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Abstract
The increasing use of microprocessor cores in embedded systems, as well as mobile, and portable devices, 
creates an opportunity for customizing the cache subsystem for improved performance. Traditionally, a 
design-simulate-analyze methodology is used to achieve desired cache performance. Here, to bootstrap the 
process, arbitrary cache parameters are selected, the cache sub-system is simulated using a cache simulator, 
based on performance results, cache parameters are tuned, and the process is repeated until an acceptable 
design is obtained. Since the cache design space is typically very large, the traditional approach often requires 
a very long time to converge. In the proposed approach, we outline an efficient algorithm that directly 
computes cache parameters satisfying the desired performance. We demonstrate the feasibility of our 
algorithm by applying it to a large number of embedded system benchmarks. 
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Abstract 
The increasing use of microprocessor cores in embedded systems, as well as mobile, and portable devices, 
creates an opportunity for customizing the cache subsystem for improved performance. Traditionally, a 
design-simulate-analyze methodology is used to achieve desired cache performance. Here, to bootstrap the 
process, arbitrary cache parameters are selected, the cache sub-system is simulated using a cache simulator, 
based on performance results, cache parameters are tuned, and the process is repeated until an acceptable 
design is obtained. Since the cache design space is typically very large, the traditional approach often requires 
a very long time to converge. In the proposed approach, we outline an efficient algorithm that directly 
computes cache parameters satisfying the desired performance. We demonstrate the feasibility of our 
algorithm by applying it to a large number of embedded system benchmarks. 

Keywords 
Cache Optimization, Core-Based Design, Design Space Exploration, System-on-a-Chip 

1. Introduction 
The growing demand for embedded computing platforms, mobile systems, general-purpose handheld devices, 
and dedicated servers coupled with shrinking time-to-market windows are leading to new core based system-
on-a-chip (SOC) architectures [1][2][3]. Specifically, microprocessor cores (a.k.a., embedded processors) are 
playing an increasing role in such systems’ design [4][5][6]. This is primarily due to the fact that 
microprocessors are easy to program using well evolved programming languages and compiler tool chains, 
provide high degree of functional flexibility, allow for short product design cycles, and ultimately result in low 
engineering and unit costs. However, due to continued increase in system complexity of these systems and 
devices, the performance of such embedded processors is becoming a vital design concern. 

The use of data and instruction caches has been a major factor in improving processing speed of today’s 
microprocessors. Generally, a well-tuned cache hierarchy and organization would eliminate the time overhead 
of fetching instruction and data words from the main memory, which in most cases resides off-chip and 
requires power costly communication over the system bus that crosses chip boundaries. 

Particularly, in embedded, mobile, and handheld systems, optimizing of the processor cache hierarchy has 
received a lot of attention from the research community [7][8][9]. This is in part due to the large performance 
gained by tuning caches to the application set of these systems. The kinds of cache parameters explored by 
researchers include deciding the size of a cache line (a.k.a., cache block), selecting the degree of associativity, 
adjusting the total cache size, and selecting appropriate control policies such as write-back and replacement 
procedures. These techniques, typically, improve cache performance, in terms of miss reduction, at the 
expense of silicon area, clock latency, or energy. 

Traditionally, a design-simulate-analyze methodology is used to achieve optimal cache performance 
[10][11][12][13]. In one approach, all possible cache configurations are exhaustively simulated, using a cache 
simulator, to find the optimal solution. When the design space is too large, an iterative heuristic is used 
instead. Here, to bootstrap the process, arbitrary cache parameters are selected, the cache sub-system is 
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Figure 1: Design space exploration: (a) traditional approach, (b) proposed approach. 
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simulated using a cache simulator, cache parameters are tuned based on performance results, and the process is 
repeated until an acceptable design is obtained. 

Central to the design-simulate-analyze methodology is the ability to quickly simulate the cache. Specifically, 
cache simulation takes as input a trace of memory references generated by the application. In some of the 
efforts, speedup is achieved by stripping the original trace to a provably identical (from a performance point of 
view) but shorter trace [14][15]. In some of the other efforts, one-pass techniques are used in which numerous 
cache configurations are evaluated simultaneously during a single simulation run [16][17]. While these 
techniques reduce the time taken to obtain cache performance metrics for a given cache configuration, they do 
not solve the problem of design space exploration in general. This is primarily due to the fact that the cache 
design space is too large. Figure 1(a) depicts the traditional approach to cache design space exploration. 

Our approach uses an analytical model of the cache combined with an algorithm to directly and efficiently 
compute a cache configuration meeting designers’ performance constraints. Figure 1(b) depicts our proposed 
analytical approach to cache design space exploration. In our approach, we consider a design space that is 
formed by varying cache size and degree of associativity. In addition to the trace file, our algorithm takes as 
input the design constraint in the form of the number of desired cache misses. The output of the algorithm is a 
set of cache instances that meet the constraint. 

The remainder of this paper is organized as follows. In Section 2, we outline our technical approach and 
introduce our data structures and algorithm. In Section 3, we present our experiments and show our results. In 
Section 4, we conclude with some final remarks and future direction of research. 

2. Technical Approach 
2.1 Overview 
In the following approach, we consider a design space that is obtained by varying caches depth D and the 
degree of associativity A. Cache depth D gives the number of rows in the cache. In other words, log2(D) gives 
the bit-width of the index portion of the memory address. Degree of associativity A is the number of storage 
available to accommodate data/instruction words mapping to the same cache line (a.k.a., cache block). Our 
objective is to obtain a set of optimal cache pairs (D, A) for a given number K of desired cache misses. Note 
that by using the cache depth D and degree of associativity A one can obtain the cache size by computing 
2D×A. Also, note that the K desired caches misses are assumed to be those beyond the cold misses, as cold 
misses cannot be avoided. 

In our approach, we do not consider the cache line size as a varying parameter. In part, our decision is due to 
the fact that a change in the cache line size would require redesign of processor memory interface, bus 
architecture, main memory controller, as well as main memory organization. Thus, changing of cache line size 
requires a more encompassing design space exploration. Likewise, we have assumed fixed least recently used 
replacement and write-back policies, as these are the most common and often optimal choices. 
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Figure 2: Block diagram of proposed approach. 
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Our approach can be divided into two logical phases, namely, the prelude algorithms and the postlude 
algorithm. During the execution of the prelude algorithms we process the trace file and construct two key data 
structures. One of these data structures is a Binary Cache Allocation Tree BCAT. The other data structure is 
the Memory Reference Conflict Table MRCT. During the execution of the postlude algorithm, and while 
operating on the BCAT and MRCT data structures, we compute the optimal cache pairs (D, A), which are 
guaranteed to result in a miss rate of less than K. A block diagram of our analytical approach is shown in 
Figure 2. We next describe in detail the two phases of our approach and define further the purpose of the key 
data structures. 
2.2 Prelude Phase 
Recall that a trace of N instruction/data memory references is obtained after simulating the target application 
on a processor whose cache is being optimized. We reduce this trace of N memory references into a set of N’ 
unique references, where N’≤N. In other words, the original trace contained repetitions of these N’ memory 
references. As part of a running example, consider the trace shown in Table 1 along with the stripped version 
shown in Table 2. 
 

A3 A2 A1 A0 
1 0 1 1 
1 1 0 0 
0 1 1 0 
0 0 1 1 
1 0 1 1 
0 1 0 0 
1 1 0 0 
0 0 1 1 
1 0 1 1 
0 1 1 0 

Table 1: Original trace. 

ID A3 A2 A1 A0 
1 1 0 1 1 
2 1 1 0 0 
3 0 1 1 0 
4 0 0 1 1 
5 0 1 0 0 

Table 2: Stripped trace. 

 

Our trace contains 10 4-bit references. Of those, there are 5 unique references. We have assigned a numeric 
identifier to each of the unique references as shown in Table 2. (At times, we may simply refer to a particular 
reference using its numeric identifier.) 

To compute the BCAT data structure, we first transform the striped trace into an array of zero/one sets. The 
array of zero/one sets contains a pair of sets for each address bit. Specifically, for index bit Bi, we compute a 
pair of sets called zero Zi and one Oi. The set Zi contains the identifier of all references that have a bit value of 
0 at Bi. Likewise, the set Oi contains the identifier of all references that have a bit value of 1 at Bi. For our 
running example, shown in Table 1, the zero/one sets are given in Table 3. 
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 Z O 
B0 {2,3,5} {1,4} 
B1 {2,5} {1,3,4} 
B2 {1,4} {2,3,5} 
B3 {3,4,5} {1,2} 

Table 3: Zero/one sets. 

The choice of a BCAT data structure is due to the fact that it fully captures how references are mapped onto a 
cache of any possible organization. To construct this tree, we use the array of zero/one sets given earlier. We 
use these sets because the set intersection operation nicely defines how references are allocated to each cache 
location. For example, in a cache of depth 4 (i.e., 4 indexed rows), using B0 and B1 as the index bits, we can 
compute the following cross intersections: L00=Z0∩Z1={2,5}, L01=Z0∩O1={3}, L10=O0∩Z1={}, and 
L11=O0∩O1={1,4}. Here sets L00, L01, L10, and L11 contain the reference identifiers mapped onto the 4 cache 
slots. Likewise, for a cache of depth 8, using an additional index bit B2, we cross intersect each of these 4 sets 
with Z2 and O2 to obtain the 8 new sets and so on. The new sets form the nodes of our binary tree. We stop 
growing the tree further down when we reach a set with cardinality less than 2. Algorithm 1 recursively builds 
a BCAT data structure as described here. 
 
Algorithm 1 

Input:      array of zero Z and one O sets 
Output:   data structures BCAT 
BCAT.root ⇐ (Z0,O0) 
call build-tree(BCAT.root, 1) 
begin build-tree(node n=(Z,O), l) 
   if |Z| >= 2 then 
      n.left ⇐ (Z ∩ Zl, Z ∩ Ol) 
      call build-tree(n.left, l + 1) 
   if |O| >= 2 then 
      n.right ⇐ (O ∩ Zl, O ∩ Ol) 
      call build-tree(n.right, l + 1) 
end build-tree 

 

The complete BCAT data structure for our running example is shown in Figure 3. 

Next, we look at the MRCT data structure. The choice of an MRCT data structure is due to the fact that it 
captures, for each occurrence of a reference, a set of references that may cause a conflict. In other words, the 
MRCT data structure is an array of size N’ (number of unique references) of sets, where each set corresponds 
to one unique reference. Moreover, each set is composed of sets, each corresponding to an occurrence 
(excluding the first cold occurrence) of that unique reference in the original trace. To clarify, consider the 
MRCT data structure of our running example shown in Table 4. 
 

ID Conflict Sets 
1 {{2,3,4}, {2,4,5}} 
2 {{1,3,4,5}} 
3 {{1,2,4,5}} 
4 {{1,2,5}} 
5 {} 

Table 4: MRCT data structure. 
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Figure 3: BCAT data structure. Figure 3: BCAT data structure. 
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Here, the reference “1011” has 3 occurrences. The first occurrence of “1011” is ignored as it will always be a 
cold miss. The second occurrence of “1011” can potentially be a miss due to a conflict with references “1100”, 
“0110”, or “0011” (i.e., the set {2,3,4}). The last occurrence of “1011” can potentially be a miss due to a 
conflict with references “0100”, “1100”, or “0011” (i.e., the set {2,4,5}). So, the set of sets for reference 
“1011” contains two sets, namely {{2,3,4}, {2,4,5}}. Algorithm 2 builds an MRCT data structure as described 
here. 
 
Algorithm 2 

Input:      memory references R1…RN 
Input:      unique reference U1…UN’ 
Output:   memory reference conflict table T 
for i ∈ {1…N’} 
   Ti ⇐ Si ⇐ ∅ 
for j ∈ {1…N} do 
   for i ∈ {1…N’} do 
      if Rj = Ui then 
         Ti ⇐ Ti ∪ Si          Ti ⇐ Ti ∪ Si 
         Si ⇐ ∅          Si ⇐ ∅ 
      else       else 
         Si ⇐ Si ∪ Rj.identifier          Si ⇐ Si ∪ Rj.identifier 

  
2.3 Postlude Phase 2.3 Postlude Phase 
Let us now compute a set of cache depth D and degree of associativity A pairs that would result in K or less 
misses. We start by looking at the BCAT data structure of our running example, shown in Figure 3. Note that 
each level of the tree corresponds to a particular cache depth. For example, level one of the tree (root being 
level zero) corresponds to a cache of depth two. At this level, the nodes of the BCAT tree capture the reference 
instances that would map to the two cache rows, namely any reference identified as one of {2,3,5} would map 
to the first cache row and any reference identified as one of {1,4} would map to the second cache row. In 
essence, for a cache of depth two with zero desired misses, we would need to set the degree of associativity A 
equal to the maximum cardinality of the two sets {2,3,5}, and {1,4} (i.e., A=max(|{2,3,5}|,|{1,4}|)=3). A 
similar approach can be taken to compute the degree of associativity A of a cache with depth four. Here, the 
degree of associativity A is set to the maximum of the cardinality of the sets {2,5}, {3}, {}, and {1,4} 
corresponding to the nodes at level two of the BCAT, and so on for the any other cache depth. 

Let us now compute a set of cache depth D and degree of associativity A pairs that would result in K or less 
misses. We start by looking at the BCAT data structure of our running example, shown in Figure 3. Note that 
each level of the tree corresponds to a particular cache depth. For example, level one of the tree (root being 
level zero) corresponds to a cache of depth two. At this level, the nodes of the BCAT tree capture the reference 
instances that would map to the two cache rows, namely any reference identified as one of {2,3,5} would map 
to the first cache row and any reference identified as one of {1,4} would map to the second cache row. In 
essence, for a cache of depth two with zero desired misses, we would need to set the degree of associativity A 
equal to the maximum cardinality of the two sets {2,3,5}, and {1,4} (i.e., A=max(|{2,3,5}|,|{1,4}|)=3). A 
similar approach can be taken to compute the degree of associativity A of a cache with depth four. Here, the 
degree of associativity A is set to the maximum of the cardinality of the sets {2,5}, {3}, {}, and {1,4} 
corresponding to the nodes at level two of the BCAT, and so on for the any other cache depth. 

Clearly, the above approach is too conservative and produces caches that are ideal, in other words, caches that 
result in exactly zero misses (not counting cold misses). However, when the desired number of cache misses is 
greater than zero, we need to compute the minimum degree of associativity A that would satisfy our constraint. 
The MRCT data structure is used to accomplish this. Once again, for any particular cache depth, we look at the 
corresponding BCAT level. For each node at that level we determine the number of misses (described below) 
that would occur if the degree of associativity A was set to 1, 2…Azero. Where Azero is the degree of 
associativity required to have zero misses at that node. Consequently, we choose the smallest A that results in 
the sum of the misses of the individual nodes to be less than the desired number of misses K. 

Clearly, the above approach is too conservative and produces caches that are ideal, in other words, caches that 
result in exactly zero misses (not counting cold misses). However, when the desired number of cache misses is 
greater than zero, we need to compute the minimum degree of associativity A that would satisfy our constraint. 
The MRCT data structure is used to accomplish this. Once again, for any particular cache depth, we look at the 
corresponding BCAT level. For each node at that level we determine the number of misses (described below) 
that would occur if the degree of associativity A was set to 1, 2…Azero. Where Azero is the degree of 
associativity required to have zero misses at that node. Consequently, we choose the smallest A that results in 
the sum of the misses of the individual nodes to be less than the desired number of misses K. 
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Lets us now compute the number of misses at a particular node given a particular degree of associativity A. Let 
us assume that the set of references mapping to this node is S. For each member of S we refer to the 
corresponding conflict sets C1, C2, … from the MRCT data structure. We count as a miss each time the 
cardinality of the intersection of the set S with Ci is larger than or equal to A. To illustrate, let us look at the 
rightmost node at level two of our BCAT example with S={1,4} and assuming A=1. From the MRCT data 
structure we obtain the conflict sets of the first element (i.e., 1), namely, C1={2,3,4} and C2={2,4,5}. Since the 
cardinality of the intersection of S and C1 is one, we increment our miss count at that level. Likewise since the 
cardinality of the intersection of S and C2 is one, we increment our miss count at that level for a second time. 
We repeat the same for the second element in S (i.e., 4). Note that a miss count is associated with each degree 
of associativity A under consideration (i.e., 1, 2…Azero). We stop to consider a particular degree of associativity 
A when its miss count goes beyond the desired number of desired misses K. The complete procedure to 
compute the set of optimal cache instances is presented in Algorithm 3. 
 
Algorithm 3 

Input:      data structures BCAT and MRCT  
Input:      desired number of cache misses K 
Output:   optimal pairs (D,A)1, (D,A)2… 
for i ∈ {1…|BCAT.depth|} 
   mini ⇐ 1 
   for each node n in BCAT 
      for j ∈ {1…|n.S|} 
         countj ⇐ 0 
for i ∈ {1…|BCAT.depth|} 
   for each node n at level i of BCAT 
      for each element e ∈ n.S 
         for each set C ∈ MRCTe 
            for j ∈ {mini…|n.S|} 
               if  |C ∩ n.S| ≥ j 
                  counti ⇐ counti + 1 
                  if  counti > K 
                     mini ⇐ mini + 1 
for i ∈ {1…|BCAT.depth|} 
      (D,A)i ⇐ (2i,mini) 

 
2.4 Final Remarks 
The data structure and algorithms described above are presented in a manner to illustrate the logic and 
intuition behind our analytical cache optimization technique. Here, we comment on issues to be considered in 
an actual implementation (such as the one used to obtain the results in our experiments section).  

� Stripping of a trace amounts to sorting the references and thus could take as long as N×log(N) steps. 
However, using a hash table can substantially improve the performance of this step of the algorithm. 

� Algorithm 2, the building of the MRCT data structure can be performed during the stripping of the 
trace with no additional added time complexity if a hash table is used in place of the second loop. 

� The extensive use of sets in our technique is due to the fact that sets are efficient to represent, store, 
and manipulate on a computer system using bit vectors. In addition, the use of sets allows for 
execution of the algorithm on a cluster of machines by utilizing a distributed set library, enabling the 
processing of very large trace files. 

� The implementation of Algorithm 1 and Algorithm 3 can be combined. Specifically, the BCAT does 
not need to be calculated in its entirety. Instead, a depth first traversal of the tree can be performed. 
This also would reduce the space complexity of the algorithm from exponential down to linear. 

Finally, we note that the space complexity of our analytical approach is of the order of the size of the trace file. 
In designing embedded systems, this is not likely to be a limitation as most embedded systems execute a small 
kernel of the code most of the time.   
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3. Experiments 
For our experiments, we have used 12 typical embedded system applications that are part of the PowerStone 
benchmark applications [4]. The applications include a Unix compression utility called compress, a CRC 
checksum algorithm called crc, an encryption algorithm called des, an engine controller called engine, an FIR 
filter called fir, a group three fax decoder called g3fax, a sorting algorithm called ucbqsort, an image rendering 
algorithm called blit, a POCSAG communication protocol for paging applications called pocsag, and a few 
other embedded applications. 

We first compiled and executed the benchmark applications on a MIPS R3000 simulator. Our processor 
simulator is instrumented to output separate instruction and data memory reference traces. The size of the 
traces N, the number of unique references N’ and the maximum number of misses are reported for all the data 
traces in Table 5 and all the instruction traces in Table 6. In these tables, the maximum number of misses is 
obtained by simulating the traces on a cache simulator configured to be direct mapped with the cache depth set 
to one. 

Benchmark Size N Unique References N’ Max. Misses 
adpcm 18431 381 17066 
bcnt 456 162 376 
blit 4088 2027 4072 

compress 58250 8906 48924 
crc 2826 603 2787 
des 20162 2241 20149 

engine 211106 225 166599 
fir 5608 146 5521 

g3fax 229512 3781 211576 
pocsag 13467 515 11569 

qurt 503 84 489 
ucbqsort 61939 1144 59215 

Table 5: Data trace statistics. 

Benchmark Size N Unique References N’ Max. Misses 
adpcm 63255 611 63255 
bcnt 1337 115 1337 
blit 22244 149 22244 

compress 137832 731 137832 
crc 37084 176 37084 
des 121648 570 121648 

engine 409936 244 409936 
fir 15645 327 15645 

g3fax 1127387 220 1127387 
pocsag 47840 560 47840 

qurt 1044 179 1044 
ucbqsort 219710 321 219710 

Table 6: Instruction trace statistics. 

We have ran these traces through our analytical algorithm for various values of desired number of cache 
misses K. Specifically, we have set K to one of 5%, 10%, 15%, and 20% of the maximum number of misses, 
which is shown in the last columns of Table 5 and Table 6. We have presented the optimal cache instances for 
all the benchmarks, as computed by our algorithm, in Table 7 to Table 30. 

 
Degree of Associativity A 

Desired Cache Misses K as a Percentage 
Cache 

Depth D 
5% 10% 15% 20% 

2 115 114 109 106 
4 115 114 109 106 
8 60 57 54 53 
16 33 28 27 26 
32 16 14 13 13 
64 9 8 7 6 

128 4 4 4 3 
256 3 3 2 2 
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512 2 2 1 1 
1024 1 1 - - 

Table 7: Optimal data cache instances for adpcm. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 25 25 20 17 
4 21 14 13 10 
8 10 8 6 4 
16 6 5 4 3 
32 3 3 3 1 
64 3 1 1 - 

128 1 - - - 

Table 8: Optimal data cache instances for bcnt. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 2002 2002 2002 2002 
4 2002 2002 2002 2002 
8 1002 1002 1002 1002 
16 502 502 502 502 
32 252 252 250 250 
64 126 126 126 126 

128 64 64 64 64 
256 32 32 32 32 
512 16 16 16 16 
1024 8 8 8 8 
2048 4 4 4 4 
4096 2 2 2 2 
8192 1 1 1 1 

Table 9: Optimal data cache instances for blit. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 311 47 27 19 
4 162 23 14 11 
8 83 12 7 6 
16 42 6 4 3 
32 21 4 3 2 
64 11 3 2 2 

128 6 2 2 1 
256 4 1 1 - 
512 2 - - - 
1024 2 - - - 
2048 1 - - - 

Table 10: Optimal data cache instances for compress. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 32 32 19 6 
4 20 16 8 5 
8 11 8 4 3 
16 5 4 3 2 
32 3 2 2 1 
64 2 2 1 - 

128 2 1 - - 
256 1 - - - 

Table 11: Optimal data cache instances for crc. 
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Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 999 834 708 588 
4 934 792 675 562 
8 469 398 334 276 
16 235 200 168 138 
32 118 100 84 69 
64 59 51 43 35 

128 30 26 22 18 
256 15 13 11 9 
512 8 7 6 5 
1024 4 4 3 3 
2048 2 2 2 2 
4096 1 1 1 1 

Table 12: Optimal data cache instances for des. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 35 31 28 26 
4 22 18 16 13 
8 12 9 8 7 
16 7 5 4 3 
32 4 3 3 2 
64 3 2 2 2 

128 2 1 1 1 
256 1 - - - 

Table 13: Optimal data cache instances for engine. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 74 71 50 37 
4 74 71 50 37 
8 37 35 24 19 
16 19 18 12 10 
32 9 9 6 5 
64 5 4 4 3 

128 3 2 2 2 
256 2 1 1 1 
512 1 - - - 

Table 14: Optimal data cache instances for fir. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 946 933 923 915 
4 474 466 461 457 
8 238 233 231 228 
16 119 117 115 114 
32 60 59 57 57 
64 31 29 28 28 

128 16 15 14 14 
256 8 7 7 7 
512 4 4 4 4 
1024 2 2 2 2 
2048 1 1 1 1 

Table 15: Optimal data cache instances for g3fax. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 70 38 29 26 
4 33 19 16 13 
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8 18 10 8 7 
16 9 6 5 4 
32 5 3 3 2 
64 3 2 2 1 

128 2 2 1 - 
256 2 1 - - 
512 1 - - - 

Table 16: Optimal data cache instances for pocsag. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 52 48 48 46 
4 52 48 48 46 
8 26 24 24 23 
16 13 12 12 10 
32 7 6 6 5 
64 4 4 3 3 

128 2 2 2 2 
256 2 1 1 1 
512 1 - - - 

Table 17: Optimal data cache instances for qurt. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 503 199 66 29 
4 250 110 35 17 
8 125 55 18 9 
16 62 28 9 5 
32 31 14 5 3 
64 16 7 3 2 

128 8 4 2 2 
256 4 2 2 1 
512 2 2 1 - 
1024 1 1 - - 

Table 18: Optimal data cache instances for ucbqsort. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 248 248 248 248 
4 125 125 124 124 
8 64 63 63 63 
16 33 33 31 31 
32 17 16 16 16 
64 9 8 8 8 

128 5 5 5 4 
256 3 3 2 2 
512 2 2 2 2 
1024 1 1 1 1 

Table 19: Optimal instruction cache instances for adpcm. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 38 38 38 38 
4 19 19 19 19 
8 10 10 10 10 
16 5 5 5 5 
32 3 3 3 3 
64 2 2 2 2 

128 1 1 1 1 

Table 20: Optimal instruction cache instances for bcnt. 
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Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 6 6 6 6 
4 3 3 3 3 
8 2 2 2 2 
16 1 1 1 1 

Table 21: Optimal instruction cache instances for blit. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 69 62 58 55 
4 34 31 29 27 
8 18 16 16 15 
16 9 9 8 8 
32 5 5 4 4 
64 3 3 3 3 

128 2 2 2 2 
256 1 1 1 1 

Table 22: Optimal instruction cache instances for compress. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 29 29 29 28 
4 15 14 14 14 
8 8 7 7 7 
16 4 4 4 4 
32 2 2 2 2 
64 2 2 2 2 

128 1 1 1 1 

Table 23: Optimal instruction cache instances for crc. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 271 270 270 267 
4 136 135 134 132 
8 68 68 67 66 
16 34 34 33 33 
32 18 17 16 15 
64 9 8 8 7 

128 5 4 4 3 
256 3 2 2 1 
1024 2 1 1 - 
2048 1 - - - 

Table 24: Optimal instruction cache instances for des. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 82 82 81 81 
4 42 42 41 41 
8 22 21 21 21 
16 11 11 11 10 
32 7 6 6 6 
64 4 4 3 3 

128 2 2 2 2 
256 1 1 1 1 

Table 25: Optimal instruction cache instances for engine. 

 
 

15 



Technical Report CECS-2-27 

 
Degree of Associativity A 

Desired Cache Misses K as a Percentage 
Cache 

Depth D 
5% 10% 15% 20% 

2 126 100 81 54 
4 63 50 41 27 
8 31 26 20 13 
16 15 13 11 7 
32 8 7 5 4 
64 4 4 3 2 

128 2 2 1 1 
256 2 1 - - 
512 1 - - - 

Table 26: Optimal instruction cache instances for fir. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 39 33 27 15 
4 20 17 12 9 
8 10 9 7 5 
16 6 4 3 3 
32 3 2 2 2 
64 2 2 1 1 

128 1 1 - - 

Table 27: Optimal instruction cache instances for g3fax. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 101 67 55 23 
4 51 36 27 12 
8 26 19 14 6 
16 13 10 7 4 
32 7 5 3 2 
64 4 3 2 1 

128 2 2 1 - 
256 2 1 - - 
512 1 - - - 

Table 28: Optimal instruction cache instances for pocsag. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 65 65 65 64 
4 34 33 32 31 
8 17 17 16 15 
16 9 8 8 8 
32 5 5 4 4 
64 4 3 2 2 

128 2 2 1 1 
256 1 1 65 64 

Table 29: Optimal instruction cache instances for qurt. 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 51 49 12 11 
4 26 24 6 6 
8 14 11 4 3 
16 7 6 2 2 
32 4 3 2 2 
64 3 2 2 2 

128 2 2 2 2 
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256 2 2 1 1 
512 1 1 - - 

Table 30: Optimal instruction cache instances for ucbqsort. 

In this table, the inner entries are the degree of associativity A necessary to ensure the desired number of cache 
misses. For example, for a cache of depth 512, a direct mapped cache would be sufficient to ensure less than 
15% misses, while a two way set associative cache would be needed to assure less than 5% misses. 

Our algorithm was executed on a Pentium III processor running at 1.0 GHz with 256 MB of memory. The 
average time taken to produce results for data and instruction traces is shown in Table 31 and Table 32. 

In Figure 4 we have plotted the execution time on the vertical axis versus the size of the trace N multiplied by 
the number of unique references N’ on the horizontal axis. It is easy to see that the time complexity of the 
algorithm is on the average linear with respect to the product of these two figures. In other words, it is faster 
than quadratic considering that the number of unique references N’ is much smaller than the number of total 
references N. 

 
Benchmark Time (sec) 

adpcm 2.9 
bcnt 0.11 
blit 6.8 

compress 290 
crc 0.80 
des 19 

engine 28 
fir 0.67 

g3fax 1200 
pocsag 3.2 

qurt 0.090 
ucbqsort 23 

Table 31: Algorithm run 
time: data traces. 

Benchmark Time (sec) 
adpcm 27 
bcnt 0.13 
blit 2.0 

compress 30 
crc 5.1 
des 31 

engine 56 
fir 2.3 

g3fax 390 
pocsag 8.2 

qurt 0.20 
ucbqsort 31 

Table 32: Algorithm run 
time: instruction traces. 

4. Conclusion 
We have presented an analytical approach to the design space exploration of caches that avoids exhaustive 
simulation. Our approach uses an analytical model of the cache combined with algorithms to directly and 
efficiently compute a cache configuration meeting designers’ performance constraints. In our approach, we 
consider a design space that is formed by varying cache size and degree of associativity. For a given memory 
reference trace, our algorithm takes as input the design constraint in the form of the number of desired cache 
misses and outputs a set of optimal cache instances that meet the constraint. We have shown the feasibility of 
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Figure 4: Execution efficiency of proposed approach. 
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our algorithm by experimenting with 12 embedded applications, which are part of the PowerStone suite of 
benchmarks. 

Our future direction of research will focus on incorporating additional design flexibility such as cache 
management policies, line size, and bus architecture and other system-on-a-chip artifacts. 
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