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Abstract

In this report, we describe the novel RTL design methodology based on Accellera RTL semantics. We also propose the
scheduling algorithm targeting bus-based architecture for the RTL design methodology. The proposed scheduling algorithm
is based on resource constrained list scheduling, which considers the number of function units, storage units, buses and ports
of storage units in each control step. It supports the pipelined/multicycle operations and storage units, such as pipelined
register files and latched memory.
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Scheduling in RTL Design Methodology

Dongwan Shin and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

In this report, we describe the novel RTL design method-
ology based on Accellera RTL semantics. We also propose
the scheduling algorithm targeting bus-based architecture
for the RTL design methodology. The proposed scheduling
algorithm is based on resource constrained list scheduling,
which considers the number of function units, storage units,
buses and ports of storage units in each control step. It sup-
ports the pipelined/multicycle operations and storage units,
such as pipelined register files and latched memory.

1. Introduction

With the ever increasing complexity and time-to-market
pressures in the design of embedded systems, the designers
have moved the design to higher levels of abstraction in or-
der to increase productivity. However, each design must be
described, eventually, at the lower levels(e.g. layout masks)
through various refinement processes. High-level synthesis
has been recognized as one of the major design refinement
processes.

The high-level synthesis involves the transformation of
behavioral description of the design into a set of intercon-
nected register transfer components which satisfy the be-
havior and some specified constraints, such as the number
of resources, timing and so on. Three major synthesis tasks
are applied during the transformation: allocation, schedul-
ing, and binding. Allocation determines the number of the
resources, such as storage units, buses, and function units,
that will be used in the implemenation. Scheduling parti-
tions the behavioral description into time intervals. Bind-
ing assigns variables to storage units(storage binding), as-
signs operations to function units(function binding), and in-
terconnections to buses(connection binding).

Most works in high-level synthesis have been based on
multiplexer-based architecture, in which all data transfers
among RT components are achieved through dedicated con-
nections with multiplexers. As the size of a design in-
creases, the performance of the multiplexer-based architec-
ture becomes slower than that of bus-based architecture. We

propose new RTL design methodology, which is based on
Accellera RTL semantics [Acc01], targeting bus-based ar-
chitecture. In bus-based architecture, the connection bind-
ing is also one of major tasks during refinement processes.
we also propose the scheduling algorithm which considers
number of ports and number of buses.

The rest of the report is organized as follows: section 2
describes the motivation of our RTL design methodology
and refinement tool. Section 3 describes our RTL design
methodology and the program flow of the proposed RTL re-
finement tool. Section 4 takes a closer look at the schedul-
ing algorithm. Section 6 shows the experimental results.
Section 7 concludes the report with a brief summary and
future work.

2. Motivation

Much research for High-level synthesis [GDLW92] has
been going on since 1980s. Currently, many commercial
and academical high-level synthesis tools exist in Elec-
tronic Design Automation market but the design commu-
nity wouldn’t integrate them into its design methodology
and design flow due to the following reasons:

� they can support only several limited architectures like
multiplexer-based architecture

� they lack interaction between tools and the designers

� the quality of the generated design is worse than that
of manual design.

We must address these problems to have these tools ac-
cepted and assimulated in the design community. The
proposed RTL design methodogy is based on Accellera
RTL semantics, proposed by Accellera C/C++ Working
Group [Acc01]. The target architecture for our RTL de-
sign methodology is bus-based architectural instead of mux-
based architecture due to the reasons discussed above.

The Accellera RTL semantics is well-defined to repre-
sent each step of RTL refinement and to provide design-
ers with more controllability to tools because designers can
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give tools to various constraints during refinement steps. To
support interaction between designer and refinement tool,
we use the finite state machine with data(FSMD) for RTL
description and define 5 styles of RTL description accord-
ing to the refinement steps.

As already mentioned, the target architecture of our RTL
refinement tool is bus-based universal processor architec-
ture [Acc01], in which all RTL components such as func-
tion units and storage units are connected through buses to
transfer data. Also the function/storage units are pipelined
or multi-cycled in our target architecture. The storage units
can be composed of registers, register files and memories
with different latency and pipeline scheme. In other word,
target architecture is heterogenous in terms of storage units.
The RT components are connected through the allocated
buses and ports of function units and storage units. It makes
the refinement problems hard to solve. The scheduling and
binding should be extended to integrate pipelined or multi-
cycle function/storage units in the target architecture.

3. The architecture of the proposed RTL re-
finement tool

This section describes the RTL semanatics [Acc01] and
the architecture of the RTL refinement tool.

3.1. The Accellera RTL semantics

The RTL design can be modeled by Finite State Machine
with Data(FSMD) [Acc01], which is FSM model with as-
signment statements added to each state. The FSMD can
completely specify the behavior of an arbitrary RTL design.
The variables and functions in FSMD may have different
interpretations which in turn defines several different styles
of RTL semantics.

The proposed RTL semantics by Accellera [Acc01] has
5 different styles of RTLs: unmapped RTL, storage mapped
RTL, function mapped RTL, connection mapped RTL and
exposed-control RTL. The unmapped RTL specifies the
operations performed in each clock cycle with explicitly
modelling the units in the component’s datapath and is
obtained by scheduling the operations into clock cycles.
The exposed-control RTL explicity models the allocation of
RTL components, the scheduling of data transfers into clock
cycles, and the binding of operations, variables and assign-
ments to functional units, storage units, buses and has ex-
plicitly exposed controllers. The storage mapped RTL mod-
els the binding of variables to storage units. The function
mapped RTL specifies the binding of functions and vari-
ables to functional units and storage units respectiviely. The
connection mapped RTL models the connections between
functional units and storage units.

These models can also represent the refinement steps
like scheduling, storage binding, function binding and con-
nection binding in RTL refinement from unmapped RTL to
exposed-control RTL. However, due to the interdependence
of scheduling, allocation, and binding, the order of three
steps should be able to interchanged to get better design.

3.2. The architecture of the RTL refinement tool

Scheduling

Storage Binding

Function Binding

Connection Binding

FSMD/
CDFG

RTL Description
(style 1~4)

C++/SpecC/HDL
Compiler

Library

RTL Code
Generator

RTL Description
(style 1~5)

Figure 1. RTL design refinement flow

The Figure 1 describes the RTL refinement flow in RTL
design environment. The RTL refinement tool uses the
FSMD/CDFG as the internal data structure to read, write,
and refine the design models. To get the FSMD/CDFG data
structure, we uses the C++/SpecC/HDL as input [Acc01].
The RTL refinement tool also reads the RTL description
in C++/SpecC/HDL and generates FSMD/CDFG as inter-
nal representation for refinement. Every refinement step
is based on FSMD. The SpecC RTL generator makes each
style of RTL description as the result of each refinement
step. For example, RTL refinement tool reads the unmapped
RTL SpecC code and generates FSMD/CDFG and performs
storage binding and then generates the storaged mapped
RTL description.

The FSMD/CDFG is FSMD represenation, in which
each state has state transition information and its own Con-
trol/Data Flow Graph(CDFG). The task of scheduling is to
divide one state into sub-states based on resource constraint.
The storage binding, function binding and connection bind-
ing are performed considering every state transition.

The netlist mapper generates the exposed-control RTL
in HDL or SpecC language from style 4 RTL. The style 5
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exposed-control RTL in HDL can be used as input for gate-
level synthesis like Synopsys Design Compiler.

The RTL component library has the information about
datapath modules such as ALU, multiplier, register file,
memory and bus. It is also written in SpecC language.
When each synthesis step is performed, it refers the RTL
component library to get the information about resource
constraint. The RTL refinement tool reads and maintains
the RTL component library.

3.3. Target Architecture

Our architecture is shown in Figure 2. It’s composed of
function units, register files, memories, multiplexers, buses
and bus drivers. Function units performs operations such as
multiplication, addition, and so on. Storage units stores data
from function units or other storage units through the buses.
All data transfers are achieved through buses. The func-
tion unit can have the registers at the input and output of it.
The controller will determine the next state of the execution
based on status signals and input signals, and generate the
control signals for datapath, which will be implemented to
FSM. The datapath, control signals and status signal can be
pipelined by inserting registers.

Control Unit

Output logic

State
register

Next state
logic

�

Datapath

RF

ALU���
status
��
��
��

control

��
Figure 2. Bus based architecture

4. Internal representation for RTL design
methodology

The RTL design is represented by FSMD, which has a
set of states and transition among them. Each state has state
transition information and its own CDFG.

4.1. Control/Data Flow Graph

This section describes the CDFG representation, which
is selected for internal data representation for RTL design.
The CDFG is the hierarchical graph which has the data flow
information to describe the operations and their depepen-
cies and has the control flow information which is related
to branching and iteration constructs. The CDFG has been
used for the internal representation of high-level synthesis
tool since mid-1980s and has many variations. It can be hi-
erachical or non-hierarchical, polar or non-polar, and cyclic
or acyclic.

We made the novel CDFG structure to represent the RTL
description and to perform the RTL refinement steps. Our
CDFG is hierarchical, acyclic polar graph, which is shown
in Figure 3. The acyclic graph makes it easy to imple-
ment the graph algorithm, because it has no loop. The polar
graph has the single-entry and single exit property using no-
operation(source node/sink node in our graph) and makes it
easy to build hierachical graph. The node S in Figure 3
represents the no-operation node. The top S is the source
node and the bottom S is the sink node. In this graph, the
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// Behavioral RTL(style1)
a=b+c;
for(I = 0; I < 32; I=I+1)
    d[I:I] ^= e[I:I];
if (start == 0) 
    state = S0;
else 
    state = S1;

Figure 3. CDFG for unmapped(style 1) RTL descrip-
tion)

edge has the dependency information between nodes such
as control dependency and data dependency. The node has
all informations except the flow information. The node is
decomposed of the non-hierachical node and the hierarchi-
cal node. The non-hierachical node has the datapath oper-
ation information such as operation node to perform arith-
metic/logic operation, storage node to store the data, bus
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node to transfer the data between functional unit and stor-
age unit, control node to generate the status information of
datapath, and state transition node to store state transition
information in finite state machine. In Figure 3 shows the
operation node which is the white circle node, storage node
which is the shaded rectangular node, bus node which is the
small shaded circle node between operation node and stor-
age node. The hierachical node is divided to the module
node to represent the structural hierarchy in the RTL de-
scription, branch node to represent branching information
and loop node to represent the iteration information. The
branch node(if node) and loop node(for node) are shown
in Figure 3.

5. Scheduling Algorithm

In the proposed RTL design methodology, the schedul-
ing plays a major role in refining from behavioral RTL to
exposed-control RTL by re-scheduling each state in FSMD
in the behavioral RTL description. The scheduling algo-
rithm is divided into two layers: one is state scheduling and
the other is CDFG scheduling.

The state scheduling determines the order of each state
in FSMD and reflects resource utilization tables of the al-
ready scheduled states to next states which are affected by
scheduling result of predecessor states. For example, if
the states have multicyle operations and pipeline operations
with more than 1 cycles delay, the next states will be af-
fected by these previous states.

The CDFG scheduling is to schedule the operations in
each state based on resource utilization table which is de-
termined by resource allocation and scheduling result of the
previous states. The CDFG scheduling will be done in the
corresponding CDFG in each state. Because resource allo-
cation like number of FUs, the ports of storage units and
buses, is given by the designer, the resource-constrained
scheduling should be done.

In addition, our scheduling algorithm performs compo-
nent type selection. The aim of this task is reduce the num-
ber of states at minimal hardware cost. Our scheduling al-
gorithm allows for resources to be shared amongst multiple
operations, while component selection allows a mixture of
fast and slow components to be used in the design. The
components are selected such that the fast and expensive
components are used for critical operations, and the slower
ones are used for non-critical operations.

5.1. Problem Definition

Given:

1. A behavior represented by state transition graph,
STG(S, T), where S is state in FSMD and T is state
transition among states.

2. Each state S contains hierarchical control/data flow
graph, CDFG(V, E), where V is a set of vertices rep-
resenting operations, storages, buses, and hierarchical
nodes such as branch and loop, and E is dependency
between nodes.

3. A component library containing functional units, stor-
age units and buses characterized by type, area, delay,
pipeline states and so on. In addition, storage units
have the number of read/write ports.

4. clock period and resource allocation, such as number
of function units, storage units, buses and read/write
ports of storage units.

Determine:

1. control step of each node in a behavior

2. type selection for each node but hierarchical node

Such that:

1. the number of control steps is minimized.

2. the resource allocation constraint is satisfied.

5.2. Proposed Scheduling Algorithm

As already mentioned, the proposed scheduling algo-
rithm is divided into two layers: state scheduling and CDFG
scheduling which are shown in Algorithm 1 and Algo-
rithm 2 respectively. The state scheduling algorithm uses

Algorithm 1 State scheduling(STG, Ro): state scheduling
algorithm

1:

2: S0 = GetResetNode(STG);
3: AppendState(Ss, S0);
4: while (Ss is not empty) do
5: s = RemoveFrontState(Ss);
6: so = s;
7: Rs = GetResUtilTable(Ro, GetPredStates(s));
8: LIST RC(Gs, Rs);
9: if (s != so) then

10: AppendState(Ss, GetSuccStates(s));
11: end if
12: end while

breadth-first search to find next state to be scheduled in
FSMD. During state scheduling, resource utilization table
for each state is updated by considering the resource uti-
lization table of scheduled predecessor states. Each state
calls the LIST RC scheduling algorithm to schedule nodes
in CDFG. In state scheduling algorithm, we use candidate
list and resource utilization table as following.
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Algorithm 2 LIST RC(CDFGG, Rl�k): List scheduling al-
gorithm

1: Initialize the unfinished operations Ul�k � ��;
2: Initialize the step l � 0;
3: SetDelay(v0, 0);
4: ScheduleNode(v0, l);
5: UpdateReadyNodes(Sl�k, v0, l);
6: while (Sl�k or Ul�k is not empty) do
7: vk �GetSchedulableNode�G�Sl�k�Rl�k�;
8: if (vk == NULL) then
9: l � l�1;

10: UpdateReadyNodes(l);
11: UpdateUnfinishedNodes(l);
12: UpdateScheduledNodes(l);
13: continue;
14: else if (vk is a bus/port/ctrl node) then
15: SetDelay(v0, 0);
16: ScheduleNode(v0, l);
17: else if (vk is a branch node) then
18: dc = LIST RC(conditional subgraph of vk, l, Rl�k)

- l;
19: db = LIST RC(false/true subgraph of vk, l � dc,

Rl�k) - l�dc;
20: SetDelay(vk, dc�db);
21: UpdateResUtilTable(vk, Rl�k);
22: else if (vk is a storage node) then
23: ScheduleNode(vk, l);
24: end if
25: RemoveNode(Sl�k, vk);
26: if (the delay of vk is more than 1) then
27: AppendNode(Ul�k, vk);
28: else if (the delay of vk is 0) then
29: UpdateReadyNodes(vk);
30: end if
31: end while

� resource utilization table Ro, Rs: are original resource
utilization table based on resource allocation and re-
source utilization table for state s, respectively.

� candidate states Ss: are those states which need to be
re-scheduled because scheduling result of their prede-
cessors is changed.

In this scheduling algorithm, S0 is reset node which is first
executed after reset is deasserted. In the state scheduling
algorithm, there are several functions as follows:

� GetResUtilTable(R, states): returns resource
utilization table which the scheduling result of states
is reflected into.

� LIST RC(CDFG, R): calls CDFG scheduling al-
gorithm for each state.

� GetResetNode(STG): returns reset state which is
first executed after reset is deasserted.

� AppendState(S, s): appends state s to the end of
the list S.

� RemoveFrontState(S: removes and returns the
front state in the list S

� GetPredStates(s): returns the predecessor states
of the state s.

� GetSuccStates(s): returns the successor states of
the state s.

We extend resource-constrained list scheduling algorithm
to schedule the CDFG with pipelined operation and multi-
cycle operation with different types. The propsed schedul-
ing algorithm gets CDFG(G), and resource utilization ta-
ble Rl�k and returns the last control step of the CDFG. In
scheduling algorithm, we use candidate and unfinished op-
eration list as following:

� resource utilization table Rl�k: has the number of re-
sources k(function units, storage units, busses, and
read/write ports of storage units), which are used at
control step l.

� candidate operations Sl�k: are those opearations of type
k whose prodecessors have already scheduled early
enough, so that the corresponding opreations are com-
pleted at control step l.

� unfinished operation Ul�k: are those operations of type
k that started at earlier cycles and whose execution is
not finished at control step l. If the execution delay of
an operation is 1 or less, the operation should not be
included in the set of unifinished operations.
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The node v0 is the source node and v
�1 is the sink node.

In the proposed scheduling algorithm, there are several
functions as follows:

� GetSchedulableNode(G, Sl�k, Rl�k): find the node
which can meet resource constraint in ready node list.
It will be shown in 3

� UpdateResUtilTab(vk, Rl�k): updates the resource uti-
lization table Rl�k using scheduling information of hi-
erarchical node vk. If vk is branch node, the largest
number of the used resources of the branch will be se-
lected to update resource utilization information.

� function SetDelay(v, tk): assigns the delay of the
node v to the delay of the type tk of the function/storage
unit.

� function ScheduleNode(v, l): specifies the start
time of node v at the control step l, and the the end time
of the node v will be the addition of l and the delay of
node v.

� function UpdateReadyNode(Sl�k, v, l): up-
dates ready node list Sl�k with the effect of scheduing
of v at the control step l.

� function UpdateScheduledNodes(v): will ap-
pend scheduled nodes v to the scheduled node list Ul�k.

� function UpdateUnfinishedNodes(Ul�k, v,
l): will updates the unfinished nodes by using the
scheduled node v and the specified control step l;

� function AppendNode(List, v),
RemoveNode(List, v): appends/removes v
to(from) a set of nodes List.

In the proposed scheduling algorithm, types of the storage
unit will be assigned to the storage node(type selection of
storage node) if the storage node is selected as candidate
node among ready node list according to the cost function.
If the storage node belongs to the critical path of the CDFG,
it will be assigned to the fastest cost storage unit with least
cost. The number of ports of storage units and buses which
are used in the specified control step, will be determined
when the node is scheduled, because the function unit will
use the ports and the buses in order to read data at the start
time and to write data at the end time of the node. In other
word, the data transfer will occur at the start and the end of
execution of the node. The read time of the storage node
will be changed according to the start time of execution of
the node nodes, which will read data from the storage node.
The write time of the storage node is the same as the end
of the execution of the node, which will write data to the
storage node. The function GetSchedulableNode(G,
Sl�k, Rl�k) utilizes the resource utilization table to find the

Algorithm 3 GetSchedulableNode(G, Sl�k, Rl�k): find
schedulable node in ready node list

1: for (all nodes(vk in ready node list Sl�k) do
2: wk = GetWriteStroageNode(vk)
3: if (vk) is assignment operation node then
4: rk = GetReadStorageNode(vk, 0)
5: if (HasReadPorts(l, rk, 1) and HasBus(l, 1)) then
6: SetDelay(vk, 1);
7: ScheduleOp(vk, l);
8: UpdateReadPorts(l, rk, 1);
9: UpdateWritePorts(l, wk, 1);

10: UpdateBus(l, 1);
11: end if
12: else
13: r0k = GetReadStorageNode(vk, 0);
14: r1k = GetReadStorageNode(vk, 1);
15: if HasReadPorts(l, r0k, 1) and HasReadPorts(l,

r1k, 1) and HasBus(l, 2)) then
16: k = SelectType(vk, l);
17: r = SelectType(wk, l�dk�1);
18: if (dk is 1 and HasBus(l, 3)) then
19: UpdateFU(l, k);
20: UpdateReadPorts(l, r, 1);
21: UpdateWritePorts(l, r, 1);
22: UpdateBus(l, 3);
23: ScheduleOp(vk, l);
24: ScheduleOp(wk, l�1);
25: else if (dk is more than 1 and HasBus(l�dk�1,

1)) then
26: UpdateFU(l, k);
27: UpdateReadPorts(l, r, 1);
28: UpdateWritePorts(l�dk�1, r, 1);
29: UpdateBus(l, 2);
30: UpdateBus(l�dk�1, 1);
31: ScheduleOp(vk, l);
32: ScheduleOp(wk, l�dk);
33: end if
34: end if
35: end if
36: end for
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node which can meet resource constraint in ready node list.
It have to look ahead control step to check available re-
sources for nodes because operation node and storage node
can be multicycled or pipelined. When the function unit
type of an operation node is selected, the storage unit type
of the storage node, which is output of the operation node
to write value, is also determined. It is composed of the
following functions:

� GetWriteStroageNode(vk): returns the storage
node where vk will write a variable.

� GetReadStorageNode(vk, lr): returns the stor-
age node where vk will read a variable. If the lr is 0(1),
it return left(right) side of input variables of operation
node vk.

� HasReadPorts(l, rk, num): checks if storage
unit type rk has num number of available read ports
in control step l.

� HasWrite(l, rk, num): checks if storage unit
type rk has num number of available write ports in con-
trol step l.

� HasBus(l, num): checks if there is num number of
available buses in control step l.

� SelectType(v, l): returns the availabe resource
type for node vk at control step l.

� UpdateFU(l, k): updates the number of available func-
tion unit of type k by num at control step l.

� UpdateReadPorts(l, rk, num): updates the number of
available read ports of storage unit rk by num at control
step l.

� UpdateWritePorts(l, wk, num): updates the number of
available write ports of storage unit wk by num at con-
trol step l.

� UpdateBus(l, num): updates the number of available
buses by num at control step l.

5.2.1 Priority function

The list scheduling algorithms are classified according to
the selection step. A priority list of the operations is used
in choosing among the operations, based on some heuristic
measure. Our proposed algorithm has two priority func-
tions. One is for node selection among ready node list. The
other is for resource type selection from library.

1. node selection: the ready node list is sorted by the pri-
ority: urgency, mobility, number of successors in de-
creasing order, to select the node among the ready node
list.

2. type selection: to select type of operation/storage
nodes, cost function in library is utilized. The designer
selects cost function according to the latency of unit,
size of unit, whether or not it’s pipelined.

The ready node list is sorted by the priority list for node
selection and the resource utilization table is sorted by the
priority list for type selection.

5.3. Scheduling process by example

S0

S1

done = 1;

S2

S3

temp = data & mask;
ocount = ocount + temp;
data = data >> mask;

data = inport;
ocount = 0;
mask = 1;

outport = ocount;
done = 1;

data == 0

start == 1

while (1) {
    wait(clk);
    if (rst) {
        state = S0;
    }
    switch (state) {
        case S0 :
            done = 0;
            if (start == 1)
                state = S1;
            else
                state = S0;
            break;
        case S1 :
            data = inport;
            ocount = 0;
            mask = 1;
            state = S2;
            break;
        case S2 :
            temp = data & mask;
            ocount = ocount + temp;
            data = data >> mask;
            if (data == 0)
                state = S3;
            else
                state = S2;
            break;
       case S3 :
          outport = ocount;
          done = 1;
          state = S0;
          break;
    }
}

Figure 4. FSMD for one’s counter

To explain the proposed scheduling algorithm, we will
use one’s counter as an example, shown in Figure 4, which
calculates the number of one’s in given number. It takes
one input variables and generates one output result. The
left side of this figure shows SpecC code for one’s counter
example and the corresponding FSMD is shown in the left
side of this figure. Before scheduling, this FSMD consists
of 4 states. State S0 is reset state, and if reset is asserted,
FSMD will enter this state first. State S2 has self loop to
calculate number of one’s in data variable until data is
equal to 0. The Figure 5 shows the target datapath organi-
zation for the one’s counter, which consists of two 2-stage
pipelined ALUs(ALU0 and ALU1) and one register file and
3 buses. The function unit ALU0 can perform bitwise and
operation and addition operation in 2 cycles, and ALU1 can
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Table 1. Scheduling process for one’s counter
ready resource utilization table scheduled unfinished

ALU0 ALU1 ALU0(1) ALU1(1) RF(1/2) bus(1/2)
cs1 && �� 0 0 0/0 0/0

�� 1 0 0/2 0/2 &&
cs2 �� 0 0 1/0 1/0 &&

0 1 1/2 1/2 ��

cs3 � 0 0 1/0 1/0 ��

1 0 1/2 1/2 �

cs4 �� 0 0 1/0 1/0 �
0 1 1/2 1/2 ��

cs5 0 0 0/0 0/0 ��
0 0 0/0 0/0

Table 2. Scheduling process for one’s counter(II)
ready resource utilization table scheduled unfinished

ALU0 ALU1 ALU0(1) ALU1(1) RF(1/2) bus(1/2)
cs1 && �� 0 0 0/0 0/0

1 1 0/2 0/2 && ��

cs2 0 0 1/0 1/0 && ��

0 0 1/0 1/0
cs3 �� 0 0 1/0 1/0 &&

0 1 1/2 1/2 ��

cs4 � 1 0 0/0 0/0 ��
0 1 0/2 0/2 �

cs5 0 0 0/0 0/0 �
0 0 0/0 0/0

cs6 0 0 1/0 1/0 �
0 0 1/0 1/0

8



Datapath

RF

ALU1

���
���

ALU2

���
���

inport

outport

Figure 5. Target datapath organization for ones’s
counter

perform left/right shift and comparison operation in 2 cy-
cles. The regiser file with two read ports and one write port
is neither pipelined nor latched. Figure 6 shows the CDFG

S2
temp = data & mask;
ocount = ocount + temp;
data = data >> mask;

data == 0

&

data

temp

>>

data

ocount

+

ocount

==

status

0mask

: operation node

: bus node

: storage node

S

S

Figure 6. CDFG for state S2 in one’s counter

of state S2 which is generated from FSMD in Figure 4. The
CDFG has 4 ALU operations and 8 storage nodes and 12
bus nodes. Figure 1 shows the scheduling step according to
the proposed scheduling algorithm. The 1st column repre-
sents the control steps. The next 2 columns represent the
ready operations for each type of function unit. The next 4
columns represent the resource utilization table, which has
the number of resources used in each control step. In BUS
column, the left value shows the number of buses which is

&

data

temp >>

+

ocount ==

status

0

cs1

cs2

cs3

cs4

ocount

data

mask

cs5

Figure 7. Scheduled CDFG for state S2 in one’s
counter

used to transfer the result of function units to storage units,
the right value shows the number of buses which is used to
transfer the input data for function units from storage units.
In RF column, the 1st value represents the number of the
used write ports, and the other value shows the number of
the used read ports in register file. The last two columns
represents the scheduled operations and unfinished oper-
ation in current control step. According to the proposed
scheduling algorithm, all nodes in CDFG are scheduled us-
ing this table. The latency of the scheduled CDFG is 5 con-
trol steps. The scheduled CDFG is shown in Figure 7.
If we change 2-stage pipelined ALU0 to 3-stage pipelined
ALU0, the scheduling result will be changed as shown in
Figure 8 and in Figure 2. In Figure 8, operation � should
be executed in 3 cycles but the control step of the state S2
should be finished in cs4. The S2 has self loop, then the
remaining two cycles of the operation � will be performed
in cs1 and cs2 in the state S2.

6. Experimental Results

We implemented the internal representation for the RTL
description on 9000 lines of C++ code and our scheduling
algorithm on 1000 lines of C++ code. Our scheduling al-
gorithm is integrated in the RTL refinement system, which
can perform the scheduling, storage binding, function bind-
ing and connection binding in arbitrary order.
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data

temp

>>

data

ocount

==

status

0

mask

cs1

cs2

cs3

cs4

ocount

cs5

cs6

&

+

Figure 8. Scheduling process for one’s counter(II)

We applied the scheduling alogrithm to one’s counter,
square root approximation, matrix mulipication of DCT de-
sign and Chen DCT in jpeg encoder. Table 3 shows the
resource allocation such as number of ALU, shifter, mul-
tiplier, storage units and buses, and number of read/write
ports of storage units. In this table, the number and char-
acter in parenthesis represents the delay of the unit and
whether or not the unit is pipelined(p) or not(n). The storage
unit column has number of read ports(r) and write ports(w)
of storage units. Table 4 show the scheduling results for
each example. It has number of states and ports/bus utiliza-
tion in state.

7. Conclusion

This report has shown the scheduling algorithm in the
RTL design methodology, which is based on the resource
constrained list scheduling, which considers the number of
function units, storage units, buses, and ports of storage
units in each control step. The scheduling algorithm sup-
ports the pipelined/multicycle operations and storage units,
such as pipelined register files and latched memory. The
scheduling algorithm is integrated in the RTL refinement
system. Experimental results for several examples show

Table 3. resource allocation for examples
ALU shift mult RF bus

example num num num num num
(d/p) (d/p) (d/p) (d/p/r/w)

1(1/n) 1(1/n) - 1(0/n/2/1) 3
2(1/n) 1(1/n) - 3(0/n/2/1) 6

ones(4) 2(1/n) 1(1/n) - 1(1/p/2/1) 3
2(2/p) 1(2/p) - 2(0/n/2/1) 4
2(2/p) 1(2/p) - 3(0/n/2/1) 4
1(1/n) 1(1/n) - 1(0/n/2/2) 3
2(1/n) 1(1/n) - 2(0/n/2/1) 6

SRA(6) 1(2/p) 1(2/p) - 1(0/n/2/1) 3
1(2/p) 1(2/p) - 2(0/n/2/1) 3
1(2/n) 1(2/n) - 2(0/n/2/1) 4
1(1/n) 1(1/n) 1(2/p) 1(0/n/2/1) 3
2(1/n) 1(1/n) 1(2/p) 3(0/n/2/1) 6

MAT(13) 1(2/p) 1(2/p) 1(4/p) 2(0/n/2/1) 3
1(2/p) 1(2/p) 1(4/p) 2(1/p/2/1) 3
2(2/p) 2(2/p) 1(4/p) 3(1/p/2/1) 4
1(1/n) 1(1/n) 1(2/p) 3(0/n/2/1) 8
2(1/n) 2(1/n) 2(2/p) 4(0/n/2/1) 10
3(1/n) 2(1/n) 2(2/p) 4(0/n/2/1) 14

DCT(16) 3(1/n) 2(1/n) 2(2/p) 4(1/p/2/1) 10
1(2/p) 1(2/p) 1(4/p) 3(1/p/2/1) 7
2(2/p) 2(2/p) 2(2/p) 4(1/p/2/1) 10
3(2/p) 2(2/p) 2(2/p) 4(1/p/2/1) 10

Table 4. number of states and resource utilization
example states rport wports buses

9 0.9/3 0.7/1 1.7/3
5 1.6/6 1.2/3 3/6

ones 10 0.8/2 0.6/1 1.5/3
8 1.0/4 0.8/2 1.9/4
7 1.1/6 0.9/3 2.1/4
18 0.9/2 0.6/2 2.2/3
17 1.0/4 0.6/2 1.8/6

SRA 29 0.6/2 0.4/1 1.0/3
26 0.7/4 0.5/2 1.2/3
26 0.7/4 0.5/2 1.2/4
44 0.6/2 0.7/1 2.1/4
38 0.9/6 0.7/3 1.7/6

MAT 63 0.5/4 0.4/2 1.0/3
88 0.4/4 0.3/2 0.7/3
86 0.4/6 0.3/3 0.8/4

135 1.4/6 1.1/3 3.3/8
88 2.2/8 1.7/4 5.1/10
77 2.5/8 2.0/4 5.9/14

DCT 103 1.9/8 1.5/4 4.4/10
198 1.0/6 0.8/3 2.3/7
154 1.2/8 1.0/4 2.9/10
146 1.0/8 1.0/4 3.1/10
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that proposed scheduling algorithm generates efficient re-
sults under resource constraints.
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