
Automatic Model Refinement for Fast Architecture Exploration

Junyu Peng, Samar Abdi, and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine, CA 92697
fpengj,sabdi,gajskig@ics.uci.edu

Abstract

We present a methodology and algorithms for automatic
refinement from a given design specification to an archi-
tecture model based on decisions in architecture explo-
ration. An architecture model is derived from the specifi-
cation through a series of well defined steps in our design
methodology. Traditional architecture exploration relies on
manual refinement which is painfully time consuming and
error prone. The automation of the refinement process pro-
vides a useful tool to the system designer to quickly evaluate
several architectures in the design space and make the op-
timal choice. Experiments with the tool on a system design
example show the robustness and usefulness of the refine-
ment algorithm.

1 Introduction

In the recent years, the dramatic increase of behavioral
and structural complexity of SoC designs has raised the
abstraction level of system specification. Along with the
higher levels of abstraction comes the need for efficient sys-
tem level synthesis of functional specification to target ar-
chitectures. The wide variety of available target architec-
tures makes the job of making the optimal choice all the
more complicated. This calls for a methodology to effi-
ciently explore design spaces and fast tools for refinement
of functional system specification to an architecture model,
so that more architectures may be explored and evaluated.
Our SpecC [1] system-level design methodology is aiming
at refining an initial, functional system specification into a
detailed implementation description ready for manufactur-
ing.

SpecC methodology consists of a set of models and
transformations (Figure 1). The executable models repre-
sent the same system at different levels of abstraction at
different phases of the design process. The transforma-
tions are a series of well-defined steps through which higher
level models are gradually refined into lower level models.

Our methodology starts with the capture of the intended
functionality in the form ofspecification modelwhich de-
scribes the functionality as well as the performance, power,
cost and other constraints of the intended design.Archi-
tecture exploration, which synthesizes the specification into
an architecture model, includes the design tasks of alloca-
tion, partitioning of behaviors, channels, and variables, and
scheduling.Communication synthesissynthesizes the ab-
stract communications between behaviors in the architec-
ture model into an implementation. In the resultingcom-
munication model, communication is described in terms of
actual wires and timing is described with bus protocols.

Manufacturing

Communication synthesis

Synthesis flow

Architecture exploration

Validation flow

Communication

model
Specification

Architecture
model

model

Simulation
model

Estimation

Validation
Analysis

Compilation

Library
Comp.

Simulation
model

Estimation

Validation
Analysis

Compilation

Simulation
model

Estimation

Validation
Analysis

Compilation

Simulation
model

Estimation

Validation
Analysis

Compilation

Interface synthesis

Implementation

Hardware

synthesis

Software

compilation Library

Back end

Capture

model
Implementation

Library

Library
Alg.

RTL

Allocation

Partitioning

Scheduling

Protocol insertion

Protocol inlining

Proto.

Figure 1. SpecC Methodology.

As shown in Figure 2, architecture exploration generally

is an interactive process to find a target architecture that sat-
isfies all design constraints. For each iteration, first, a tar-
get architecture is selected and specification is mapped to
the architecture either manually by designers or automati-
cally by tools. Then, the specification model is refined into
an architecture model to reflect the design decisions. Fi-
nally, the derived architecture model is simulated to vali-
date the refinement step and to estimate design metrics for
evaluation. To speed up architecture exploration, all three
steps need to be automated as much as possible. Many al-
gorithms and tools were proposed to automate architecture
selection (HW/SW partitioning, scheduling, etc.). A few
tools are also available for simulation and estimation. How-
ever, nowadays, model refinement are performed manually
by designers. In practice, it is a time-consuming and error-
prone task. The iterative nature of architecture exploration
requires multiple cycles of the refinement step which puts
more burden on designers. In our methodology models and
associated refinement rules are formally defined. It, there-
fore, becomes practical to develop algorithms and tools to
automate the model refinement process. The tool can re-
lieve the designer from doing time-consuming work and
shorten design cycle, thereby increase productivity.

Architecture
Decision

Simulation
Evaluation

Architecture Model

Satisfactory?
No

Yes

Channels
Comm.

Specification ModelRefinement

Model

Automatic

Mapping
Allocation /

Figure 2. Architecture Exploration Flow

In this paper we will focus on automatic refinement from
specification model into architecture model. We will iden-
tify a set of refinement tasks and describe a tool that im-
plements these tasks. The input to our refinement tool is
the executable specification of an abstract functional model,
the target architecture and the partitioning of behaviors and
their allocation to the components in the target architec-
ture. The tool produces a simulatable architecture model
that may be used to obtain performance metrics. These

performance metrics are important for evaluating the de-
signer’s choice of target architecture and design decisions.

The rest of the paper is organized as follows. Section 2
talks about previous work in architecture exploration. Sec-
tion 3 will focus on the design environment in more detail.
We will illustrate refinement rules with an example in sec-
tion 4. The implementation of the automation tool and ex-
periment result is shown in section 5. Section 6 summarizes
the paper with conclusions.

2 Related Work

With the growth in complexity of SoC designs, the ab-
straction levels in the design flow have risen above the tra-
ditional RTL. There has been much work in defining stan-
dard abstraction levels for system level design [5]. Issues
in modeling are addressed in [2], [3], [4] which looks at
various models of computation and system prototyping.

However, with the move towards defining standards in
semantics for different levels of abstraction in system level
design [5], we see an increasing need and possibility for
refinement automation tools in this domain. But no much
work has been focussed on this topic.

3 Architecture Refinement Environment

3.1 Specification model and architecture model

Specification model is written by the user to specify the
desired system functionality. The specification model is a
purely functional model, free of any implementation de-
tails. Design constraints can be specified in the specification
model in forms of annotation. A simple example specifica-
tion model is shown in Figure 3.

X Y

D

E

F

G

A

Main

B

C

Figure 3. An Example Specification Model

Architecture model accurately describes the selected
system architecture. Each allocated system component
(DSP, ASIC, Memory, ...) is represented by a correspond-
ing top-level behavior. Inter-component communication is
realized via abstract channels which will be mapped to bus

2

protocols later in communication synthesis. Architecture
model can be simulated to validate the correctness of archi-
tecture refinement. More importantly, through simulation
we can get estimation results in terms of performance. For
the software part, the code can be compiled to the target
processor assembly and an instruction set simulator can be
used for estimation. For the hardware part, behavioral syn-
thesis can be used to estimate hardware cost.

3.2 Architecture allocation and mapping

Architecture allocation and mapping produce design de-
cisions, which are the input for model refinement. These
decisions include: types and numbers of components, be-
havior mapping information, i.e. which behavior is mapped
to which component, variable mapping information, i.e.
where to store global variables, and execution schedule of
behaviors on each component. The decisions can be either
made by designers manually or generated with other archi-
tecture exploration tools.

4 Model Refinement

The model refinement process can be divided into three
relatively independent steps, namely,behavior refinement,
variable refinementand scheduling refinement, which can
be further divided into sub-steps.

4.1 Behavior refinement

The behavior refinement step modifies the model to re-
flect the system component allocation and behavior parti-
tioning decisions. This is by far the most important and
time consuming part of architecture refinement.

4.1.1 Insert synchronization

The model refinement reflecting behavior partitioning is not
as simple as merely grouping together behaviors mapped to
same components. In architecture model components run
concurrently (like in a multi-processor system), therefore
explicit synchronization needs to be added to preserve the
execution semantics of the specification model. To add this
synchronization, we need a transition graph which defines
the data dependency across the behaviors. However, we are
given a hierarchy tree of the design and we need to derive a
transition graph from it.

Note that after the partition, the leaf behaviors are al-
located to specific components. In this case the black leaf
nodes represent behavior instances mapped to hardware and
the white leaf behavior instances are mapped to processor
specific software. First we need to preprocess this graph by
pruning it. All nodes with children of the same color (ie.

the same component allocation) are assigned the color of
the children and their children are removed from the graph.
In this particular example we can see the effect of pruning
on node X in Figure 4. Note that both the children of X (ie.
D and E) were assigned to software, hence they are removed
and X is colored white.

A
B

PAR

SEQ

SEQ

Main

Y

F G

C

X

Figure 4. The Pruned Hierarchy Tree

The Algorithm to derive the transition graph is now run
on this pruned hierarchy tree. Note that eachnon-leaf node
in the hierarchy tree has an annotation SEQ or PAR. This
means that its children are composed either sequentially or
parallely, respectively. It is assumed that any sequentiality
would mean data dependency. Deriving the transition graph
would make use of this property of the hierarchy tree. The
pseudo code for the algorithm is shown in Figure 5.

For better understanding, we will walk through our ex-
ample to show the generation of the transition graph. The
algorithm is essentially a DFS on the pruned hierarchy tree.
We start with the root node Main. As we can see, its chil-
dren (A, B and C) are sequentially composed, therefore we
add directed edges (A,B) and (B,C) as shown in Figure 6(a).
Next, we look at node A. Since it is a leaf node, we have
nothing more to do. Node B is observed next. It has two
children X and Y composed in parallel. This means that
we can enter behavior B with either X or Y. Hence, both X
and Y have possible dependencies on all predecessors of B.
In this case the only predecessor of B is A, hence we add
edges (A,X) and (A,Y). Similarly, B can exit with either X
or Y so both can be predecessors of all successors of B, in
this case C. Hence we add edges (X,C) and (Y,C). The in-
termediate transition graph is shown in Figure 6(b). X is a
leaf node, so we explore Y. Y is a sequential composition
of F and G, hence the edge (F,G) needs to be added. Also,
schedule order dependencies would result in edges (A,F),
(A,G), (F,C) and (G,C) to be added to the transition graph.
Since, there are no more nodes to explore, we are done and
the generated transition graph is shown in Figure 6(c).

Once we have the transition graph, we need to add
synchronization between components at appropriate points.
Figure 7 shows a partition decision, where behaviors C and

3

Derive Transition Graph (GH , GT)
begin

GT = 0;
Visit Node (GH .Root,GH , GT);

end

Visit Node (node,GH , GT)
begin

if (node.Composition == LEAF)return;
child = node.firstChild;
while (child != NULL)

forall (x, node)2 GT GT = GT [(x, child);
forall (node, y)2 GT GT = GT [(child, y);
if (node.Composition == SEQ &&

child.next != NULL)
GT = GT [(child, child.next);

Visit Node (child,GH , GT);
child = child.next;

forall (x, node)2 GT GT = GT - (x, child);
forall (node, y)2 GT GT = GT - (child, y);

end

Figure 5. Pseudo Code for Generating Transi-
tion Graph

F are mapped to hardware component and the rest to soft-
ware. The behaviors mapped to the same component run
in the preassigned schedule in a single thread of execu-
tion. Therefore, they do not need any global synchroniza-
tion amongst them. However, control/data dependencies
across components must be resolved by adding appropriate
synchronization. Our model of synchronization uses events.
The dependent behavior must wait for an event notification
to proceed. Hence we see the NOTIFY and WAIT modules
added along cross component dependencies in our transi-
tion graph (Figure 7). These modules get translated to syn-
chronization behaviors within the component.

4.1.2 Group behaviors and hoist commnication

In this step, component behaviors representing allocated
components are constructed. Behaviors in the hierarchy
will be grouped under these component behaviors by look-
ing at the behavior partitioning information. The structural
and behavioral hierarchy of the specification should be pre-
served in the parts mapped to each component after the
grouping. We follow a simple method to create the parti-
tion. All components initially make a copy of the original
hierarchy. We then travel througheach component’s hierar-
chy and remove behavior instances that are not mapped to
it. We then create a top level behavior that instantiates all

A
X

C

Y

A C

F G

X

(a)

(b)

(c)

A B C

Figure 6. Construction of Transition Graph

A

X

F

G

C

nw

n

w

w

n
w

n

Figure 7. Synchronization across Partition

the global components and composes them in parallel.
The behavior usually has local variables and channels

for communication among its sub-behaviors. If its sub-
behaviors are mapped onto different components, the lo-
cal communication variables and channels must be moved
to the top level of the hierarchy as top-level variables and
channels to be visible to all components that need to ac-
cess them. For this purpose, we keep a list of behaviors for
each variable. Behaviors in this list either read or write the
variable. If any two of the behaviors is mapped to different
component, the variable is hoisted as a global variable. In
case of name conflicts amongst the hoisted global variables,
the name is changed and all affected references are modified
appropriately.

4.2 Variable refinement

In the architecture model, the global variables used in
the specification model will be bound to physical storage.
These variables can be mapped either to local memory of
each component or to a dedicated shared memory compo-
nent. Variable refinement changes the model to reflect vari-
able mapping decisions. To automate this step, data depen-
dency should be analyzed.

If variable is mapped to a shared memory component,

4

declare such variable in the memory behavior and remove
it from the top level of the design. A top-level channel is
introduced to connect the memory component with all other
components thataccess the variable and accesses to it are
replaced with READ and WRITE methods implemented by
associated channel.

Otherwise, variable is bound to local memories of com-
ponents. A message passing channel is introduced to ex-
change updated values of the variable among components.
For each global variable, a local copy is declared inside each
component that needsaccess to the variable and we replace
access to global variables with access to local copy and in-
sert SEND and RECV methods implemented by associated
message-passing channel at synchronization points to ex-
change updated values. For a read operation, we traverse the
thread of execution backwards and insert an update of the
variable after the first encountered synchronization point.
Similarly, for a write operation, we traverse the thread of
execution forward and insert an update of the variable be-
fore the first encountered synchronization point. Note this
is needed to ensure coherence amongst loal copies.

Figure 8 shows how a specification is transformed af-
ter partitioning and variable refinement. As shown in the
example, ’x’ is a global variable accessed by behaviors A
and B. The global variable is removed and local copies are
made as A and B are mapped to different components. A
message passing channel ’Cx’ is introduced that is used for
maintaining validity of local copies of ’x’.

CxxMain

x=Cx.recv()

Cx.send()

x x

Main

SW HW
x = 1

y = x+1 y=x+1

x = 1A

B

A

B

Figure 8. Variable Refinement

4.3 Scheduling refinement

On each single-processor component, the real execu-
tion of behavior instances is purely sequential. As men-
tioned earlier, after architecture allocation and mapping, the
schedule on each component is determined. Based on the
given schedule, scheduling refinement then transforms the
model by replacing all concurrent (parallel, pipeline) con-
structs with sequential constructs. It is possible that after
the scheduling of behaviors some of the earlier added syn-
chronization behaviors become unnecessary therefore they

must be identified and removed from the model for opti-
mization purposes.

The final architecture model after scheduling refinement
is shown in Figure 9.

Wait

F

C

Notify

Wait

Main

A

Notify

D

E

G

Notify

Wait

Csyn

Csyn

Csyn

SW

HW

Figure 9. The Final Architecture Model

5 Experimental Results

Based on the refinement rules defined in previous sec-
tion, we implemented a tool in C++, which can automati-
cally refine a specification model into corresponding archi-
tecture model. We chose the SpecC design language for our
modeling purposes.

The system design example is a JPEG encoder whose
specification is illustrated in Figure 10. The top level en-
coder module is divided into four blocks loosely based on
functionality. The first block, theHandleData Block, reads
the inputs H,W and pixel stream through the input ports,
then groups the pixel stream into 8X8 pixel matrices (called
MCUs) for later processing. TheDCT block reads each
MCU passed fromHandleData Block, preshits the MCU
and performs DCT on it, producing a transformed 8X8 ma-
trix. The Quantization Block, uses a quantization table to
quantize each element of the MCU from the DCT block.
The last block,HuffmanEncode Blockperforms Huffman
Entropy encoding and run-length encoding (RLE) on suc-
cessive bytes from the MCU. All these four blocks run in
a pipelined fashion so we can think of them as a parallel
composition of Behaviors.

Once we have the Specification model, we now need to
partition it so as to map the individual blocks onto avail-
able components. For this example we chose the Motorola
DSP56600 [6] as target for software implementation and an
ASIC for hardware implementation. The partitioning deci-
sion is essentially mapping each block in the Specification
Model to either the processor or ASIC. An extensive ex-
ploration of all kinds of partitionings is affordable with our

5

JPEGHeader

HandleData

HuffEncode

JPEGInit JPEGEncode

JPEGStart

DefaultHuff

ReceiveData

EncodeStripe

DCT

Quantization

Figure 10. JPEG Specification Model

automatic model refinement. Two possible partitions are il-
lustrated in Figure 11 and Figure 12.

HandleData

HuffEncode

Quantization

ReceiveData

DCT

JPEGEncode

EncodeStripe

JPEGHeader

JPEGInit

JPEGStart

DefaultHuff HData

SW HW

DData

SendHData

RecvDData

RecvHData

SendDData

Figure 11. Candidate Architecture Model (1)

For the first phase of the experiment, we manually
rewrote the two possible architecture models for respective
partitions. In the second phase we input partitioning infor-
mation to the tool and let it produce the architecture model
automatically. Figure 13 compares the time used by each
phase. As we can see, the automatic refinement reduces
time from hours into minutes foreach candidate architec-
ture model. Typically, the exploration process has several
iterations and hence the overall absolute gain can be con-
siderably high.

6 Conclusion and future work

In this paper, We presented the refinement rules and al-
gorithms for transforming a specification model into an ar-
chitecture model in our design methodology. In the design
flow, our contribution is primarily the automation of the ar-
chitecture refinement process that facilitates rapid prototyp-
ing and evaluation of several design points. We developed
a tool to automate the refinement based on the rules. Exper-
iments were performed to show the feasibility and robust-
ness of the refinement automation. The observed dramatic

HandleData

Quantization

ReceiveData

DCT

HData

DData

JPEGEncode

EncodeStripe

JPEGHeader

JPEGInit

JPEGStart

DefaultHuff

SW HW

SendHData

RecvDData

RecvHData

SendDData

SendQData RecvQData

HuffEncode

QData

Figure 12. Candidate Architecture Model (2)

Refine

Refine

~5 minutes

~3 hours ~1 minutes

~3 hours
Model 2

Architecture

Model 1

Architecture

AutomaticTask

~5 hours

~5 hours ~6 minutes

~6 minutesTotal

Total

Input

Input

0

0

~5 minutes

~1 minutes

Manual

Figure 13. Time for JPEG Encoder Design

increase of productivity will relieve designers from tedious
and error-prone task of rewriting models. For the future,
we aim at refining communication between components and
provide a suite of tools for going from a specification to an
RTL implementation with our design methodology.

7 References

[1] D. D. Gajski et al.SpecC: Specification Language and
Design Methodology. Kluwer Academic Publishers,
2000.

[2] Coware Inc. N2C. available at
http://www.coware.com /cowareN2C.html

[3] Synopsys Inc. SystemC, Version 2.0available at
http://www.systemc.org

[4] J. Buck, S. Ha, E. Lee, D. Messerschmitt. ”Ptolemy:
a framework for simulating and prototyping heteroge-
neous systems”,Int. Journal of Computer Simulation,
vol. 4, pp.155-182, April 1994

[5] A. Gerstlauer,SpecC Modeling Guidelines, University
of California, Irvine, Technical Report ICS-TR-00-xx,
September, 1998.

[6] Motorola Inc. DSP56600 family of DSPs.available at
http: //e-www.motorola.com

6

