solve the problem of design space exploration in general. This is primarily due to the fact that the cache
design space is too large. Figure 1(a) depicts the traditional approach to cache design space exploration.

Our approach uses an analytical model of the cache combined with an algorithm to directly and efficiently
compute a cache configuration meeting designers’ performance constraints. Figure 1(b) depicts our proposed
analytical approach to cache design space exploration. In our approach, we consider a design space that is
formed by varying cache size and degree of associativity. In addition to the trace file, our algorithm takes as
input the design constraint in the form of the number of desired cache misses. The output of the algorithm is a
set of cache instances that meet the constraint.

The remainder of this paper is organized as follows. In Section 2, we outline our technical approach and
introduce our data structures and algorithm. In Section 3, we present our experiments and show our results. In
Section 4, we conclude with some final remarks and future direction of research.

2. Technical Approach
2.1 Overview
In the following approach, we consider a design space that is obtained by varying caches depth D and the
degree of associativity A. Cache depth D gives the number of rows in the cache. In other words, log2(D) gives
the bit-width of the index portion of the memory address. Degree of associativity A is the number of storage
available to accommodate data/instruction words mapping to the same cache line (a.k.a., cache block). Our
objective is to obtain a set of optimal cache pairs (D, A) for a given number K of desired cache misses. Note
that by using the cache depth D and degree of associativity A one can obtain the cache size by computing
2D×A. Also, note that the K desired caches misses are assumed to be those beyond the cold misses, as cold
misses cannot be avoided.

In our approach, we do not consider the cache line size as a varying parameter. In part, our decision is due to
the fact that a change in the cache line size would require redesign of processor memory interface, bus
architecture, main memory controller, as well as main memory organization. Thus, changing of cache line size
requires a more encompassing design space exploration. Likewise, we have assumed fixed least recently used
replacement and write-back policies, as these are the most common and often optimal choices.

6

Technical Report CECS-2-27

Figure 2: Block diagram of proposed approach.

Postlude Phase

Prelude Phase

D

es
ire

d
M

is
se

s K

Tr
ac

e
Fi

le

Strip

$ Design
Instance

Build BCAT

N

Build MRCT

N’

BCATMRCT

Compute Optimal Set

Our approach can be divided into two logical phases, namely, the prelude algorithms and the postlude
algorithm. During the execution of the prelude algorithms we process the trace file and construct two key data
structures. One of these data structures is a Binary Cache Allocation Tree BCAT. The other data structure is
the Memory Reference Conflict Table MRCT. During the execution of the postlude algorithm, and while
operating on the BCAT and MRCT data structures, we compute the optimal cache pairs (D, A), which are
guaranteed to result in a miss rate of less than K. A block diagram of our analytical approach is shown in
Figure 2. We next describe in detail the two phases of our approach and define further the purpose of the key
data structures.
2.2 Prelude Phase
Recall that a trace of N instruction/data memory references is obtained after simulating the target application
on a processor whose cache is being optimized. We reduce this trace of N memory references into a set of N’
unique references, where N’≤N. In other words, the original trace contained repetitions of these N’ memory
references. As part of a running example, consider the trace shown in Table 1 along with the stripped version
shown in Table 2.

A3 A2 A1 A0
1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1
1 0 1 1
0 1 0 0
1 1 0 0
0 0 1 1
1 0 1 1
0 1 1 0

Table 1: Original trace.

ID A3 A2 A1 A0
1 1 0 1 1
2 1 1 0 0
3 0 1 1 0
4 0 0 1 1
5 0 1 0 0

Table 2: Stripped trace.

Our trace contains 10 4-bit references. Of those, there are 5 unique references. We have assigned a numeric
identifier to each of the unique references as shown in Table 2. (At times, we may simply refer to a particular
reference using its numeric identifier.)

To compute the BCAT data structure, we first transform the striped trace into an array of zero/one sets. The
array of zero/one sets contains a pair of sets for each address bit. Specifically, for index bit Bi, we compute a
pair of sets called zero Zi and one Oi. The set Zi contains the identifier of all references that have a bit value of
0 at Bi. Likewise, the set Oi contains the identifier of all references that have a bit value of 1 at Bi. For our
running example, shown in Table 1, the zero/one sets are given in Table 3.

7

Technical Report CECS-2-27

 Z O
B0 {2,3,5} {1,4}
B1 {2,5} {1,3,4}
B2 {1,4} {2,3,5}
B3 {3,4,5} {1,2}

Table 3: Zero/one sets.

The choice of a BCAT data structure is due to the fact that it fully captures how references are mapped onto a
cache of any possible organization. To construct this tree, we use the array of zero/one sets given earlier. We
use these sets because the set intersection operation nicely defines how references are allocated to each cache
location. For example, in a cache of depth 4 (i.e., 4 indexed rows), using B0 and B1 as the index bits, we can
compute the following cross intersections: L00=Z0∩Z1={2,5}, L01=Z0∩O1={3}, L10=O0∩Z1={}, and
L11=O0∩O1={1,4}. Here sets L00, L01, L10, and L11 contain the reference identifiers mapped onto the 4 cache
slots. Likewise, for a cache of depth 8, using an additional index bit B2, we cross intersect each of these 4 sets
with Z2 and O2 to obtain the 8 new sets and so on. The new sets form the nodes of our binary tree. We stop
growing the tree further down when we reach a set with cardinality less than 2. Algorithm 1 recursively builds
a BCAT data structure as described here.

Algorithm 1

Input: array of zero Z and one O sets
Output: data structures BCAT
BCAT.root ⇐ (Z0,O0)
call build-tree(BCAT.root, 1)
begin build-tree(node n=(Z,O), l)
 if |Z| >= 2 then
 n.left ⇐ (Z ∩ Zl, Z ∩ Ol)
 call build-tree(n.left, l + 1)
 if |O| >= 2 then
 n.right ⇐ (O ∩ Zl, O ∩ Ol)
 call build-tree(n.right, l + 1)
end build-tree

The complete BCAT data structure for our running example is shown in Figure 3.

Next, we look at the MRCT data structure. The choice of an MRCT data structure is due to the fact that it
captures, for each occurrence of a reference, a set of references that may cause a conflict. In other words, the
MRCT data structure is an array of size N’ (number of unique references) of sets, where each set corresponds
to one unique reference. Moreover, each set is composed of sets, each corresponding to an occurrence
(excluding the first cold occurrence) of that unique reference in the original trace. To clarify, consider the
MRCT data structure of our running example shown in Table 4.

ID Conflict Sets
1 {{2,3,4}, {2,4,5}}
2 {{1,3,4,5}}
3 {{1,2,4,5}}
4 {{1,2,5}}
5 {}

Table 4: MRCT data structure.

8

Technical Report CECS-2-27

 A0

Figure 3: BCAT data structure. Figure 3: BCAT data structure.

{2,5} {1,4} {}

{2} {1} {4}

A3

{5}

A3

{2,3,5} {1,4}
A1

{2,5} {3}

A1

{}

{}

A2
{1,4}
A2

Here, the reference “1011” has 3 occurrences. The first occurrence of “1011” is ignored as it will always be a
cold miss. The second occurrence of “1011” can potentially be a miss due to a conflict with references “1100”,
“0110”, or “0011” (i.e., the set {2,3,4}). The last occurrence of “1011” can potentially be a miss due to a
conflict with references “0100”, “1100”, or “0011” (i.e., the set {2,4,5}). So, the set of sets for reference
“1011” contains two sets, namely {{2,3,4}, {2,4,5}}. Algorithm 2 builds an MRCT data structure as described
here.

Algorithm 2

Input: memory references R1…RN
Input: unique reference U1…UN’
Output: memory reference conflict table T
for i ∈ {1…N’}
 Ti ⇐ Si ⇐ ∅
for j ∈ {1…N} do
 for i ∈ {1…N’} do
 if Rj = Ui then
 Ti ⇐ Ti ∪ Si Ti ⇐ Ti ∪ Si
 Si ⇐ ∅ Si ⇐ ∅
 else else
 Si ⇐ Si ∪ Rj.identifier Si ⇐ Si ∪ Rj.identifier

2.3 Postlude Phase 2.3 Postlude Phase
Let us now compute a set of cache depth D and degree of associativity A pairs that would result in K or less
misses. We start by looking at the BCAT data structure of our running example, shown in Figure 3. Note that
each level of the tree corresponds to a particular cache depth. For example, level one of the tree (root being
level zero) corresponds to a cache of depth two. At this level, the nodes of the BCAT tree capture the reference
instances that would map to the two cache rows, namely any reference identified as one of {2,3,5} would map
to the first cache row and any reference identified as one of {1,4} would map to the second cache row. In
essence, for a cache of depth two with zero desired misses, we would need to set the degree of associativity A
equal to the maximum cardinality of the two sets {2,3,5}, and {1,4} (i.e., A=max(|{2,3,5}|,|{1,4}|)=3). A
similar approach can be taken to compute the degree of associativity A of a cache with depth four. Here, the
degree of associativity A is set to the maximum of the cardinality of the sets {2,5}, {3}, {}, and {1,4}
corresponding to the nodes at level two of the BCAT, and so on for the any other cache depth.

Let us now compute a set of cache depth D and degree of associativity A pairs that would result in K or less
misses. We start by looking at the BCAT data structure of our running example, shown in Figure 3. Note that
each level of the tree corresponds to a particular cache depth. For example, level one of the tree (root being
level zero) corresponds to a cache of depth two. At this level, the nodes of the BCAT tree capture the reference
instances that would map to the two cache rows, namely any reference identified as one of {2,3,5} would map
to the first cache row and any reference identified as one of {1,4} would map to the second cache row. In
essence, for a cache of depth two with zero desired misses, we would need to set the degree of associativity A
equal to the maximum cardinality of the two sets {2,3,5}, and {1,4} (i.e., A=max(|{2,3,5}|,|{1,4}|)=3). A
similar approach can be taken to compute the degree of associativity A of a cache with depth four. Here, the
degree of associativity A is set to the maximum of the cardinality of the sets {2,5}, {3}, {}, and {1,4}
corresponding to the nodes at level two of the BCAT, and so on for the any other cache depth.

Clearly, the above approach is too conservative and produces caches that are ideal, in other words, caches that
result in exactly zero misses (not counting cold misses). However, when the desired number of cache misses is
greater than zero, we need to compute the minimum degree of associativity A that would satisfy our constraint.
The MRCT data structure is used to accomplish this. Once again, for any particular cache depth, we look at the
corresponding BCAT level. For each node at that level we determine the number of misses (described below)
that would occur if the degree of associativity A was set to 1, 2…Azero. Where Azero is the degree of
associativity required to have zero misses at that node. Consequently, we choose the smallest A that results in
the sum of the misses of the individual nodes to be less than the desired number of misses K.

Clearly, the above approach is too conservative and produces caches that are ideal, in other words, caches that
result in exactly zero misses (not counting cold misses). However, when the desired number of cache misses is
greater than zero, we need to compute the minimum degree of associativity A that would satisfy our constraint.
The MRCT data structure is used to accomplish this. Once again, for any particular cache depth, we look at the
corresponding BCAT level. For each node at that level we determine the number of misses (described below)
that would occur if the degree of associativity A was set to 1, 2…Azero. Where Azero is the degree of
associativity required to have zero misses at that node. Consequently, we choose the smallest A that results in
the sum of the misses of the individual nodes to be less than the desired number of misses K.

9

Technical Report CECS-2-27

Lets us now compute the number of misses at a particular node given a particular degree of associativity A. Let
us assume that the set of references mapping to this node is S. For each member of S we refer to the
corresponding conflict sets C1, C2, … from the MRCT data structure. We count as a miss each time the
cardinality of the intersection of the set S with Ci is larger than or equal to A. To illustrate, let us look at the
rightmost node at level two of our BCAT example with S={1,4} and assuming A=1. From the MRCT data
structure we obtain the conflict sets of the first element (i.e., 1), namely, C1={2,3,4} and C2={2,4,5}. Since the
cardinality of the intersection of S and C1 is one, we increment our miss count at that level. Likewise since the
cardinality of the intersection of S and C2 is one, we increment our miss count at that level for a second time.
We repeat the same for the second element in S (i.e., 4). Note that a miss count is associated with each degree
of associativity A under consideration (i.e., 1, 2…Azero). We stop to consider a particular degree of associativity
A when its miss count goes beyond the desired number of desired misses K. The complete procedure to
compute the set of optimal cache instances is presented in Algorithm 3.

Algorithm 3

Input: data structures BCAT and MRCT
Input: desired number of cache misses K
Output: optimal pairs (D,A)1, (D,A)2…
for i ∈ {1…|BCAT.depth|}
 mini ⇐ 1
 for each node n in BCAT
 for j ∈ {1…|n.S|}
 countj ⇐ 0
for i ∈ {1…|BCAT.depth|}
 for each node n at level i of BCAT
 for each element e ∈ n.S
 for each set C ∈ MRCTe
 for j ∈ {mini…|n.S|}
 if |C ∩ n.S| ≥ j
 counti ⇐ counti + 1
 if counti > K
 mini ⇐ mini + 1
for i ∈ {1…|BCAT.depth|}
 (D,A)i ⇐ (2i,mini)

2.4 Final Remarks
The data structure and algorithms described above are presented in a manner to illustrate the logic and
intuition behind our analytical cache optimization technique. Here, we comment on issues to be considered in
an actual implementation (such as the one used to obtain the results in our experiments section).

� Stripping of a trace amounts to sorting the references and thus could take as long as N×log(N) steps.
However, using a hash table can substantially improve the performance of this step of the algorithm.

� Algorithm 2, the building of the MRCT data structure can be performed during the stripping of the
trace with no additional added time complexity if a hash table is used in place of the second loop.

� The extensive use of sets in our technique is due to the fact that sets are efficient to represent, store,
and manipulate on a computer system using bit vectors. In addition, the use of sets allows for
execution of the algorithm on a cluster of machines by utilizing a distributed set library, enabling the
processing of very large trace files.

� The implementation of Algorithm 1 and Algorithm 3 can be combined. Specifically, the BCAT does
not need to be calculated in its entirety. Instead, a depth first traversal of the tree can be performed.
This also would reduce the space complexity of the algorithm from exponential down to linear.

Finally, we note that the space complexity of our analytical approach is of the order of the size of the trace file.
In designing embedded systems, this is not likely to be a limitation as most embedded systems execute a small
kernel of the code most of the time.

10

Technical Report CECS-2-27

3. Experiments
For our experiments, we have used 12 typical embedded system applications that are part of the PowerStone
benchmark applications [4]. The applications include a Unix compression utility called compress, a CRC
checksum algorithm called crc, an encryption algorithm called des, an engine controller called engine, an FIR
filter called fir, a group three fax decoder called g3fax, a sorting algorithm called ucbqsort, an image rendering
algorithm called blit, a POCSAG communication protocol for paging applications called pocsag, and a few
other embedded applications.

We first compiled and executed the benchmark applications on a MIPS R3000 simulator. Our processor
simulator is instrumented to output separate instruction and data memory reference traces. The size of the
traces N, the number of unique references N’ and the maximum number of misses are reported for all the data
traces in Table 5 and all the instruction traces in Table 6. In these tables, the maximum number of misses is
obtained by simulating the traces on a cache simulator configured to be direct mapped with the cache depth set
to one.

Benchmark Size N Unique References N’ Max. Misses
adpcm 18431 381 17066
bcnt 456 162 376
blit 4088 2027 4072

compress 58250 8906 48924
crc 2826 603 2787
des 20162 2241 20149

engine 211106 225 166599
fir 5608 146 5521

g3fax 229512 3781 211576
pocsag 13467 515 11569

qurt 503 84 489
ucbqsort 61939 1144 59215

Table 5: Data trace statistics.

Benchmark Size N Unique References N’ Max. Misses
adpcm 63255 611 63255
bcnt 1337 115 1337
blit 22244 149 22244

compress 137832 731 137832
crc 37084 176 37084
des 121648 570 121648

engine 409936 244 409936
fir 15645 327 15645

g3fax 1127387 220 1127387
pocsag 47840 560 47840

qurt 1044 179 1044
ucbqsort 219710 321 219710

Table 6: Instruction trace statistics.

We have ran these traces through our analytical algorithm for various values of desired number of cache
misses K. Specifically, we have set K to one of 5%, 10%, 15%, and 20% of the maximum number of misses,
which is shown in the last columns of Table 5 and Table 6. We have presented the optimal cache instances for
all the benchmarks, as computed by our algorithm, in Table 7 to Table 30.

Degree of Associativity A

Desired Cache Misses K as a Percentage
Cache

Depth D
5% 10% 15% 20%

2 115 114 109 106
4 115 114 109 106
8 60 57 54 53
16 33 28 27 26
32 16 14 13 13
64 9 8 7 6

128 4 4 4 3
256 3 3 2 2

11

Technical Report CECS-2-27

512 2 2 1 1
1024 1 1 - -

Table 7: Optimal data cache instances for adpcm.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 25 25 20 17
4 21 14 13 10
8 10 8 6 4
16 6 5 4 3
32 3 3 3 1
64 3 1 1 -

128 1 - - -

Table 8: Optimal data cache instances for bcnt.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 2002 2002 2002 2002
4 2002 2002 2002 2002
8 1002 1002 1002 1002
16 502 502 502 502
32 252 252 250 250
64 126 126 126 126

128 64 64 64 64
256 32 32 32 32
512 16 16 16 16
1024 8 8 8 8
2048 4 4 4 4
4096 2 2 2 2
8192 1 1 1 1

Table 9: Optimal data cache instances for blit.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 311 47 27 19
4 162 23 14 11
8 83 12 7 6
16 42 6 4 3
32 21 4 3 2
64 11 3 2 2

128 6 2 2 1
256 4 1 1 -
512 2 - - -
1024 2 - - -
2048 1 - - -

Table 10: Optimal data cache instances for compress.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 32 32 19 6
4 20 16 8 5
8 11 8 4 3
16 5 4 3 2
32 3 2 2 1
64 2 2 1 -

128 2 1 - -
256 1 - - -

Table 11: Optimal data cache instances for crc.

12

Technical Report CECS-2-27

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 999 834 708 588
4 934 792 675 562
8 469 398 334 276
16 235 200 168 138
32 118 100 84 69
64 59 51 43 35

128 30 26 22 18
256 15 13 11 9
512 8 7 6 5
1024 4 4 3 3
2048 2 2 2 2
4096 1 1 1 1

Table 12: Optimal data cache instances for des.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 35 31 28 26
4 22 18 16 13
8 12 9 8 7
16 7 5 4 3
32 4 3 3 2
64 3 2 2 2

128 2 1 1 1
256 1 - - -

Table 13: Optimal data cache instances for engine.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 74 71 50 37
4 74 71 50 37
8 37 35 24 19
16 19 18 12 10
32 9 9 6 5
64 5 4 4 3

128 3 2 2 2
256 2 1 1 1
512 1 - - -

Table 14: Optimal data cache instances for fir.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 946 933 923 915
4 474 466 461 457
8 238 233 231 228
16 119 117 115 114
32 60 59 57 57
64 31 29 28 28

128 16 15 14 14
256 8 7 7 7
512 4 4 4 4
1024 2 2 2 2
2048 1 1 1 1

Table 15: Optimal data cache instances for g3fax.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 70 38 29 26
4 33 19 16 13

13

Technical Report CECS-2-27

8 18 10 8 7
16 9 6 5 4
32 5 3 3 2
64 3 2 2 1

128 2 2 1 -
256 2 1 - -
512 1 - - -

Table 16: Optimal data cache instances for pocsag.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 52 48 48 46
4 52 48 48 46
8 26 24 24 23
16 13 12 12 10
32 7 6 6 5
64 4 4 3 3

128 2 2 2 2
256 2 1 1 1
512 1 - - -

Table 17: Optimal data cache instances for qurt.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 503 199 66 29
4 250 110 35 17
8 125 55 18 9
16 62 28 9 5
32 31 14 5 3
64 16 7 3 2

128 8 4 2 2
256 4 2 2 1
512 2 2 1 -
1024 1 1 - -

Table 18: Optimal data cache instances for ucbqsort.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 248 248 248 248
4 125 125 124 124
8 64 63 63 63
16 33 33 31 31
32 17 16 16 16
64 9 8 8 8

128 5 5 5 4
256 3 3 2 2
512 2 2 2 2
1024 1 1 1 1

Table 19: Optimal instruction cache instances for adpcm.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 38 38 38 38
4 19 19 19 19
8 10 10 10 10
16 5 5 5 5
32 3 3 3 3
64 2 2 2 2

128 1 1 1 1

Table 20: Optimal instruction cache instances for bcnt.

14

Technical Report CECS-2-27

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 6 6 6 6
4 3 3 3 3
8 2 2 2 2
16 1 1 1 1

Table 21: Optimal instruction cache instances for blit.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 69 62 58 55
4 34 31 29 27
8 18 16 16 15
16 9 9 8 8
32 5 5 4 4
64 3 3 3 3

128 2 2 2 2
256 1 1 1 1

Table 22: Optimal instruction cache instances for compress.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 29 29 29 28
4 15 14 14 14
8 8 7 7 7
16 4 4 4 4
32 2 2 2 2
64 2 2 2 2

128 1 1 1 1

Table 23: Optimal instruction cache instances for crc.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 271 270 270 267
4 136 135 134 132
8 68 68 67 66
16 34 34 33 33
32 18 17 16 15
64 9 8 8 7

128 5 4 4 3
256 3 2 2 1
1024 2 1 1 -
2048 1 - - -

Table 24: Optimal instruction cache instances for des.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 82 82 81 81
4 42 42 41 41
8 22 21 21 21
16 11 11 11 10
32 7 6 6 6
64 4 4 3 3

128 2 2 2 2
256 1 1 1 1

Table 25: Optimal instruction cache instances for engine.

15

Technical Report CECS-2-27

Degree of Associativity A

Desired Cache Misses K as a Percentage
Cache

Depth D
5% 10% 15% 20%

2 126 100 81 54
4 63 50 41 27
8 31 26 20 13
16 15 13 11 7
32 8 7 5 4
64 4 4 3 2

128 2 2 1 1
256 2 1 - -
512 1 - - -

Table 26: Optimal instruction cache instances for fir.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 39 33 27 15
4 20 17 12 9
8 10 9 7 5
16 6 4 3 3
32 3 2 2 2
64 2 2 1 1

128 1 1 - -

Table 27: Optimal instruction cache instances for g3fax.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 101 67 55 23
4 51 36 27 12
8 26 19 14 6
16 13 10 7 4
32 7 5 3 2
64 4 3 2 1

128 2 2 1 -
256 2 1 - -
512 1 - - -

Table 28: Optimal instruction cache instances for pocsag.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 65 65 65 64
4 34 33 32 31
8 17 17 16 15
16 9 8 8 8
32 5 5 4 4
64 4 3 2 2

128 2 2 1 1
256 1 1 65 64

Table 29: Optimal instruction cache instances for qurt.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 51 49 12 11
4 26 24 6 6
8 14 11 4 3
16 7 6 2 2
32 4 3 2 2
64 3 2 2 2

128 2 2 2 2

16

Technical Report CECS-2-27

256 2 2 1 1
512 1 1 - -

Table 30: Optimal instruction cache instances for ucbqsort.

In this table, the inner entries are the degree of associativity A necessary to ensure the desired number of cache
misses. For example, for a cache of depth 512, a direct mapped cache would be sufficient to ensure less than
15% misses, while a two way set associative cache would be needed to assure less than 5% misses.

Our algorithm was executed on a Pentium III processor running at 1.0 GHz with 256 MB of memory. The
average time taken to produce results for data and instruction traces is shown in Table 31 and Table 32.

In Figure 4 we have plotted the execution time on the vertical axis versus the size of the trace N multiplied by
the number of unique references N’ on the horizontal axis. It is easy to see that the time complexity of the
algorithm is on the average linear with respect to the product of these two figures. In other words, it is faster
than quadratic considering that the number of unique references N’ is much smaller than the number of total
references N.

Benchmark Time (sec)

adpcm 2.9
bcnt 0.11
blit 6.8

compress 290
crc 0.80
des 19

engine 28
fir 0.67

g3fax 1200
pocsag 3.2

qurt 0.090
ucbqsort 23

Table 31: Algorithm run
time: data traces.

Benchmark Time (sec)
adpcm 27
bcnt 0.13
blit 2.0

compress 30
crc 5.1
des 31

engine 56
fir 2.3

g3fax 390
pocsag 8.2

qurt 0.20
ucbqsort 31

Table 32: Algorithm run
time: instruction traces.

4. Conclusion
We have presented an analytical approach to the design space exploration of caches that avoids exhaustive
simulation. Our approach uses an analytical model of the cache combined with algorithms to directly and
efficiently compute a cache configuration meeting designers’ performance constraints. In our approach, we
consider a design space that is formed by varying cache size and degree of associativity. For a given memory
reference trace, our algorithm takes as input the design constraint in the form of the number of desired cache
misses and outputs a set of optimal cache instances that meet the constraint. We have shown the feasibility of

0

200

400

600

800

1000

1200

1400

0 200000000 400000000 600000000 800000000 1000000000

Trace Size * Unique Rreferences (N *N ')

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Figure 4: Execution efficiency of proposed approach.

17

Technical Report CECS-2-27

18

our algorithm by experimenting with 12 embedded applications, which are part of the PowerStone suite of
benchmarks.

Our future direction of research will focus on incorporating additional design flexibility such as cache
management policies, line size, and bus architecture and other system-on-a-chip artifacts.

5. References
[1] International Technology Roadmap for Semiconductors. http://www.itrs.net.
[2] C. Kozyrakis, D. Patterson. A New Direction for Computer Architecture Research, IEEE Computer, pp.

24-32, 1998.
[3] F. Vahid, T. Givargis. The Case for a Configure-and-Execute Paradigm. International Symposium on Low

Power Electronics and Design, 1999.
[4] A. Malik, B. Moyer, D. Cermak. A Lower Power Unified Cache Architecture Providing Power and

Performance Flexibility. International Symposium on Low Power Electronics and Design, 2000.
[5] P. Petrov, A. Orailoglu. Towards Effective Embedded Processors in Codesigns: Customizable Partitioned

Caches. International Workshop on Hardware/Software Codesign, 2001
[6] K. Suzuki, T. Arai, N. Kouhei, I. Kuroda. V830R/AV: Embedded Multimedia Superscalar RISC

Processor. IEEE Micro, vol. 18, No. 2, pp.36-47, 1998.
[7] P. Petrov, A. Orailoglu. Towards Effective Embedded Processors in Codesigns: Customizable Partitioned

Caches. International Workshop on Hardware/Software Codesign, 2001.
[8] C. Su, A.M. Despain. Cache Design Trade-offs for Power and Performance Optimization: A Case Study.

International Symposium on Low Power Electronics and Design, 1995.
[9] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, S. Dwarkadas. Memory Hierarchy Reconfiguration

for Energy and Performance in General-Purpose Processor Architectures. International Symposium on
Microarchitecture, 2000.

[10] Y. Li, J. Henkel. A Framework for Estimating and Minimizing Energy Dissipation of Embedded
HW/SW Systems. Design Automation Conference, 1998.

[11] S.J.E. Wilton, N.P. Jouppi. CACTI: An Enhanced Cache Access and Cycle Time Model. IEEE Journal
of Solid State Circuits, vol. 31, no. 5, 1996.

[12] T. Sato. Evaluating Trace Cache on Moderate-Scale Processors. IEEE Computer, vol. 147, no. 6, 2000.
[13] W. Shiue, C. Chakrabarti. Memory Exploration for Low Power Embedded Systems. Design Automation

Conference, 1999.
[14] Z. Wu, W. Wolf. Iterative Cache Simulation of Embedded CPUs with Trace Stripping. International

Workshop on Hardware/Software Codesign, 1999.
[15] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, A. Sangiovanni-Vincentelli. Efficient Power Estimation

Techniques for HW/SW Systems. IEEE Alessandro Volta Memorial Workshop on Low-Power Design,
1999.

[16] D. Kirovski, C. Lee, M. Potkonjak, W. Mangione-Smith. Synthesis of Power Efficient Systems-on-
Silicon. Asian South Pacific Design Automation Conference, 1998.

[17] R.L. Mattson, J. Gecsei, D.R. Slutz, I.L. Traiger. Evaluation Techniques for Storage Hierarchies. IBM
Systems Journal, vol. 9, no. 2, pp. 78-117, 1970.

	Abstract
	Abstract
	Keywords
	Introduction
	Technical Approach
	Overview
	Prelude Phase
	Postlude Phase
	Final Remarks

	Experiments
	Conclusion
	References

