
System Level Design Using SpecC Profiler

Lukai Cai, Daniel Gajski

Technical Report #02-08
April 2002

Center for Embedded Computer System
University of California

Irvine, CA 92697

(949)824-8059

{lcai, gajski}ecec.uci.edu

Abstract

This report illustrates the use of SpecC profiler for the system level design at high levels of
abstraction. SpecC profiler allows the designers to choose the granularity of specification, to select
PEs for architecture, and finally to map specification to PEs based on the given design constraints.
The report also provides system level design examples including JPEG encoder, JBIG encoder, and
Vocoder projects. We show that the design processes are much smoother and easier with the use of
SpecC profiler.

I

Index
1Introduction...1

1.1 SpecC Profiler ..1
1.2 Tasks of System Level Design for The Specification Model ..1

2Specification Modeling..2
2.1 Exploring Parallelism ...2
2.2 Choosing Granularity ...3

2.2.1 Behavior Hierarchy ...3
2.2.2 Granularity of Primitive Behaviors for Specification-Architecture Mapping3
2.2.3 Determining Primitive Behaviors for Specification-Architecture Mapping5
2.2.4 Decomposing Leaf Behavior..6

3Architecture Exploration..7
3.1 Upperbound on Amount of PEs..9
3.2 Upperbound on PE Speed ...10

4Specification-Architecture Mapping...10
4.1 Estimating Design Cost ..10

4.1.1 Material Cost...10
4.1.2 Processing Cost ...10

4.2 Estimating Execution Time...11
4.3 Specification-Architecture Mapping Algorithm...11

4.3.1 Performance Gain Of Specification-Architecture Mapping Actions11
4.3.2 Cost-Adding Of Specification-Architecture Mapping Actions12
4.3.3 Performance-Gain / Cost-Adding Ratio..13
4.3.4 Iterative Improvement Algorithm...13

5Design Experience -- JPEG Encoder ..15
5.1 JPEG Encoder ..15

5.1.1 Block Diagram ..15
5.1.2 Testbench..15

5.2 PE Types and Bus Protocols ...15
5.3 Specification Modeling...15

5.3.1 Exploring Parallelism ..15
5.3.2 Choosing Granularity ..16

5.4 Architecture Exploration -- PE Selection ..17
5.4.1 Selecting PE Speed..17
5.4.2 Selecting Amount of PEs ...17

5.5 Specification-Architecture Mapping ...17
5.5.1 Estimating Design Cost ...17
5.5.2 Estimating Execution Time..17
5.5.3 Specification-Architecture Mapping Process ..18
5.5.4 Improved Solution 4: ColdFire-Custom HW(1D, 2D) Design21

6Design Experience -- JBIG Encoder ...23
6.1 JBIG Encoder ...23

6.1.1 Introduction and Block Diagram ..23
6.1.2 Testbench..23

6.2 PE Types and Bus Protocols ...23
6.3 Specification Modeling...23

6.3.1 Exploring Parallelism ..23
6.3.2 Choosing Granularity ..23

6.4 Architecture Exploration -- PE Selection ..26
6.4.1 Selecting PE Speed..26
6.4.2 Selecting Amount of PEs ...26

6.5 Specification-Architecture Mapping ...26
6.5.1 Estimating Design Cost ...26
6.5.2 Estimating Execution Time..26
6.5.3 Specification-Architecture Mapping Process ..27

II

7Design Experience -- Vocoder ...32
7.1 Vocoder ...32

7.1.1 Introduction and Block Diagram ..32
7.1.2 Testbench..32

7.2 PE Types and Bus Protocol...33
7.3 Specification Modeling...33

7.3.1 Exploring Parallelism ..33
7.3.2 Choosing Granularity ..34

7.4 Architecture Exploration -- PE Selection ..37
7.4.1 Selecting PE Speed..37
7.4.2 Selecting Amount of PEs ...38

7.5 Specification-Architecture Mapping ...38
7.5.1 Estimating Design Cost ...38
7.5.2 Estimating Execution Time..38
7.5.3 Specification-Architecture Mapping Process ..38

8Conclusion ..39

III

 List of Figures

Figure 1: Tasks of system level design for the specification model ..1
Figure 2: An example of potential parallel execution...2
Figure 3: An example of potential pipeline execution. ...3
Figure 4: An example of choosing granularity for specification-architecture mapping......................3
Figure 5: The algorithm for determining primitive behaviors for specification-architecture mapping.

..4
Figure 6: An example of determining primitive behaviors of specification-architecture mapping.5
Figure 7: An example of leaf behavior decomposing. ..6
Figure 8: The range of architecture exploration ...7
Figure 9: An example of calculating T_P_OP..8
Figure 10: The iterative improvement algorithm..14
Figure 11: The block diagram of JPEG encoder...15
Figure 12 : Parallelism of JPEG encoder behaviors. ..16
Figure 13: T_OP and granularity of behaviors in JPEG encoder. ...16
Figure 14: The specification model of behavior 1D ..17
Figure 15: Behavior display of the initial design of JPEG encoder...19
Figure 16: Display of pipeline execution of behaviors for improved solution 1.20
Figure 17: Behavior display of improved solution 1. ...20
Figure 18: Behavior display of improved solution 2. ...20
Figure 19: Display of pipeline execution of behaviors for improved solution 3.21
Figure 20: Behavior display of improved solution 3. ...21
Figure 21: Display of pipeline execution of behaviors for improved solution 4.22
Figure 22: JBIG encoder block diagram. ...22
Figure 23: Behavior display of improved solution 4. ...23
Figure 24: GRANULARITY distribution of behavior sde_diff_encode_line.24
Figure 25: The total number of execution of operations of primitive behaviors in JBIG encoder. ..25
Figure 26: granularity of primitive behaviors in JBIG encoder. ...25
Figure 27: Behavior display of the initial design of JBIG encoder ...28
Figure 28: Behavior display for improved solution 1 for JBIG encoder..28
Figure 29: Behavior display for improved solution 2 for JBIG encoder..30
Figure 30: Behavior display for improved solution 3 for JBIG encoder..30
Figure 31: Behavior display for improved solution 4 for JBIG encoder..31
Figure 32: Behavior display for improved solution 5 for JBIG encoder..31
Figure 33: Behavior display for improved solution 6 for JBIG encoder..32
Figure 34: The block diagram of Vocoder example. ...33
Figure 35: Granularity of top level behaviors in Vocoder. ...34
Figure 36: Granularity of child behaviors of LP_Analysis. ..35
Figure 37: Granularity of child behaviors of open_loop. ..35
Figure 38: Granularity of child behaviors of close_loop. ...36
Figure 39: Granularity of child behaviors of codebook. ...36
Figure 40: Granularity of child behaviors of Code_10i40_35bits. ..37
Figure 41: Behavior display of initial solution of Vocoder. ...38
Figure 42 : Behavior display of impved solution 1 ..39

IV

List of Tables
Table 1: PE_N table for the example in Figure 9. ..10
Table 2 : PE_N for JPEG encoder ...17
Table 3 : Estimated computation time of leaf behaviors of JPEG encoder.18
Table 4: Estimated communication time between leaf behaviors of JPEG encoder.18
Table 5: Table of performance_gain, cost_adding, and TCR for improved solution 1.19
Table 6: Table of performance_Gain, cost_adding, and TCR for improved solution 2.19
Table 7: Table of performance_gain, cost_adding, and TCR for improved solution 3.20
Table 8 : Table of performance_gain, cost_adding and TCR for improved solution 4.21
Table 9: PE_N for JBIG encoder. ..26
Table 10: Estimated execution time for leaf behaviors of JBIG encode ..27
Table 11: Estimated communication time between sde_encode_stat and other leaf behaviors.27
Table 12: Table of performance_gain, cost_adding and TCR for improved solution 1.29
Table 13: Table of performance_gain, cost_adding and TCR for improved solution 2.29
Table 14: Table of performance_gain, cost_adding and TCR for improved solution 3.29
Table 15: Table of performance_gain, cost_adding and TCR for improved solution 4.30
Table 16: Table of performance_gain, cost_adding and TCR for improved solution 5.31
Table 17: Performance_gain and TCR table for solution 6. ..32
Table 18: Estimated computation time of primitive behaviors of Vocoder (per-frame)37
Table 19: Estimated execution time of primitive behaviors of Vocoder (per-frame)37
Table 20: Table of performance_gain, cost_adding, and TCR for improved 1.39

1

Abstract
This report illustrates the use of SpecC profiler

for the system level design at high levels of
abstraction. SpecC profiler allows the designers
to choose the granularity of specification, to
select PEs for architecture, and finally to map
specification to PEs based on the given design
constraints. The report also provides system level
design examples including JPEG encoder, JBIG
encoder, and Vocoder projects. We show that the
design processes are much smoother and easier
with the use of SpecC profiler.

1 Introduction

1.1 SpecC Profiler
This report describes the usage of using

SpecC profiler [1] for the system level design
at the functional level of specification.

SpecC profiler [1] is a profiler for the
specification model of SpecC language
[2][3]. Specification model of SpecC
language specifies the desired system
functionality without containing any
implementation information. It is the highest
abstraction model in SpecC methodology. In
comparison to other profilers[1], SpecC
profiler has following characteristics:

a) It is retargetable. It analyzes the given
specification and generates the
characteristics of behaviors in the
specification when behaviors are
executed on the mapped processing
component (PE). (In the specification
model of SpecC language, behavior
refers to a behavior entity that
encapsulates a number of functions and
connects to other behaviors by its ports).
It also generates the statistics for the
entire design in the case that the different
behaviors of the design are executed on
different PEs

b) It not only computes the characteristics
of computation, but also computes the

characteristics of communication and
needed memory size of design.

c) It computes the characteristics of design
when the behaviors of the design are run
in sequential, parallel or pipeline style
hierarchically.

1.2 Tasks of System Level Design
for The Specification Model

The SpecC methodology is a top-down
design approach. SpecC methodology
contains three main tasks, specification
modeling, architecture exploration, and
specification-architecture mapping, as
depicted in Figure 1. Specification modeling
involves modeling the design functionality
and determines the granularity of behaviors
and the primitive behaviors for specification-
architecture mapping. Task architecture
exploring then involves choosing the
computation and communication components
from a library and assembling the selected
components into a system architecture.
Finally, specification-architecture mapping
involves mapping the primitive behaviors
produced by specification modeling to the
selected components of architecture, to meet
the imposed design constraints.

 Specification
modeling

Architecture
exploring

Specification-
architecture

mapping

Figure 1: Tasks of system level design for
the specification model

a) Specification Modeling.
 Specification modeling composes of two
tasks. First, designers specify the
functionality using the specification model of
SpecC language[2][3], in which parallel and
pipeline execution are specified explicitly.

System Level Design Using SpecC Profiler
Lukai Cai, Daniel Gajski

University of California, Irvine

2

Second, the granularity of the specification
for specification-architecture mapping is
chosen. This process defines primitive
behaviors for specification-architecture
mapping. Each primitive behavior can be
mapped to only one PE.

b) Architecture Exploring.
 Designers select PEs and buses from PE
and bus library and generate the system
architecture. The PE/bus selection must
guarantee that the imposed design constraints
are met when the specification is
implemented on the selected PEs/buses.

c) Specification-Architecture Mapping.
 The purpose of specification-architecture
mapping is to generate a design
implementation to meet the design constraints
with low design cost. According to the
specification generated by specification
modeling and the system architecture
generated by architecture exploration,
designers map primitive behaviors to PEs,
and map communication/channels between
behaviors to buses/protocols. After
specification-architecture mapping, a design
implementation at the high level of
abstraction is generated.

 SpecC profiler computes the characteristics
of computation, communication, and storage
size of behaviors, which help designers to
understand specification and to choose the
granularity for specification-architecture
mapping. It also evaluates the design
performance based on the given specification
and the selected system architecture, which is
the foundation of architecture exploration and
specification-architecture mapping. Thus,
system level design of the high level of
abstraction using SpecC profiler becoming
much easier. With the help of SpecC profiler,
we have successfully modeled the design
examples of JPEG encoder, JBIG encoder,
and Vocoder projects.

This report is organized as follows:
Section 2 introduces specification modeling.
Section 3 introduces architecture exploring.
The following section introduces
specification-architecture mapping. Section 5
through section 7 illustrate the design
processes of JPEG encoder, JBIG encoder,
and Vocoder. And finally section 8 concludes
the report.

2 Specification Modeling
Specification modeling uses SpecC

language [2][3] to model the functionality of
design. The guidelines of specification
modeling are [4]:

a) Separate communication and
computation.

b) Explore inherent parallelism in the
system functionality.

c) Use hierarchy to group related
functionality.

d) Choose the granularity of
specification and determine primitive
behaviors for specification-
architecture mapping.

e) Use state transitions to explicitly
model the computation steps.

 Designers can follow guidelines a, c, and e
without difficulty. However, to follow
guideline b and d, designers must know
behavior characteristics, such as the total
amount of communication among behaviors
and the total number of execution of
operations in behaviors, which can be
generated by SpecC profiler.

2.1 Exploring Parallelism
The total amount of communication

between two behaviors produced by SpecC
profiler can help designers to explore
parallelism. The total amount of
communication between two behaviors
T_BBi,j is described in section 4.3.2 of [1].

For example, in Figure 2, if behavior A and
B are executed one after another, and there is
no communication between A and B, then A
and B can be executed in parallel instead of
in sequence.

A

B

Figure 2: An example of potential parallel
execution.

3

A

B

C

Figure 3: An example of potential pipeline
execution.

Another example is illustrated in Figure 3.
Behavior A, B and C are executed
sequentially inside a loop. If traffic only
exists from A to B, and from B to C, then
behavior A, B and C can be executed in
pipeline style.

2.2 Choosing Granularity

2.2.1 Behavior Hierarchy
In the specification model of SpecC, there

are two types of behaviors: leaf behavior and
non-leaf behavior. A leaf behavior contains a
list of statements, such as a = b + c, or if (a
> b) { a = c;}. A leaf behavior does not
contain any behavior instantiations. A non-
leaf behavior consists of a set of behavior
instantiations. These instantiated behaviors
are explicitly called in sequential, parallel,
pipeline, or state transition style [2][3]. A
good non-leaf behavior does not include any
statements besides instantiated behavior calls,
in order to have good modularity. A good
non-leaf behavior is called as clean behavior.
If all the non-leaf behaviors in the
sepecification are clean behaviors, then the
specification is a clean specification. The
method of specification modeling described
is only appropriate for clean specifications.
We also illustrate the method of specification
modeling for non-clean specification by using
the design process of JBIG encoder described
in section 6.

 A

PE1 PE2 A1

A2

(b) System Architecture(a) Specification model

Figure 4: An example of choosing
granularity for specification-architecture
mapping.

In general, all the leaf behaviors reflect
algorithm blocks. The design experience of
Vocoder described in section 7 gives an
example of specification modeling for the
case that leaf behaviors don’t reflect the
algorithm blocks.

2.2.2 Granularity of Primitive Behaviors
for Specification-Architecture
Mapping

Primitive behavior for specification-
architecture mapping is defined as the
undivided behaviors that designers can only
map it as a whole to one PE rather than map
different parts of it to different PEs.
Granularity of primitive behaviors determines
the flexibility of specification-architecture
mapping. For example, in Figure 4, if
designers choose behavior A that has coarse
granularity as the primitive behavior, then
two mapping possibilities are:

a) Map(A) = PE1
b) Map(A) = PE2

However, if designers choose behaviors
with finer granularity as primitive behaviors,
i.e., choose A1 and A2 as primitive
behaviors, then there exists four mapping
possibility:

a) Map(A1) = PE1, Map(A2) = PE1
b) Map(A1) = PE1, Map(A2) = PE2
c) Map(A1) = PE2, Map(A2) = PE1
d) Map(A1) = PE2, Map(A2) = PE2

The smaller the granularity of primitive
behaviors for mapping, the larger range
specification-architecture mapping can be
explored. Hence, the better mapping solution

4

designers can produce during specification-
architecture mapping. On the other hand,
design with primitive behaviors of finer
granularity needs more work on decomposing

behaviors and on making decisions for
specification-architecture mapping.

Algorithm DETERMINING_PRIMITIVE_BEHAVIORS

primitive_behaviors = behaviors representing algorithm blocks.
implementation = ARCHITECTURE_EXPLORATION__SPEC_ARCHITECTURE_MAPPING();
while NOT_MEET_CONSTRAINT(implementation) do

upperbound = MAX (G(i)), for all i in primitive_behaviors; // G(i) is the granularity of behavior i
upperbound = upperbound / 2;
b = FIRST_ITEM_IN(primtive_behavior);
while b != NULL do

DECOMPOSING (b, upperbound, primtive_behavior);
b = NEXT_ITEM_IN(primtive_behavior);

endwhile
implementation = ARCHITECTURE_EXPLORATION__SPEC_ARCHITECTURE_MAPPING();

endwhile

function DECOMPOSING (i, upperbound, primtive_behavior){
if (G(i) > upperbound) do

If (IS_NON_LEAF_BEHAVIOR(i)) do
REMOVE_I_FROM_LIST(i, primitive_behavior);
for (each j = child(i)) do

APPEND_J_TO_LIST(j, primtive_behavior);
endfor

else
DECOMPOSING_LEAF_BEHAVIOR (i, upperbound);

endif
endif

Figure 5: The algorithm for determining primitive behaviors for specification-architecture
mapping.

5

 Main

B

D

E

C

F

G

(a) Behavior hierarchy display

The granularites of behaviors

30%

70%

10%
20%

30%
40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

B C D E F G

Behavior name

G
ra

nu
la

rit
y

(b) Granularities of behaviors

Main

BC

F G

…

(c) Primitive behavior
searching tree

Figure 6: An example of determining primitive behaviors of specification-architecture mapping.

We define the granularity of a behavior as
the percentage of the total number of
execution of operations of the behavior in
the total number of execution of operations of
the whole specification. We use G(A) to
denote the granularity of behavior A,

T_OPA = N_BA * OPA
G(A) = T_OPA / T_OPMain

where N_BA represents the number of
execution of behavior A. OPA represents the
average number of execution of operations in
a single execution behavior A, per behavior
A’s execution. T_OPA is the total number of
execution of operations in behavior A.
T_OPMain is the total number of execution of
operations in the whole specification during
simulation. OP and N_B are generated by
SpecC profiler as described in section 4 of
[1].

2.2.3 Determining Primitive Behaviors
for Specification-Architecture
Mapping

In general, we choose the behaviors
representing algorithm blocks as primitive
behaviors for specification-architecture
mapping. However, sometimes designers
cannot find implementation to meet the
design constraints because the granularities
of these primitive behaviors are too coarse.
Therefore, to produce the implementation that
meet the given design constraint, designers
must decompose at least one of primitive
behaviors to several new primitive behaviors
and redo the architecture exploration and
specification-architecture mapping with the
new set of primitive behaviors. Figure 5
provides an algorithm to determine the
primitive behaviors for mapping for
designers.

 Figure 6 shows an example to illustrate the
algorithm in Figure 5. Figure 6(a) displays
the behavior hierarchy of the example, Figure
6(b) lists the granularities of the leaf
behaviors in the example. In this example,
behavior B and C reflect the algorithm
blocks.

First, algorithm chooses behavior B and
C as the primitive behaviors to do the
architecture exploration and behavior-
architecture mapping. However, the resulting
implementation does not meet the imposed

design constraints. Therefore, behaviors with
smaller granularity must be chosen.

The algorithm computes variable
upperbound as 35%, which is the half of
MAX(G(C), G(B)). The function
DECOMPOSING then decomposes all the
primitive behaviors whose granularities are
greater than upperbound into parts. For
example, algorithm decomposes behavior C
to behavior F and G, removes behavior C
from set primitive_behaviors by
REMOVE_I_FROM_LIST, and added
behavior F and G to primitive_behaviors by
APPEND_J_TO_LIST.

6

Behavior A(…){
 …
 void main(){
 for(i=0; i<1000; i++){
 j[i]++;
 k[i]=j[i] + a;
 }
};

(a) Specification before decomposing
behavior A

Behavior A_1(…){
 void main(){
 for(i=0; i<1000; i++)
 j[i]++;
};
Behavior A_2(…){
 void main(){
 for(i=0; i<1000; i++)

k[i]=j[i] + a;
};
Behavior A(…){
 void main(){
 A_1.main();
 A_2.main();
 }}

(b) Specification after decomposing
behavior A

Figure 7: An example of leaf behavior decomposing.

Function DECOMPOSING tests all the
new generated primitive behaviors, i.e.,
behavior F and G. It decomposes behavior G
by function
DECOMPOSING_LEAF_BEHAVIORS
because granularity of behavior G is greater
than upperbound and G is a leaf behavior.
Decomposing leaf behaviors is quite complex
and is explained in 2.2.4. Figure 6(c) displays
the decomposing tree of this example of
Figure 6(a).

2.2.4 Decomposing Leaf Behavior
To decompose a leaf behavior, we group

the statements of this behavior to several sets,
each of which becomes a new leaf behavior.
Note that during the decomposing, the
computational and communication overheads
may be generated. For example, in Figure 7,
behavior A is decomposed into two
behaviors, A_1 and A_2. Since behavior A
contains a for loop, each of newly formed
behaviors A_1 and A_2 contains one for
loop. Hence a additional for loop forms the
computation overhead. Also, since both
behavior A_1 and A_2 access array j,
decomposition increases communication
overhead if we map behavior A_1 and A_2 to
different PEs. Hence, if decomposing a leaf
behavior produces heavy computational and
communication overheads, instead of

decomposing the leaf behavior we still use it
as primitive behavior.

SpecC profiler can compute the
computational and communication overheads
for leaf behavior decomposing. For example,
in Figure 7, SpecC profiler generates the
average number of execution of operations
(OP) of behavior A before and after
decomposing. By comparing the two,
designers can obtain the computation
overhead, which is (T_OPnew_A - T_OPold_A).
T_OP is described in section 2.2.2

In Figure 7, the communication overhead
equals to (T_BBA1,A2 * N_BA), while T_BB
represents the traffic between behavior
instances A1 and A2 and N_B represents the
number of execution of behavior A. T_BB
and N_B is described in section 4 of report
[1].
Note that in some cases, designers cannot
decide whether a leaf behavior should be
decomposed or not entirely on the basis of
the resulting overhead. If new generated
behaviors can be executed in a
parallel/pipeline style instead of in a
sequence style, a certain amount of overhead
can be tolerated.

7

3 Architecture Exploration
 The purpose of the system level design is

to produce an implementation with
satisfactory performance and with low cost.
However, architecture model cannot
determine the cost and the performance of
implementation before performing
specification-architecture mapping.
Therefore, we divide the task of the
architecture exploration into two steps. In the
first step, we limit the range of the
architecture exploration without performing
specification-architecture mapping, according
to the characteristics of specification and
imposed design constraints. In the second
step, we select the architecture for
specification-architecture mapping. This
section only introduces the first step of the
architecture exploration. The step two which
is called architecture selection will be
introduces in next section.

In this report, we use execution time as
the performance of design. In Figure 8, the
shaded circle at the top-left corner represents
the processor with the lowest performance
and with the lowest cost among processors on
PE library. This single processor represents
the simplest architecture.

There are two directions to improve the
performance of design by changing the

architecture. In the horizontal direction, the
performance can be improved by using
multiple PEs instead of single PE, if
parallelism exists in given specifications. In
the vertical direction, the performance can be
improved by using faster PE to replace
slower PE. With the improvement of the
performance, the design cost also increase,
which is denoted by single-line arrows in
Figure 8.

With the given specification and the
imposed time constraint, there is an
upperbound on the amount of PEs in the
architecture. Increasing the amount of PEs in
the selected architecture does not improve the
design performance if the amount of PEs in
the architecture is already not less than the
upperbound on the amount of PE. Similar,
there is an upperbound on PE speed for
single-PE architecture. If PE speed is lower
than the upperbound, time constraint cannot
be met when all behaviors are executed on
this PE. In Figure 8, the upperbound on the
amount of PEs concerns the performance gain
in the horizontal direction; while the
upperbound on PE speed concerns the
performance gain in the vertical direction.

In Figure 8, the dotted area represents the
architecture exploration range.

Multi-
PEs

Fast PE

Parallelism

Cost

Performance

Upperbound
of number of PE

Threshold of
PE speed

Figure 8: The range of architecture exploration

8

Total execution number of operations

1500

700

450
350

0
200
400
600
800

1000
1200
1400
1600

A B C D
Behavior name

T_
O

P

Total palallel execution number of operations

1500

800
700

0
200
400
600
800

1000
1200
1400
1600

T_P_OP(A,1) T_P_OP(A,2) T_P_OP(A,3)

Behavior name

T_
P_

O
P

(a) Total execution number of
operations of behaviors

(e) Total parallel execution number of
operations of behavior A

+

+

B: 700

D: 350C: 450

CD: 800

A: 1500

+

||

B: 700

D: 350C: 450

CD: 800

A: 800

||

||

B: 700

D: 350C: 450

CD: 450

A: 700

(c) T_P_OP(A, 1) (d) T_P_OP(A, 2) (d) T_P_OP(A, 3)

B: 700

D: 350C: 450

CD:

 A:

(b) Hierarchical construction of
behavior A

||

||

Figure 9: An example of calculating T_P_OP.

9

3.1 Upperbound on Amount of
PEs

In most cases, the more PEs the
architecture contains, the higher the cost of
the implementation is, and the more complex
the design process is.

The maximal amount of parallelism in the
specification determines the upperbound on
the amount of PEs in the architecture. Adding
a new PE to the architecture cannot improve
design performance if the amount of PEs in
the architecture has been no less than the
maximal amount of parallelism in the
specification. Thus, the maximal amount of
parallelism in the specification is the
upperbound on amount of PEs.

We further compute the total parallel
amount of execution of operations of
behavior according to the selected amount of
PE but not PE performance. The total parallel
number of execution of operations of
behavior equals to the sum of T_OP of its
child behaviors if the child behaviors are in
same PE and equals to the maximum of T_OP
of its child behaviors if the child behaviors
are in different PEs. Since total parallel
number of executions of operations of
behavior do not only depend on the given
specification and the selected architecture,
but also depend on the specification-
architecture mapping, we use T_P_OP to
represent the smallest value of total parallel
number of execution of operations of
behaviors.

The example in Figure 9 illustrates our
method of calculating T_P_OP. Behavior A
contains three parallel executing child
behavior B, C, and D, the total number of
execution of operations of which are
displayed in Figure 9(a).

T_P_OP(A, n) denotes T_P_OP for
behavior A when n PEs is in the architecture.
Our algorithm first builds the hierarchy tree
of A’s child behaviors according to
hierarchical clustering algorithm[11]. Two
child behaviors that have the smallest T_OP
will be clustered to one hierarchical node at a
time until only one hierarchical node left at
the highest level. Figure 9(b) displays the
hierarchical tree of behavior A. Two “||”
symbols represents that the child nodes of

node A and CD can be executed in the
parallel style.

Second, we assign parallel execution
relation to hierarchical nodes from the top to
the bottom in the hierarchical tree until the
amount of assigned parallel execution is one
smaller than the amount of PE in architecture.
A node is assigned a parallel execution only
when the child nodes of it can be executed in
parallel as indicated by “||” in the hierarchical
tree and there is a parallel execution available
for assignment.

Third, we compute T_P_OP for each
hierarchical node in the tree. If the execution
relation of hierarchical node is a parallel
execution, then T_P_OP of it is equal to the
maximum of T_P_OP of its child node. If the
execution relation of hierarchical node is a
sequential execution, then T_P_OP of it is
equal to the sum of T_P_OP of its child
nodes.

For example, if we select only one PE for
the examples in Figure 9(a), then the amount
of assigned parallel execution is 1-1 = 0.
Therefore the execution relations of node A
and CD are both sequential execution as
indicated by “+” in Figure 9(c), and
T_P_OP(A,1) equals to 1500, which is the
sum of T_P_OPs of behavior B, C, and D, as
displayed in Figure 9 (c). If two PEs are in
the architecture, then we assign a parallel
execution to node A. Since the amount of
assigned parallel execution is 2-1 = 1 and a
parallel execution has been assigned to node
A, the execution relation of CD has to be
sequential. In this case, T_P_OP(A,2) equals
to MAX(T_OP(B), (T_OP(C) + T_OP(D)))
=800. If three PEs are in the architecture,
then the execution relations of node A and
CD are both parallel execution and
T_P_OP(A,3) = MAX((T_OP(B),
MAX(T_OP(C), T_OP(D))) = 700 .

After T_P_OP is calculated, we compute
PE_N to represent the gain of T_P_OP by
adding one PE to the architecture. We use
PE_N to evaluate the efficiency of
parallelism.

PE_N can be defined as:

),(__
),(__),(_

mDesignOPPT
nDesignOPPTmnNPE =

10

PE_N(2,1) PE_N(3,2) PE_N(4,3)
Main 0.53 0.88 1

Table 1: PE_N table for the example in Figure 9.

For example, PE_N(n+1, n) = 99%
indicates that adding one new PE to n PE
architecture cannot achieve more than 1% of
the gain of T_P_OP, if the added PE is not
faster than the slowest PE in architecture. The
usage of PE_N is explained in section 4.

Table 1 is the PE_N table for the example
in Figure 9. It indicates that no more than 3
PEs should be selected for the architecture.

3.2 Upperbound on PE Speed
With a given specification and a given

time constraint, we can compute the million
operations per second (MOPS) for behaviors.
If the given time constraint for behavior A is
TC(A), then

MOPS(A) = T_OPA / TC(A)

Where T_OPA is described in section
2.2.2.

Each PE has a property MOP(PE) to
denote the average million operations per
second executed on this PE. For any
Behavior A and PE x, if MOPS(A) ≤
MOPS(x), then behavior A can meet its time
constraint when it is executed on PE x.
Therefore, when we select PEs for the
specification, the MOPS of selected PE must
be greater than MOPS of behavior executed
on that PE.

4 Specification-Architecture
Mapping

Specification-architecture mapping maps
the behaviors of the given specification into
PEs of the selected architecture. The purpose
of it is to find a mapping solution to meet the
time constraint with low cost. In this section,
we introduce the algorithm of architecture
selection and specification-architecture
mapping.

First, we introduce how to compute the
cost and the execution time of
implementation. Then we introduce an
iterative improvement algorithm for selecting
architecture as well as specification-
architecture mapping.

4.1 Estimating Design Cost
 Design cost contains two parts: material

cost and processing cost.

design cost = material cost + processing
cost

The design cost is evaluated by designers
or other EDA tools. SpecC profiler cannot
provide statistics for design cost.

4.1.1 Material Cost
The material cost of design is:

material cost = ΣPE cost + Σmemory
cost

PE cost refers to production cost of
processors or manufacturing cost of custom
HW. Memory cost refers to production cost
of memories. The costs of PE and memory
are saved in PE library.

4.1.2 Processing Cost
Processing cost reflects the cost required

during design process. Processing cost
consists of:

a) The cost of hardware design.
b) The cost of communication design.

The cost of hardware design refers to the
cost for designing started from functional
specification to layout specification. The cost
of hardware design is evaluated based on how
many primitive behaviors for specification-
architecture mapping are implemented in

11

hardware and how difficult it is to design
these primitive behaviors on custom HW.

 The cost for communication design
contains the cost of bus and protocol design.
It is evaluated based on whether transducer
[2] should be inserted among PEs, how
difficulty it is to develop transducers, and
how difficult it is to design communication
protocols.

4.2 Estimating Execution Time
 We define the execution time of design

as,

execution time = computation time +
communication time

communication time = data transfer time +
synchronization time

With SpecC profiler, we can coarsely
estimate computation time and data transfer
time. If behavior A is executed on PE x, then
we first select the PE weight table
representing PE x from PE library. Then, we
use weighted operations Total_PA(x)[1] to
represent execution time of behavior A when
it is executed on PE x. Similar, we use
weighted communication C_DA(x)[1] to
estimate data transfer time for behavior A
when behavior A communicates with other
behaviors on different PEs through bus x.
Total_P and C_D are described in section 5 of
report [1].

SpecC profiler cannot estimate
synchronization time. Designer should
provide synchronization time among
behaviors.

4.3 Specification-Architecture
Mapping Algorithm

We design an iterative improvement
algorithm for architecture selection and
specification-architecture mapping.

Initially, all behaviors are mapped to a
single-processor architecture. The MOPS of
the processor in the architecture must be
greater than the MOPS of design. If there are
more than one processor that can satisfy
above condition in the PE library, then the
one with the lowest cost is selected. If the
cost of selected processor is smaller than the
cost constraint, then mapping process is

finished and system architecture and
specification-architecture mapping solution
are found. Otherwise, if the cost of selected
processor is greater than the cost constraint,
then architecture selection and specification-
architecture mapping should be redone. In
this report, we don’t consider the case that
the cost constraint is smaller than any
processor cost.

If there is no processor whose MOPS is
greater than the MOPS of design, then the
iterative improvement algorithm will be
performed.

During the process of the iterative
improvement, we can apply four
specification-architecture-mapping actions:

a) Reduce the computation time of a
primitive behavior by moving this
primitive behavior from slower PE to
faster PE.
b) Schedule sequential executed
primitive behaviors to run them in parallel
on different PEs if feasible.
c) Reduce data transfer time by
changing communication protocols.
d) Re-schedule behaviors to reduce the
synchronization time.

 In this report, we only concern the first
three actions.

 In 4.3.1, we first introduce the
performance gain of specification-
architecture-mapping actions. In 4.3.2, we
describe the cost-adding of the actions. In
4.33, we introduce performance gain/cost-
adding ratio to characterize each mapping
action. Finally, in 4.4.4, we give the iterative
improvement algorithm.

4.3.1 Performance Gain Of Specification-
Architecture Mapping Actions

4.3.1.1 Performance Gain Of Moving
Behavior to Faster PE

If we move behavior A from PE x to PE y,
then the Performance-gain(PG) is:

PG(MOV, A, x, y) = Total_PA(x) +
C_DA(x) - Total_PA (y) - C_DA(y)

12

Above equation is valid only for the
behaviors that are not run in parallel with any
other behaviors.

 If behavior A run on PE x is executed in
parallel with another behavior B run on PE z,
and there are no other behaviors run in
parallel with A on PE y, then

 PG(MOV, A, x, y) = Total_PA(x) +
C_DA(x) - Max(Total_PB(z) + C_DB(z),
Total_PA (y) + C_DA(y));

If behavior A run on PE x is executed in
parallel with another behavior B run on PE y,
then

PG(MOV, A, x, y) = Total_PA(x) +
C_DA(x) - (Total_PB(y) + C_DB(y) +
Total_PA (y) + C_DA(y));

4.3.1.2 Performance Gain Of Mapping
Behaviors for Parallel Execution

If there are two behaviors A and B
executed on PE x, and behavior A and B can
be run in parallel on PE x and PE y, then the
execution time may be improved by mapping
behavior A and behavior B to different PE,
ex. PE x and PE y, and running behavior A
and B in parallel. If behaviors A and B are on
PE x at the beginning, and there are no
behaviors run in parallel with A and B on PE
y, then

 PG(PAR, A, B, x, y) = Total_PA(x) +
C_DA(x) + Total_PB(x) + C_DB(x) -

 Min(Max(Total_P A(x)+ C_D A(x),
Total_P B(y)+ C_D B(y)) ,

 Max(Total_P B(x)+ C_D B(x),
Total_P A(y)+ C_D A(y)))

If there are some behaviors run in parallel
with A and B on PE y already, then PG(PAR,
A, B, x, y) should be computed case by case.

4.3.1.3 Performance Gain Of Changing
Communication Protocols

 If a slow bus/protocol x is replaced by a
faster bus/protocol y, then the performance
gain will be:

))(_)(_(),,(yDCxDCyxBUSPG iii
−= ∑

i refers to the behaviors that using
bus/protocol x for communication.

4.3.2 Cost-Adding Of Specification-
Architecture Mapping Actions

 Besides computing performance gain for
each specification-architecture-mapping
action, designers should also compute the
cost adding for each specification-
architecture-mapping action., based on the
description in 4.1.

4.3.2.1 Cost-Adding Of Moving Behavior
to Faster PE

If behavior A is moved from processor
PE1 to custom HW PE2, then the processing
cost of A for PE2 should be added to cost-
adding.

If before moving, PE2 is not in the
architecture, then the material cost of PE2,
the material cost of communication
(transducer), and the processing cost of
communication are added to the cost-adding.

4.3.2.2 Cost-Adding Of Mapping
Behaviors for Parallel Execution

Before mapping, both behavior A and B
are executed on PE1. After mapping,
behavior A and B are run in parallel on PE1
and PE2, respectively.

If before mapping, PE2 is not in the
architecture, then the material cost of PE2,
the material cost of communication
(transducer), and the processing cost of
communication are added to the cost-adding.

If PE2 is custom HW, then the processing
cost of PE2 for behavior B is added to the
cost-adding.

If PE1 is custom HW, then the processing
cost of PE2 for behavior B is subtracted from
the cost-adding.

4.3.2.3 Cost-Adding Of Changing
Communication Protocols

 If changing communication protocols will
add transducer to system, then the material
cost for transducer is added to the cost-
adding.

If changing communication protocols will
remove transducer from system, then the

13

material cost for transducer is subtracted
from the cost-adding.

The processing cost for new protocol is
added to the cost-adding. The processing cost
for old protocol is subtracted from the cost-
adding.

4.3.3 Performance-Gain / Cost-Adding
Ratio

 The performance-gain/cost-adding
ratio(TCR) for each specification-architecture
mapping action reflects the efficiency of
mapping actions. For architecture mapping
action i,

 TCR(i) = PG(i) / Cost_adding(i).

where PG(i) is the performance gain of
action i. Cost_adding(i) is the cost adding of
action i.

If TCR(i) is greater than TCR(j), then
action i will get more performance-gain at the
same cost.

4.3.4 Iterative Improvement Algorithm
If the initial single-processor design

described at the beginning of 4.3 cannot meet
the given design constraint, then multi-PE
architecture must be selected. There are two
different types of architecture: multi-
processor architecture, and processor-custom
HW architecture. The multi-processor
architecture don’t need the implementation of
custom HW, while the processor-custom HW
architecture has better performance. In this
subsection, we first test whether multi-
processor architecture design or HW-SW co-
design can produce an implementation
satisfying the given constraint. Then starting
from the initial single-processor design, we
use an iterative improvement algorithm to
produce the implementation.

4.3.4.1 Multi-Processor Architecture
Design

There are three tasks in multi-processor
architecture design: selecting PE type,
amount of PE, and mapping behaviors to PE.
We select the processor with the fastest speed
called PE1 out of PE library as the processor
type. We select the amount of PE n according
to following two inequations,

)1(_
int_)1,(_

PEPTotal
ConstraTimenNPE

Main

<

and
)1(

int_
PECost

constraCostn <

If there is a result of n satisfying above
two inequations, then n-PE1 architecture can
meet the given time constraint and the given
cost constraint. In this case, we select the
smallest number of n satisfying the
inequations as the amount of PE allocated in
the architecture. Specification-architecture
mapping will be implemented by performing
our iterative improvement algorithm.
Otherwise, n-PE1 architecture will not meet
the design constraints. Therefore, HW-SW
co-design must be implemented.

4.3.4.2 HW-SW Co-Design
Another solution is HW-SW co-design.

HW-SW co-design is more complex than
multi-processors architecture design because
the PE types allocated in the architecture are
different. If a custom HW called HW is the
fastest PE in the PE library and there is an
integer n that satisfy following inequation,

)(_
int_)1,(_

HWPTotal
ConstraTimenNPE

Main

<

then mapping implementation on n-HW
architecture can meet the given time
constraint. Therefore, n-PE architecture can
meet the time constraint. Otherwise, a faster
custom HW has to be chosen as PE type.

Unlike multi-processor architecture design
that have chosen PE type and amount of PE
before behavior-architecture mapping, during
the HW-SW co-design, we decide the PE
type, amount of PEs in the architecture and
behavior-architecture mapping at the same
time during the process of our iterative-
improvement algorithm.

4.3.4.3 Algorithm Description
Figure 10 describes our iterative

improvement algorithm. First, we select the
fastest processor out of PE library as the
unique component of the single-PE
architecture. We map all the behaviors to this
architecture. If the initial implementation
meet the given time constraint and cost
constraint, then the initial implementation is
final solution. Otherwise, if the cost
constraint is not meet, then we replace the
processor in the architecture with a processor
with lower cost and with lower performance

14

in the library. We produce new
implementation by mapping all behaviors to
this processor. The processor replacing will
be continued until the new implementation
meet the cost constraint and time constraint.
If no implementation of mapping all the
behaviors to one processor can meet both the
time and cost constraints, then no
implementation can be found based on our PE
library and specification. This process is
completed by function Init_Solution.

If the initial implementation does not meet
the time constraint, then Update_TCR will
compute the performance gain, cost_addiing,
and performance_gain/cost_adding
ratio(TCR) of each behavior-architecture
mapping action for each behavior. If
designers want implementing multiple-
processor architecture design, then next
possible PE in the architecture is always the
fastest processor in the library. If designers
want implementing SW-HW co-design, then
next possible PE in the architecture can be all
of the PEs in the PE library. Designers also

can limit the range of PE selection when they
compute for mapping actions. With the
statistics for each mapping action,
Action_Selection selects the action with the
greatest TCR as the next mapping action. If
the selected mapping action add new PE to
the architecture, then Update_PE_List add
this PE to PE list Selected_PE. Apply_Action
updates the current architecture and behavior-
architecture mapping solution according to
the selected action. Finally, algorithm
compares the cost of updated implementation
with the given cost constraint and compares
the execution time of updated implementation
with the given time constraint. The process of
Action_Selection, Update_PE_List, and
Apply_Action will be repeated until the
implementation meets the given time
constraint and the given cost constraint, or no
implementation meeting design constraint can
be found at all. Design examples are
described in section 5, 6, and 7.

Algorithm Arachitecture_Exploration

Init_Design = Init_Solution();
if (T(Init_Design) > T(constraint)) do

 Selected_PE = {Fastest_processor};
 Design = Init_Design;
 Update_TCR(Design);

while (T(Design) > T(constraint)) do
Action = Action_selection(Design);
Update_PE_List(Selected_PE);
Design = Apply_Action(Design, Action);
Update_TCR(Design);

 if (Cost(Design) > Cost(constraint)) do
 There is no solution.
 exit();

 endif
 endwhile

else
if (Cost(Design) < Cost(constraint)) do

Design = Init_Design
else

Try_SlowerPE(Design);
endif

endif
}

Figure 10: The iterative improvement algorithm

15

Input Handle
data(HD)

1stHalf
DCT(1D

)

Quantizat
ion (QT)

Huffman
Encode

(HE)
Output2ndHalf

DCT(2D
Adjust

DCT(AD)
Bound

DCT(BD)
Data
Recv
(DR)

Figure 11: The block diagram of JPEG encoder.

5 Design Experience -- JPEG
Encoder

5.1 JPEG Encoder

5.1.1 Block Diagram
JPEG [9] is an image compression

standard. It is designed for compressing
either full-color or grey-scale images of
natural scenes. Figure 11 shows the block
diagram of the DCT based encoder for a gray
scale image.

5.1.2 Testbench
We use a bitmap (bmp) file containing

180 8×8 pixel blocks as the input of design.
The given time constraint for this input is
90ms, which is denoted as TC(Design).

5.2 PE Types and Bus Protocols
 There are two types of PE in the PE

library:

a) Motorola ColdFire processor
b) Custom HW

We use two weight tables to represent
both PEs. The weight table contains
computation weights for different operation
types and data types representing the
executed clock cycles on corresponding PE.
Both of the weight tables also contain the
communication weights for data types, which
represent the required executed clock cycles
of the normal model of Coldfire master bus

protocol[4]. In this protocol, the transfer time
for 4 bytes is 2 clock cycles. Weight tables
also contains the memory sizes for data types.
The frequency of both ColdFire and custom
HW is 66 MHz.

We compute MOPS for ColdFire and
custom HW. Since the executed clock cycles
of most operation types are between 1 and 9
clock cycles. Thus, the lowerbound of
MOPS(ColdFire) = 66/9 = 7.3, the
upperbound on MOPS(ColdFire) = 66/1 = 66.

The MOPS of custom HW is more
difficult to compute from the custom HW
weight table. In custom HW’s weight table,
more than one operation can be performed in
one clock cycle. Therefore, the weights for
some operation types are 0 when we set the
weights for the operations executed in the
same clock cycle with them as 1. Since the
required executed clock cycles for most
operation types of HW are between 0 and 9
clock cycles, we can have the lowerbound of
MOPS(HW), which is 7.3.

5.3 Specification Modeling

5.3.1 Exploring Parallelism
 Figure 12 shows the parallelism of JPEG

encoder behaviors. Two sets of parallel
behaviors are:

a) Behavior DR and encodeStripe are
executed in a pipeline style.
b) Behavior HD, 1D, 2D, AD, BD, QT
and HE are executed in a pipeline style.

16

encodeStripe
DR

HD 1D 2D AD BD QT HE

Figure 12 : Parallelism of JPEG encoder behaviors.

418236
319500

2827800 2827800

372780
266040

346680

639900

0

500000

1000000

1500000

2000000

2500000

3000000

RD HD 1D 2D AD BD QT HD

Behavior Names

T_
O

P

5.21%
3.98%

35.24% 35.24%

4.65%
3.32%

4.32%

7.98%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

RD HD 1D 2D AD BD QT HD

Behavior Name

C
C

R

(b) The granularity of behaviors in JPEG encoder(a) Total execution number of operations of
behaviors in JPEG encoders

Figure 13: T_OP and granularity of behaviors in JPEG encoder.

SpecC profiler demonstrates traffic
between behaviors, which indicates whether
behaviors can be executed in a
parallel/pipeline model, or not. For example,
the result of SpecC profiler shows that the
traffic only exists from HD to 1D, from 1D to
2D, from 2D to AD, from AD to BD, from
DB to QT, and from QT to HE. There is no
traffic from HE to HD. Furthermore, above
behaviors are called sequentially in one loop.
Thus, according to section 2.1, behavior HD,
1D, 2D, AD, BD, QT, and HE can be run in a
pipeline style.

5.3.2 Choosing Granularity
The leaf behaviors in JPEG encoder

reflect algorithm blocks. The total numbers of
execution of operations of leaf
behaviors(T_OP) are displayed in Figure

13(a). The granularity G() of behaviors are
displayed in Figure 13(b).

Note that T_OP or G() of leaf behavior 1D
and 2D are much larger than other leaf
behaviors, as shown in Figure 13. As
described in 2.2.4, whether we should
decompose 1D and 2D for producing new leaf
behaviors with finer granularity depends on
the computation and communication
overhead. Note that both behaviors 1D and
2D perform matrix multiplication. For
example, Figure 14 is the specification model
of behavior 1D. Obviously, decomposing
matrix multiplication to two or more
independent leaf behaviors will produce
heavy computation and communication
overhead. As a result, we use 1D and 2D as
primitive behaviors for mapping, even though
their granularity is much larger than other
behaviors.

17

behavior 1D(in int x[BLOCKSIZE], out int y[BLOCKSIZE]){
void main(){

int i, j, k;
for(i = 0; i<BLOCKROW; i++) {

 for (j = 0; j< BLOCKROW; j++) {
 y[i*BLOCKROW + j] = 0;

 for(k = 0; k< BLOCKROW ; k++)
y[i*BLOCKROW + j] += x[i* BLOCKROW + k] * COSBlock[

k*BLOCKROW + j];
 }

}

}
};

Figure 14: The specification model of behavior 1D

5.4 Architecture Exploration -- PE
Selection

5.4.1 Selecting PE Speed
SpecC profiler provides the total number

of execution of operations of JPEG design
T_OP(Design), which is 8023749. According
to section 3.2,

MOPS = T_OP(Design) / TC(Design) =
8023749 / 90ms = 89 MOPS

Where TC(Design) is the time constraint
of the design. Since the upperbound on
MOPS(ColdFire) is 66, a single-ColdFire
architecture cannot meet the given time
constraint.

5.4.2 Selecting Amount of PEs
Table 2 displays the parallel efficiency

PE_Ns of JPEG. It indicates that
implementing JPEG encoder in 4 ColdFires
instead of 3 ColdFires cannot achieve any
performance gain. Thus, the upperbound on
PE Amount in architecture is 3.

PE_N(2,1) PE_N(3,2) PE_N(4,3)
0.6476 0.5448 1

Table 2 : PE_N for JPEG encoder

5.5 Specification-Architecture
Mapping

5.5.1 Estimating Design Cost
In our example, we use 5$ as one

automatic cost unit.

Assuming that 1000 pieces of chips will
be produced, the design material cost of
ColdFire is estimated as 15$ (3 unit)[7], the
design material cost of custom HW is 10$ (2
unit)[8].

 For each behavior, the design processing
cost for ColdFire is 0, the design processing
cost for custom HW is 5$(1 unit). Design
process cost for communication is 5$(1 unit).

We assume that cost constraint of design
is 50$(10 unit).

5.5.2 Estimating Execution Time

5.5.2.1 Estimating Computation Time

18

ColdFire(ms) Custom HW(ms) Performance_gain(ms)
RD 28.00873 3.007273 25.00145
1D 199.1536 21.03818 178.1155
2D 199.1536 21.03818 178.1155

AD(ms) 18.68455 4.701818 13.98273
BD 7.022727 1.052727 5.97
QT 16.44818 4.02 12.42818
HE 18.67323 2.389064 16.28416

Table 3 : Estimated computation time of leaf behaviors of JPEG encoder.

1D(ms) 2D(ms) AD(ms) BD(ms) QT(ms) HE(ms)
RD 0.000349
1D 0.002793
2D 0.000349
AD 0.000349
BD 0.000349
QT 0.000349

Table 4: Estimated communication time between leaf behaviors of JPEG encoder.

Table 3 displays the estimated
computation time of leaf behaviors of JPEG
encoder. Column 2 represents the estimated
execution time of behaviors for ColdFire.
Column 3 represents the estimated execution
time of behaviors for custom HW. Column 4
is the difference between column 2 and 3,
which represents the performance_gain
achieved by moving behavior from ColdFire
to custom HW, without considering
communication.

SpecC profiler compute the computation
time of behaviors in terms of clock cycle
when behaviors are mapped to either
ColdFire or custom HW,. The execution time
displayed in column 2 and 3 is achieved by
dividing total clock cycles by 66M(Hz).

5.5.2.2 Estimating Communication Time
Table 4 displays the estimated

communication time between leaf behaviors.
SpecC profiler produces total communication
between behavior instances in terms of clock
cycles. The communication time is achieved
by dividing total clock cycles by 66M(Hz).

One exception is that the communication
time between RD and 1D is computed
manually instead of using SpecC profiler.
This is because the data is transferred by

address reference. SpecC profiler cannot
compute this type of communication.

5.5.3 Specification-Architecture Mapping
Process

5.5.3.1 Initial Design: Pure ColdFire
Design

We start our design with pure ColdFire
solution. We use single ColdFire processor as
the system architecture. SpecC profiler
indicates that the execution time is 487 ms.

The design cost is equal to the material
cost of ColdFire, which is 3 cost units,. The
behavior display is shown in Figure 15.

5.5.3.2 Specification-Architecture
Mapping for Multi-Processor
Architecture

For JPEG encoder, the upperbound on the
amount of PE is 3. PE_N(3,1) = PE_N(2,1) *
PE_N(3,2) = 0.3528. Thus, the execution
time for 3-ColdFire architecture is equal to
Total_P(Initial Design) * PE_N, which is
171ms, without considering communication.
Compared it with the given time constraint of
90ms, multi-ColdFire solution cannot meet
the time requirement. Therefore, SW-HW co-
design is required.

19

Mapping Action Performance_Gain Cost_Adding TCR
MOV, RD, SW,HW 25.00 4 6.25
MOV, 1D, SW,HW 178.11 4 44.53
MOV, 2D, SW,HW 178.11 4 44.53
MOV, AD, SW,HW 13.98 4 3.50
MOV, BD, SW,HW 5.97 4 1.49
MOV, QT, SW,HW 12.43 4 3.11
MOV, HE, SW,HW 16.28 4 4.07
PIPE 1D,2D,SW,HW 199.15 4 49.79

Table 5: Table of performance_gain, cost_adding, and TCR for improved solution 1.

 Mapping Action Performance Gain Cost_Adding TCR
MOV, RD, SW,HW 25.00 1 25.00
MOV, 2D, SW,HW 157.0 1 157.0
MOV, AD, SW,HW 13.98 1 13.98
MOV, BD, SW,HW 5.97 1 5.97
MOV, QT, SW,HW 12.43 1 12.43
MOV, HE, SW,HW 16.28 1 16.28

Table 6: Table of performance_Gain, cost_adding, and TCR for improved solution 2.

487ms

 90ms

 RD

 1D

 2D

ColdFire

AD
BD
QT
HE

 Time constraint

Figure 15: Behavior display of the initial
design of JPEG encoder.

5.5.3.3 Improved Solution 1: ColdFire-
Custom HW(1D) Design

Table 5 displays the performance_gain,
cost_add, and time–cost ratio(TCR) for each
specification-architecture mapping action.
Performance_gain is calculated based on data
in 5.5.2.1 and 0, and based on equations in

section 4.3.1. Note that there is PIPE
mapping action. PIPE mapping action is
special type of PAR mapping action. The
performance_gain of PIPE is computed
following the equations for PAR action. Then
the adjustment for it is performed based on
case by case. Cost_adding for all actions is
4, which includes 1 cost unit for the
processing cost of custom HW, 2 cost units
for the material cost of custom HW, and 1
cost unit for the processing cost of
communication.

Among those actions, the action of
moving behavior 1D to custom HW from
ColdFire and to run 1D and 2D in a pipeline
style gives the biggest TCR, which is 49.79.
It is displayed as the bold row in table 5. We
select this action and update the architecture
and specification-architecture mapping
solution.

Improved solution 1 maps 1D to custom
HW and maps other behaviors to Coldfile,
and makes 1D and 2D run in parallel. The
estimated design time is 288 ms, as shown in
Figure 17. The estimated cost is 7. The
shaded area indicates that the PE status is
idle. In Figure 16, how the behaviors are
executed in a pipeline style is illustrated.

20

RD

 1D

 2D AD BD QT HE RD

 1D

RD 2D AD

 1D

ColdFire:

Custom HW:

Figure 16: Display of pipeline execution of behaviors for improved solution 1.

Mapping action Performance gain Cost_adding TCR
MOV, RD, SW,HW 25.00 1 25.00
MOV, AD, SW,HW 13.98 1 13.98
MOV, BD,SW,HW 5.97 1 5.97
MOV, QT, SW,HW 12.43 1 12.43
MOV, HE, SW,HW 16.28 1 16.28

PIPE, RD, 1D, SW, HW 20.88 0 100000
PIPE, AD, 1D, SW, HW 18.58 0 100000

…

Table 7: Table of performance_gain, cost_adding, and TCR for improved solution 3.

288ms

90ms

 RD

 1D

 2D

ColdFire Custom HW

AD
BD
QT
HE

 Time constraint

Figure 17: Behavior display of improved
solution 1.

5.5.3.4 Improved Solution 2: ColdFire-
Custom HW(1D, 2D) Design

Since the improved solution 1 cannot meet
the time constraint, more specification-
architecture mapping action should be
applied.

Table 6 describes the updated
Performance_Gain, Cost_Adding, and TCR
of mapping actions. 1 cost unit comes from
processing cost of leaf behavior for custom
HW. Performance_Gain is computed in the
similar way as described in section 5.5.3.3.

Among those actions, the action of
moving 2D from ColdFire to custom HW
gives the greatest TCR, which is 157, which

is displayed in bold row. We select this
action and update the architecture and
specification-architecture mapping solution.

Improved solution 2 maps 1D and 2D to
custom HW and maps other behaviors to
Coldfire. The estimated execution time is 131
ms which is shown in Figure 18. The
estimated cost is 8.

131ms

 90ms

 RD

 1D

ColdFire Custom HW

AD
BD

QT

HE

 Time
constraint

 2D

Figure 18: Behavior display of improved
solution 2.

5.5.3.5 Improved Solution 3: ColdFire-
Custom HW(1D, 2D) Design

21

RD

 1D

AD BD QT HE RD

 1D

RD AD BD QT HE

 2D 2D

ColdFire:

Custom HW:

Figure 19: Display of pipeline execution of behaviors for improved solution 3.

Mapping action Performance gain Cost_adding TCR
MOV, RD, SW,HW 4.12 1 4.12
MOV, AD, SW,HW 13.98 1 13.98
MOV, BD, SW,HW 5.97 1 5.97
MOV, QT, SW,HW 12.43 1 12.43
MOV, HE, SW,HW 16.28 1 16.28

PIPE, HE, 2D,SW, HW 16.56 0 100000
PIPE, AD, 2D, SW, HW 18.58 0 100000

PIPE, (RD +AD), (1D +2D) ,
SW, HW

20.88 0 100000

Table 8 : Table of performance_gain, cost_adding and TCR for improved solution 4.

Since the improved solution 2 cannot meet
the time constraint, more specification-
architecture mapping action should be
applied.

Table 7 describes the updated
Performance_Gain, Cost_Adding, and TCR
for mapping actions. 1 cost unit comes from
processing cost of leaf behavior for custom
HW. Since the cost adding for parallel
execution is 0, we assign 10000 as the value
of TCR to represent the upperbound on
Performance Gain. Performance_Gain is
computed in the similar way as described in
section 5.5.3.3.

Among actions in Table 7, the action of
pipelining 1D in custom HW and RD in
ColdFire gives the greatest TCR, since the
cost_adding is 0. We select this action and
update the architecture and specification-
architecture mapping solutions.

Improved solution 3 maps 1D and 2D to
custom HW, and executes 1D and RD in a
pipeline style. The estimated execution time
is 110.12ms, as indicated in Figure 20. The
estimated cost is 8. Figure 19 illustrates how
the behaviors are executed in a pipeline style.

110.12ms

90ms RD
 1D

ColdFire Custom HW

BD

QT

HE

 Time
constraint 2D

 AD

Figure 20: Behavior display of improved
solution 3.

5.5.4 Improved Solution 4: ColdFire-
Custom HW(1D, 2D) Design

Since the improved solution 3 cannot meet
the time constraint, more specification-
architecture mapping action should be
applied.

Table 8 describes the updated
Performance_Gain, Cost_Adding, and TCR
for mapping actions. 1 cost unit comes from
processing cost of leaf behavior for custom
HW.

22

RD

 1D

AD BD QT HE RD

 1D

RD BD QT HE

 2D2D

AD

 1D

RD

 2D

ColdFire:

Custom HW:

Figure 21: Display of pipeline execution of behaviors for improved solution 4.

Figure 22: JBIG encoder block diagram.

Among those actions, the action of
parallelizing (1D+2D) in custom HW and
(RD +AD) in ColdFire gives the greatest
TCR, since the cost_adding is 0. We select
this action and update the architecture and
specification-architecture mapping solutions.

Improved solution 4 maps 1D and 2D to
custom HW, maps other behaviors to
Coldfire, and executes (1D + 2D) and
(RD+AD) in a pipeline style. The estimated
design time is 89.24ms, as indicated in Figure
23. The estimated cost is 8. In Figure 21, how
the behaviors are executed in a pipeline sytle
is illustrated.

Improved solution 4 is the solution that
meet the time requirement with the lowest
design lost. The process of system level
design is completed.

23

 90ms
 89.24ms

 RD
 1D

ColdFire Custom HW

BD

QT

HE

 Time
constraint

 2D
 AD

Figure 23: Behavior display of improved
solution 4.

6 Design Experience -- JBIG
Encoder

6.1 JBIG Encoder

6.1.1 Introduction and Block Diagram
JBIG[10] stands for “Joint Bi-level Image

experts Group”. JBIG is one of the image
compression/decompression standards.

Specifically, JBIG is a lossless
progressive encoding of a bi-level image (an
image that has only two colors, like black-
and-white). It is lossless because the decoded
image is identical to the original without any
distortion. The progressive capability enables
the transmission of the image with different
resolutions over networks.

The block diagram of JPIG encoder is
specified in Figure 22.

6.1.2 Testbench
A pbm file with 108-layer [10] is selected

as the input of design. The time constraint is
1.5s. The cost constraint is 20 cost units.

6.2 PE Types and Bus Protocols
PE Types and Bus protocols are the same

as JPEG encoder example, which is described
in 5.2.

6.3 Specification Modeling

6.3.1 Exploring Parallelism
There are three sets of parallel behaviors:

a) In behavior output_sde, jpg_bug_out is
parallel executed with others child behaviors
of output_sde.

b) In behavior sde_encode_lowest and
behavior sde_encode_diff, behavior
determine_ATMOVE and Typical_prediction
are run parallel.

c) In behavior sde_lowest_encode_pixel
and sde_diff_encode_pixel,
adaptive_template and
(deterministic_prediction + model_templates
+ arith_encode) are run parallel.

We get above parallelism information by
analyzing the algorithm

6.3.2 Choosing Granularity
Compared with JPEG encoder

specification, there are two problems in the
JBIG encoder specification. The first one is
that JBIG encoder specification is not a clean
model. The second one is that some non-leaf
behaviors are quite similar: they share large
percentage of functionality but only contain
small percentage of different functionality.
These two problems and their corresponding
solutions will be described in section 6.3.2.1
and section 6.3.2.2.

6.3.2.1 Pseudo Behavior for Non-Clean
Specification

JBIG encoder is not a clean specification:
non-leaf behaviors not only contain child
behavior instance calls, but also contain
direct statement computation such as
addition.

For example, sde_diff_encode_line is a
non-clean behavior, whose granularity is
86%. As shown in Figure 24. 38.88% of its
computation is original from execution of
direct statements. Other 47.22% of its
computation is original from execution of
statements in its child behaviors.

However, making behavior
sde_diff_encode_line clean is time-
consuming work. There are four levels of
hierarchical loops in sde_diff_encode_line.
All the child behavior instance calls of
sde_diff_encode_line are distributed in these
loops. Therefore, we don’t change the
specification to a clean model.

24

47.20%

38.88%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Bhvr calls Direct stat.

Figure 24: GRANULARITY distribution
of behavior sde_diff_encode_line.

Because JPIG encoder is a non-clean
specification, it is difficult to determine the
primitive behaviors for mapping. To make the
problem solved, we group all the direct
statements in non-clean behavior and treat is
as a pseudo primitive behavior. This pseudo
behavior does not really exist in the
specification but we can use the sum of
statistics of the direct statement as the
statistics of the pseudo behavior.. For
example, in behavior sde_diff_encode_line,
the granularity of pseudo primitive behavior
sde_diff_encode_line_stat is 38.88%.

Using pseudo behaviors for computation
operations in non-clean behavior, the
correctness of specification-architecture
mapping is guaranteed without revising
specification.

6.3.2.2 Pseudo Behavior for Behavior
Merging

JBIG supports progressive encoding.
Designer can choose either 1 layer model or
multi-layer model[10].

In JPIG encoder, there are two different
non-leaf behaviors to implement above two
models. Behavior sde_encode_lowest
implements the functionality of 1 layer
encoding. Behavior sde_encode_diff
implements the functionality for multi-layer
model. For the same input, the granularity of
behavior sde_encode_lowest and behavior
sde_encode_diff are different for different
selected encoding models. If encoding model

is 1 layer model, G(sde_encode_lowest) is
83%, and G(sde_encode_diff) is 0. However,
if encoding model is 5 layer model,
G(sde_encode_lowest) is 0.09%,
G(sde_encode_diff) is 91.89%. Since both
behavior sde_encode_lowest and
sde_encode_diff may take large percentage of
the whole design, how to implement these
two behaviors will heavily influence the
performance and the cost of the design.

By analyzing the specification, we find
that both sde_encode_diff and
sde_encode_lowest are “similar” because
most of their child behavior instance calls are
the same: both of them have the instantiations
of child behavior arith_encode,
model_templates, determine_ATMOVE, and
adaptive_template. On the other hand, they
also have some difference. For example,
behavior sde_encode_diff calls behavior
deterministic_prediction while
sde_encode_lowest does not.

Because the importance and similarity of
both behavior sde_encode_diff and
sde_encode_lowest, we believe merging two
behaviors to one can save processing cost of
HW by avoiding double work, when they are
mapped to custom HW. Furthermore, the
behavior merging ensures that specification-
architecture mapping for both
sde_encode_diff and sde_encode_lowest are
the same, which is reasonable from the view
of algorithm.

However, merging behavior
sde_encode_diff and sde_encode_lowest to
one is difficult because both of them are non-
clean behaviors. To bypass this difficulty, we
didn’t really merge them but group them as
one pseudo behavior “sde_encode”, which is
used as a primitive behavior for architecture
selection and specification-architecture
mapping. Since SpecC profiler provides
statistics for behavior sde_encode_diff and
sde_encode_lowest, we can estimate the
statistics of the pseudo behavior sde_encode
by adding up the statistics of sde_encode_diff
and sde_encode_lowest, even though the
behavior sde_encode does not really exist.

After specification-architecture mapping,
if sde_encode is mapped to ColdFire, then
behavior merging is not necessary because
ColdFire’s operation system can directly

25

execute sde_encode_lowest or
sde_encode_diff without any processing cost.
However, if pseudo behavior sde_encode is
mapped to custom HW, then we will make
behavior merging.

Using pseudo behaviors for behavior
merging, the correctness of specification-
architecture mapping is guaranteed without
revising specification.

6.3.2.3 Choosing Granularity
The total number of execution of

operations and granularity of leaf behaviors
of JBIG encoder are displayed in Figure 25
and Figure 26. The granularity of leaf
behaviors are various from 0.09% to 39.03%.
Sde_encode_stat represents the direct
statement computation in the pesudo behavior
sde_encode mentioned in section 6.3.2.2.

1682316

8922095

14250565

74550

8373043
5005218

34012091

5223030

9581040

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

sd
e_

ini
t

ad
ap

tiv
e_

tem
pla

te

ari
th_

en
co

de

de
ter

mine
_A

TMOVE

de
ter

mini
sti

c_
pre

dic
tio

n

mod
el_

tem
pla

tes

typ
ica

l_p
red

ict
ion

res
olu

tio
n_

red
uc

tio
n

sd
e_

en
co

de
_s

tat

To
ta

l_
O

P

Figure 25: The total number of execution of operations of primitive behaviors in JBIG encoder.

1.93%

10.24%

16.35%

0.09%

10.99% 9.61%
5.74% 5.99%

39.03%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

sd
e_

ini
t

ad
ap

tiv
e_

tem
pla

te

ari
th_

en
co

de

de
ter

mine
_A

TMOVE

de
ter

mini
sti

c_
pre

dic
tio

n

mod
el_

tem
pla

tes

typ
ica

l_p
red

ict
ion

res
olu

tio
n_

red
uc

tio
n

sd
e_

en
co

de
_s

tat

G
ra

nu
la

rit
y

Figure 26: granularity of primitive behaviors in JBIG encoder.

26

Note that the granularity of
Sde_encode_stat is too large compared with
other behaviors. Therefore, we should first
decide whether decomposing behavior
sde_encode_stat is necessary. One solution of
decomposing is to group a number of direct
operations to form some new leaf behaviors.
However, the direct statements in
sde_encode_stat are tightly coupled with its
child behavior instance calls. There will be
more than 20% communication overhead
added if we generate new leaf behaviors for
direct statements. An alternative solution is
to merge the statements with their neighbor
child behavior instance calls in the same
basic block. This solution is also not feasible.
We found that around 5% of granularity in
sde_encode_stat is caused by parameter
assignment of behavior instance call, which
must be specified out of behavior instance
calls. Furthermore, other 34% granularity in
sde_encode_stat is not in the same block with
any child behavior instance calls. Therefore,
we cannot merge direct statements to
sde_encode_stat’s child behaviors instance
calls.

Because both solutions don’t work, we
still leave sde_encode_stat as one primitive
behavior for specification-architecture
mapping.

6.4 Architecture Exploration -- PE
Selection

6.4.1 Selecting PE Speed
SpecC profiler compute that the total

number of execution of operations for Design
(T_OP(Design)) is 87141176. Thus, based on
section 3.2,

MOPS = T_OP(Design) / TC(Design) =
87141176 / 3 = 29 MOPS

Since the upperbound on MOPS(ColdFire)
is 66, we cannot decide whether pure
ColdFire can meet the time constraint. In this
case, we need to estimate the performance of
design and directly compare it with the given
time constraint.

6.4.2 Selecting Amount of PEs
PE_Ns for JPEG encoder are as shown in

Table 9. Table 9 indicates that implementing

JBIG encoder in 3 ColdFire instead of 2
ColdFire cannot achieve any performance
gain. Thus, the upperbound on amount of PE
in architecture is 2.

PE_N(2,1) PE_N(3,2)
0.8976 1

Table 9: PE_N for JBIG encoder.

6.5 Specification-Architecture
Mapping

6.5.1 Estimating Design Cost
The cost assumption in JBIG encoder is

the same at in JPEG encoder, which is
displayed in section 5.5.1

Since the statements in pseudo behavior
sde_encode_state is around 5 times as great
as the statements in other leaf behaviors, the
processing cost of sde_encode_stat for
custom HW is 5 cost units.

6.5.2 Estimating Execution Time

6.5.2.1 Estimation Computation Time
Table 10 displays the estimated execution

time for leaf behaviors of JBIG encoder. The
second column represents the abbreviation
names of the leaf behaviors. The third column
represents the estimated execution time of
behaviors for ColdFire. The fourth column
represents the estimated execution time of
behaviors for custom HW. The fifth column
indicates the difference between columns 3
and column 4, which represents the
performance_gain of moving behavior from
ColdFire to custom HW without considering
communication.

SpecC profiler computes the computation
time for ColdFire and custom HW in terms of
clock cycles. The execution times displayed
in column 3 and 4 are computed by dividing
total clock cycles by 66M(Hz).

6.5.2.2 Estimation Communication Time

27

Abbreviation ColdFire(s) CustomHW(s) Performance_gain(s)
sde_init 0.056529 0.007129 0.0494

adaptive_template AT 0.451013 0.072188 0.378825
arith_encode AE 0.532604 0.059325 0.473279

determine_ATMO
VE

ATMOVE 0.003546 0.000611 0.002935

deterministic_predict
ion

DP 0.453648 0.09102 0.362628

model_templates MT 0.385605 0.078989 0.306616
Typical_prediction TP 0.215551 0.036481 0.179071

resolution_reduction RR 0.270361 0.048544 0.221817
sde_encode_stat SES 1.373767 0.217014 1.156753

Table 10: Estimated execution time for leaf behaviors of JBIG encode

sde_encode_sta
t

adaptive_template <0.30s
arith_encode 0.008s

determine_ATMOVE <0.001s
deterministic_predict

ion
0.048s

model_templates 0.045s
Typical_prediction 0.005s

Resolution_reduction 0.01s
Sde_init 0.0003s

Table 11: Estimated communication time
between sde_encode_stat and other leaf

behaviors.

Sde_encode is the parent behavior of
behavior adaptive_template, arith_encode,
deterine_ATMOVE, deterministic_prediction,
model_templates and typical_prediction.
Since child behavior instance calls of
sde_encode are not close to each other, all of
them only communicate with
sde_encode_stat. There is also
communication between sde_encode_stat and
sde_init. The communication time between
sde_encode_stat and other leaf behaviors are
displayed in Table 11. Additionally,
communication time between behavior
resolution_reduction and encode_sde is
0.01ms.

Some of communication is implemented
by address reference. In these cases, SpecC
profiler cannot provide estimation result.
However, we can still produce the
upperbound on communication time by
analyzing the specification. For example, we

estimated the communication time of
behavior adaptive_template and
typical_prediction based on following facts.

a) In behavior adaptive_template, if the
value of variable mx is 50, then the
communication time between
adaptive_template and
sde_encode_state is 0.30s.

b) In behavior typical_prediction, the
traffic is smaller than one tenth of
the total number of execution of
operations of behavior
typical_prediction.

6.5.3 Specification-Architecture Mapping
Process

6.5.3.1 Initial Design: Pure ColdFire
Design

We start our design with pure ColdFire
solution. One ColdFire processor is selected
from PE library. SpecC profiler indicates that
execution time is 4.35 second when the entire
JBIG encoder is mapped to the single
ColdFire processor, as shown in Figure 27.
The design cost is 3 cost units.

28

1.5s

4.35s Sde_init

ATMove

TP

RR

AT

sde_encode
stat

AE

MT

DP

 ColdFire

Time
constraint

Figure 27: Behavior display of the initial
design of JBIG encoder

6.5.3.2 Specification-Architecture
Mapping for Multi-Processor
Architecture

For JPIG encoder, the upperbound on the
amount of PE is 2. PE_N(2,1) is 0.8976.
Therefore, the execution time for 2-ColdFire
architecture can be estimated by equation
Total_P(487) * PE_N(2,1), which is 3.90s.
Compared with 1.5s time constraint, the
execution time of multi- coldFire solution is
too large. Therefore, SW-HW co-design is
required.

6.5.3.3 Improved Solution 1: ColdFire-
Custom HW(AE) Solution

Table 12 tells the performance_gain,
cost_add, and time–cost ratio(TCR) for each
specification-architecture mapping action.
Cost_adding for all actions is 4, which
includes 1 cost unit for the processing cost of
HW, 2 cost unit for the material cost of
custom HW, and 1 cost unit for the
processing cost of communication.

Among those actions, the action of
moving behavior AE to custom HW from

ColdFire and running AE and AT parallel
gives biggest TCR, which is 0.5326s. We
select this action and update the architecture
and specification-architecture mapping
solutions.

Improved solution 1 maps AE to the
custom HW and maps other behaviors to
Coldfile. It executes AT and AE parallel.
The estimated design time is 3.82s, as shown
in Figure 28. The estimated cost is 7.

`

1.5s

Sde_init

ATMove TP

RR

AT

sde_encode
stat

MT

DP

 ColdFire Custom_HW

Time
constraint

AE

3.82s

Figure 28: Behavior display for improved
solution 1 for JBIG encoder.

29

Mapping action Performance gain Cost_adding TCR
MOV, sde_init, SW,HW 0.049 4 0.012
MOV, AT, SW,HW 0.078 4 0.031
MOV, AE, SW,HW 0.465 4 0.116
MOV, DA, SW,HW 0.002 4 0.0005
MOV, DP, SW,HW 0.315 4 0.0786
MOV, MT, SW,HW 0.262 4 0.0655
MOV, TP, SW,HW 0.174 4 0.044
MOV, RR, SW,HW 0.212 4 0.053
MOV, SES, SW, HW 0.748 8 0.0935
PAR, AT, AE, SW,HW 0.5326 4 0.1331

Table 12: Table of performance_gain, cost_adding and TCR for improved solution 1.

Mapping action Performance gain Cost_adding TCR
MOV, sde_init, SW,HW 0.049 1 0.049
MOV, AT, SW,HW 0.011 1 0.011
MOV, DA, SW,HW 0.002 1 0.002
MOV, DP, SW,HW 0.315 1 0.315
MOV, MT, SW,HW 0.262 1 0.262
MOV, TP, SW,HW 0.174 1 0.174
MOV, RR, SW,HW 0.212 1 0.212
MOV, SES, SW, HW 0.756 5 0.151
PAR, AT, DP, SW,HW 0.454 1 0.454

Table 13: Table of performance_gain, cost_adding and TCR for improved solution 2.

Mapping action Performance gain Cost_adding TCR
MOV, sde_init, SW,HW 0.049 1 0.049
MOV, AT, SW,HW 0 1 0
MOV, DA, SW,HW 0.002 1 0.002
MOV, MT, SW,HW 0.262 1 0.262
MOV, TP, SW,HW 0.174 1 0.174
MOV, RR, SW,HW 0.212 1 0.212
MOV, SES, SW, HW 0.804 5 0.161
PAR, AT, MT, SW, HW 0.386 1 0.386

Table 14: Table of performance_gain, cost_adding and TCR for improved solution 3.

6.5.3.4 Improved Solution 2: ColdFire-
Custom HW(AE, DP) Solution

Table 13 tells the performance_gain,
cost_add, and time–cost ratio(TCR) for each
specification-architecture mapping action
based on improved solution 1.

Among those actions, the action of
moving behavior DP to custom HW from
ColdFire and running DP and AT parallel
gives biggest TCR, which is 0.454s. We
select this action and update the architecture

and specification-architecture mapping based
on it.

Improved solution 2 maps AE and DP to
the custom HW and maps other behaviors to
the Coldfire. It executes AT and (AE+DP)
parallel. The estimated design time is 3.37s
second, as shown in Figure 29. The estimated
cost is 8.

30

3.37s

1.5s

Sde_init

ATMove
TP

RR

AT

sde_encode
stat

MT

 ColdFire Custom_HW

Time
constraint

AE

DP

Figure 29: Behavior display for improved
solution 2 for JBIG encoder.

6.5.3.5 Improved Solution 3: ColdFire-
Custom HW(AE, DP, MT) Solution

Table 14 tells the performance_gain,
cost_add, and time–cost ratio(TCR) for each
specification-architecture mapping action.

Among those actions, the action of
moving behavior MT to custom HW from
ColdFire and runing MT and AT parallel
gives biggest TCR, which is 0.386s. We
select this action and update the architecture
and specification-architecture mapping
solutions.

Improved solution 3 maps AE, DP, and
MT to the custom HW and maps other
behaviors to the Coldfire. It executes AT and
(AE+DP+MT) parallel. The estimated design
time is 2.98 second, as shown in Figure 30.
The estimated cost is 9.

2.98s

Sde_init

ATMove TP

RR

AT

sde_encode
stat

 ColdFire Custom_HW

Time
constraint

AE
DP
MT

1.5s

Figure 30: Behavior display for improved
solution 3 for JBIG encoder.

Mapping action Performance gain Cost_adding TCR
MOV, sde_init, SW,HW 0.049 1 0.049
MOV, AT, SW,HW 0 1 0
MOV, DA, SW,HW 0.002 1 0.002
MOV, TP, SW,HW 0.174 1 0.174
MOV, RR, SW,HW 0.212 1 0.212
MOV, SES, SW, HW 0.849 5 0.170
PAR, ATMOVE, TP,
SW,HW

0.177 1 0.177

Table 15: Table of performance_gain, cost_adding and TCR for improved solution 4.

31

Mapping action Performance gain Cost_adding TCR
MOV, sde_init, SW,HW 0.049 1 0.049
MOV, AT, SW,HW 0 1 0
MOV, DA, SW,HW 0.002 1 0.002
MOV, TP, SW,HW 0.174 1 0.174
MOV, SES, SW, HW 0.849 5 0.170
PAR, ATMOVE, TP,
SW,HW

0.177 1 0.177

…

Table 16: Table of performance_gain, cost_adding and TCR for improved solution 5.

6.5.3.6 Improved Solution 4: ColdFire-
Custom HW(AE, DP, MT, RR)
Solution

Table 15 tells the performance_gain,
cost_add, and time–cost ratio(TCR) for each
specification-architecture mapping action.

Among those actions, the action of
moving behavior RR to custom HW from
ColdFire and running RR and AT parallel
gives biggest TCR, which is 0.212s. We
select this action and update the architecture
and specification-architecture mapping
solution.

Improved solution 4 maps AE, DP, MT,
and RR to the custom HW and maps other
behaviors to the Coldfire. It executes AT and
(AE+DP+MT+RR) parallel. The estimated
design time is 2.77 second, as displayed in
Figure 31. The estimated cost is 10.

6.5.3.7 Improved Solution 5: ColdFire-
Custom HW(AE, DP, MT,RR, TP)
Colution

Table 16 tells the performance_gain,
cost_add, and time–cost ratio(TCR) for each
specification-architecture mapping action.

Among those actions, the action of
moving behavior TP to custom HW from
ColdFire and runningOVE and TP parallel
gives biggest TCR, which is 0.177s. We
select this action and update the architecture
and specification-architecture mapping
solution.

Improved solution 5 maps AE, DP, MT,
RR and TP to the custom HW and maps other
behaviors to the Coldfire. It executes AT and
(AE+DP+MT+RR) parallel and executes

ATMOVE and TP parallel. The estimated
design time is 2.29s, as displayed in Figure
32. The estimated cost is 11.

2.77s

Sde_init

ATMove

TP

AT

sde_encode
stat

 ColdFire Custom_HW

Time
constraint

AE
DP
MT
RR

Figure 31: Behavior display for improved
solution 4 for JBIG encoder.

2.29s

1.5sSde_init
ATMove

AT

sde_encode
stat

 ColdFire Custom_HW

TP
AE
DP
MT
RR

Figure 32: Behavior display for improved
solution 5 for JBIG encoder.

32

Mapping action Performance gain Cost_adding TCR
MOV, sde_init, SW,HW 0.049 1 0.049
MOV, AT, SW,HW 0 1 0
MOV, DA, SW,HW 0 1 0
MOV, SES, SW, HW 0.854 5 0.171
…

Table 17: Performance_gain and TCR table for solution 6.

6.5.3.8 Improved Solution 6: ColdFire-
Custom HW(AE, DP, MT,RR, TP,
SES) Solution

Table 17 tells the performance_gain,
cost_add, and time–cost ratio(TCR) for each

specification-architecture mapping action.

Among those actions, the action of
moving behavior SES to custom HW gives
biggest TCR, which is 0.854s. We select this
action and update the architecture and
specification-architecture mapping solution.

Improved solution 6 maps AE, DP, MT,
RR, TP, and SES to the custom HW and maps
other behaviors to the Coldfire. It executes
AT and (AE+DP+MT+RR) parallel and
executes ATMOVE and TP parallel. The
estimated design time is 1.43 second, and the
estimated cost is 16. The behavior display of
improved solution 6 is displayed in Figure
33.

Improved Solution 6 is the solution that
meets the time requirement with the low
design cost.

7 Design Experience --
Vocoder

7.1 Vocoder

7.1.1 Introduction and Block Diagram
GSM vocoder is the voice

encoding/decoding part of the GSM standard
for mobile telephony. The block diagram

1.43s
Sde_init

ATMove

TP

RR
 AT

sde_encode
Stat
Sde_line

AE

MT

DP

 ColdFire Custom_HW

Time
Constrait

Figure 33: Behavior display for improved
solution 6 for JBIG encoder.

of vocoder is displayed in Figure 34.

7.1.2 Testbench
We use a file containing 160 frames data

as the design input.

There are two timing constraints for the
vocoder example:

a) The time of executing behavior
LP_analysis, closed_loop, codebook, and
update once and executing open_loop half a
time must be smaller than 10ms

b) The time of executing behavior
LP_analysis and open_loop once and
executing closed_loop, codebook, and update
four times must be smaller than 20ms.

33

Filter memory

update

Closed-loop

pitch search

Algebraic (fixed)

pitch search

Linear prediction

(LP) analysis

Open loop

codebook search
����

����

����

�
�
�
�

��

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

��

����

��

��
��
��
��

��
��
��
��

��

decode_12k2

Post_Filter

Bits2prm_12k2

Decode

LP parameters

4 subfram
es

bits

speech[160]

A(z)

synth[40]

synth[40]

prm[57]

prm[13]

decoder

��

��

��

��

��

����

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�� ��

����

�
�
�
�

����

��

��

��

��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

m
em

ory

2x per fram
e

A(z)

2 subfram
es

prm2bits_12k2

pre_process

sample

prm[57]

bits

speech[160]

coder

vocoderspeech_in bits_in

speech_outbits_out

Figure 34: The block diagram of Vocoder example.

7.2 PE Types and Bus Protocol
We choose two PEs types from PE library:

a) Motorola ColdFire processor of
100 MHz

b) Custom HW of 100 MHz

We compute the weight tables of selected
ColdFire processor and custom HW
considering structure level pipeline
technique. We also assume variables are
stored in registers rather than in memories.
With instruction level pipeline techniques,
more than one instruction can be executed in
one clock cycle. If a variable is stored in a
register rather than stored in a memory, the
execution time of memory access is not
needed. Hence, considering these two issues,
the estimated execution time will be much
smaller and much closer to real simulation
result. However, accurate evaluation for
instruction pipeline and storing variables in
registers is impossible at the operation level
because accurate evaluation is determined by
the compiling technique and the specification
itself.

Based on our experience of comparing the
estimated result of profiler and real simulator,
we roughly divide the weighted data without
considering pipeline and variables in registers
by eight to represent the result with
considering these two issues. In this case, the
MOPS of chosen coldfire is
88<MOPS(ColdFirst) <800.

7.3 Specification Modeling

7.3.1 Exploring Parallelism
Five parallel executions exist in

specification. There are:

a) In behavior Open_Loop, Weight_Ai and
WeightAi are run parallel. Parallel
execution Weight_Ai and weightAi gives
0.1% granularity improvement.

b) In behavior LP_analysis, Find_Az1 and
Find_Az2 are run parallel. Parallel
Find_Az1 and Find_Az2 gives 2.790%
granularity improvement.

c) In behavior LP_Analysis, Int_Lpc2 and
Q_Plsf_And_Intlpc are run parallel.

34

Parallel Int_Lpc2 and Q_Plsf_And_Intlpc
gives 0.2% granularity improvement.

d) In behavior Closed_Loop, Imp_Resp and
Find_Targetvec are run parallel. Parallel
Imp_Resp and Find_Targetvec gives
2.7% granularity improvement.

e) In behavior Update: Q_Gain_Code and
Ex_Syn_Upd_Sh are run parallel. Parallel
Q_Gain_Code and Ex_Syn_Upd_Sh gives
0.39% granularity improvement

7.3.2 Choosing Granularity
Figure 35 displays the granularity of child

behaviors of Main behavior in vocoder.
Figure 36 to Figure 39 displays the
granularity of child behaviors of behavior
LP_Analysis, Open_Loop, Close_Loop, and
Codebook. Figure 40 displays the granularity
of child behaviors of behavior
Code_10i40_35bits. The solid bars in figures
represent non-leaf behaviors, while the doted
bars represent leaf behaviors.

In Vocoder example, it is not feasible to
use leaf behaviors as primitive behaviors for
mapping because:

a) Leaf behaviors in vocoder do not
reflect functional blocks in
algorithm.

b) The granularity of leaf behaviors
are various from 0.0001% to
19.66%. Therefore, leaf

behaviors should be merged or
decomposed to make granularity
similar. The behavior
merging/decomposing is helpful
for mapping but difficult to
implement.

c) Since there are 43 leaf behaviors
in specification, the work of
using leaf behaviors for mapping
is heavy.

Because of above reasons, when we do
behavior-specification mapping, we only
consider behavior LP_analysis, Open_loop,
Closed_loop, Codebook, and Update. If we
cannot find an implement to meet the time
constraint by mapping these behaviors to
PEs, then in the next iteration of behavior-
specification mapping, we will consider finer
granularity behaviors.

LP_analysis, Open_loop, Closed_loop,
Codebook, and Update are executed
sequentially. Since we don’t explore the
parallelism inside these five behaviors, we
will lose a certain possible performance
improvement. As shown in 7.3.1, the total
granularity improvement achieved by parallel
execution is not more than 6%. It indicates
that the lost performance improvement is not
heavy.

19.5%
18.2%

24.9%

33.9%

2.3%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

LP_Analysis Open_Loop Closed_Loop Codebook Update
Behavior Name

G
ra

nu
la

rit
y

Figure 35: Granularity of top level behaviors in Vocoder.

35

0.0002%

5.5971%
5.0499%

0.0001%

8.8732%

0.0020%
0.000%

1.000%

2.000%

3.000%

4.000%

5.000%

6.000%

7.000%

8.000%

9.000%

10.000%

LP
_A

na
lys

is_
Seq

1

LP
_A

na
lys

is_
Seq

2

Az_
Ls

p

Vad
_L

p

LP
_A

na
lys

is_
Seq

3

No_
Spe

ec
h_

Upd

Behavior Name

G
ra

nu
la

rit
y

Figure 36: Granularity of child behaviors of LP_Analysis.

0.000% 0.001% 0.066%
1.382% 1.354%

0.000%

15.347%

0.000%

2.000%

4.000%

6.000%

8.000%

10.000%

12.000%

14.000%

16.000%

18.000%

Ope
n_

Lo
op

_In
it

Ope
n_

Lo
op

_B
od

y1

Ope
n_

Lo
op

_B
od

y2

Res
idu

Syn
_F

ilt

Ope
n_

Lo
op

_E
nd

Ol_L
ag

_E
st

Behavior Name

G
ra

nu
la

rit
y

Figure 37: Granularity of child behaviors of open_loop.

36

0.006%

8.239%

0.002%0.000%0.000%0.000%0.000%0.066%

11.271%

0.013%

2.365%2.456%

0.401%0.071%
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

Clos
ed

_L
oo

p_
Seq

1

Clos
ed

_L
oo

p_
Seq

2

Clos
ed

_L
oo

p_
Seq

3

Clos
ed

_L
oo

p_
Seq

4

Clos
ed

_L
oo

p_
Seq

5

Clos
ed

_L
oo

p_
Seq

6

Clos
ed

_L
oo

p_
Seq

7

Par_
Weig

ht

Pitc
h_

Fr6

Enc
_L

ag
6

Pred
_L

t_6

Con
vo

lve

G_P
itc

h

Q_G
ain

_P
itc

h

Behavior Name

G
ra

nu
la

rit
y

Figure 38: Granularity of child behaviors of close_loop.

0.00% 0.55%

32.98%

0.33%
0.000%

5.000%

10.000%

15.000%

20.000%

25.000%

30.000%

35.000%

Codebook_Seq1 Codebook_Seq2 Code_10i40_35bits Codebook_Seq3

Behavior Name

G
ra

nu
la

rit
y

Figure 39: Granularity of child behaviors of codebook.

37

2.617%

0.789%

8.663%

19.666%

0.000% 0.011%
0.000%

5.000%

10.000%

15.000%

20.000%

25.000%

Cor_
h_

x

Set_
Sign

Cor_
h

Sea
rch

_1
0i4

0

Buil
d_

CN_C
od

e
Q_p

Behavior Name

G
ra

nu
la

rit
y

Figure 40: Granularity of child behaviors of Code_10i40_35bits.

ColdFire(ms) Custom HW(ms) Performance_Gain(m
s)

LP_Analysis 5.113094 0.532568 4.580526
Open_Loop 3.667963 0.378725 3.289237
Closed_Loop 7.376989 0.742122 6.634867
Codebook 10.38452 1.171317 9.2132
Update 0.743667 0.077052 0.666615

Table 18: Estimated computation time of primitive behaviors of Vocoder (per-frame)

ColdFire(ms) Custom HW(ms) Performance_Gain(m
s)

LP_Analysis 5.21535588 0.54321936 4.67213652
Open_Loop 3.74132226 0.3862995 3.35502174
Closed_Loop 7.52452878 0.75696444 6.76756434
Codebook 10.5922104 1.19474334 9.397464
Update 0.75854034 0.07859304 0.6799473

Table 19: Estimated execution time of primitive behaviors of Vocoder (per-frame)

7.4 Architecture Exploration -- PE
Selection

7.4.1 Selecting PE Speed
The result of SpecC profiler indicates that the

number of execution of operations per frame is
9878335. Therefore,

MOPS(Frame) = T_OP(Frame) / TC(Frame) =
9878335/30ms = 329 MOPS

Comparing MOPS(Frame) with the lowerbound of
MOPS(ColdFire) which is 88, we cannot decide
whether pure ColdFire can meet the time constraint. In
this case, we need to estimate the performance of
design and directly compare the estimation result with
the given time constraint.

38

7.4.2 Selecting Amount of PEs
There is no parallel execution among selected

primitive behaviors. Therefore PE_N = 1.

7.5 Specification-Architecture Mapping

7.5.1 Estimating Design Cost
Design cost assumption is the same as design cost

assumption in JPEG encoder example, which is
described in section 5.5.1.

7.5.2 Estimating Execution Time

7.5.2.1 Estimating Computation Time
Table 18 displays the estimated computation time

of behaviors when a frame of data is process. For one
frame data, LP_Analysis and open_loop are both
executed once and closed_loop, codebook, and update
are all executed four times. Column 2 represents the
estimated execution time of behaviors per frame on
ColdFire. Column 3 represents the estimated execution
time of behaviors per frame on custom HW. Column 4
indicates the difference between column 2 and 3,
which represents the performance_gain achieved by
moving behavior from ColdFire to custom HW without
considering communication.

SpecC profiler generates the computation time of
behaviors for ColdFire and custom HW in terms of
clock cycles. The execution time displayed in column
3 and 4 is achieved by dividing total clock cycles by
PE frequency.

7.5.2.2 Estimating Computation Time
The five behaviors are communicated by address

reference, which cannot be evaluated by SpecC
profiler.

Based on the Vocoder standard, we notice that the
number of execution of communication is always
smaller than 1/50 of the numbers of execution of
computation for each behavior. Therefore, for the
vocoder project, we increase the execution time of
computation by 1/50 to represent the total execution
time for both computation and communication, which
is shown in Table 19.

7.5.3 Specification-Architecture Mapping Process

7.5.3.1 Initial Design: Pure ColdFire Design
 We start with the architecture containing a pure

ColdFire processor and maps vocoder on this

architecture. The behavior display of this mapping is
shown in Figure 41.

The sum of the execution time for the behaviors
corresponding to the first design constraint is equal to
P_Frame(LP_analysis) + P_Frame(closed_loop)/4 +
P_Frame(codebook)/4 + P_Frame(update) / 4 +
P_Frame(open_loop) / 2 = 11.80ms. It exceeds the
first design constraint, which is 10ms. The sum of the
execution time for the behaviors corresponding to the
second design constraint is equal to
P_Frame(LP_analysis) + P_Frame(closed_loop) +
P_Frame(codebook) + P_Frame(update) +
P_Frame(open_loop) = 27.83ms, which also exceeds
the 20ms constraints.

LP_Analysis

Open_Loop

Closed_Loop

Codebook

Update

ColdFire

27.29ms

Figure 41: Behavior display of initial solution of
Vocoder.

7.5.3.2 Improved Solution 1: Pure ColdFire Design
Table 20 tells the performance_gain, cost_add, and

time–cost ratio(TCR) for each specification-
architecture mapping action. Performance_gain is
calculated based on data in Table 19 and based on
equations in section 4.3.1. Cost_adding for all actions
is 4, which includes 1 cost unit for the processing cost
of custom HW, 2 cost units for the material cost of
custom HW, and 1 cost unit for the processing cost of
communication.

39

Mapping action Performance
gain(ms)

Cost_adding TCR

MOV, LA, SW,HW 5.21535588 4 1.303839
MOV, Open, SW,HW 3.74132226 4 0.935331
MOV, Close,SW,HW 7.52452878 4 1.881132

MOV, CodeBook, SW,HW 10.5922104 4 2.648053
MOV, Update, SW,HW 0.75854034 4 0.189635

Table 20: Table of performance_gain, cost_adding, and TCR for improved 1.

Among those actions, the action of
moving behavior CodeBook to custom HW
from ColdFire gives the biggest TCR, which
is 2.648. We select this action and update the
architecture and specification-architecture
mapping solution.

After updating, we recompute the
execution time for design constraints. For
design constraint 1, we compute
P_Frame(LP_analysis) +
P_Frame(closed_loop) / 4 +
P_Frame(codebook) / 4 + P_Frame(update) /
4 + P_Frame(open_loop) / 2 = 9.46ms. It
meets the design constraint 1.

Similar, P_Frame(LP_analysis) +
P_Frame(closed_loop) + P_Frame(codebook)
+ P_Frame(update) + P_Frame(open_loop) =
18.43ms. The second design constraint is also
satisfied. Therefore, this implementation is
the one that meets our requirement. The
Behavior display is depicted in Figure 42.

8 Conclusion
In this report, we show the use of SpecC

profiler for system level design at the high
level of abstraction. SpecC profiler can help
designers to perform specification modeling,
architecture exploration, and specification-
architecture mapping tasks.

LP_Analysis

Open_Loop

Closed_Loop

Codebook
Update

ColdFire Custom HW

18.43ms

Figure 42 : Behavior display of impved
solution 1

Three examples have been described in
the report. JPEG encoder example describes
the general design flow including
specification modeling, architecture
exploration, and specification-architecture
mapping. JBIG encoder describes how to
handle non-clean specification. Vocoder
example describes the design flow with
multi-time constraints. With these three
design examples, we conclude that the SpecC
profiler is an indispensable tool for the
system level design.

[1] Lukai Cai, Dan Gajski, Introduction of Design-
Oriented Profiler of SpecC Language, University
of California, Irvine, Technical Report ICS-00-47,
June 2001

[2] D.D. Gajski, J.Zhu, R.Domer, etc. SpecC:
Specification Language and Methodology, Kluwer
Academic Publishers March 2000

[3] Andreas Gerstlauer, Rainer Doemer, J.Peng, D
Gajski, System Design : a Practical Guide of
SpecC, Kluwer Academic Publishers. 2001

[4] Andreas Gerstlauer, Shuqing Zhao etc. Design of a
GSM Vocoder using SpecC Methodology,
University of California, Irvine, Technique report
ICS-99-11, Feb 1999

40

[5] Motorola, Inc. Semiconductors Products Sector,
DSP Division, ColdFire2 Integrated
Microprocessor Designer Manual, 1998

[6] Dan Gajski, N. Dutt, C.H.We, Y.L.Lin High-level
synthesis: Introduction to Chip and System Design,
Kluwer Academic Publishers, Boston,
Massachusetts, 1991.

[7] http://www.apspg.com/press/050100/coldfire.html
[8] http://www.privacy.nb.ca/cryptography/archives/co

derpunks/new/1998-06/01
[9] Lukai Cai, Junyu Peng, Design of a JPEG

Encoding System, University of California, Irvine,
Technical Report ICS-99-54, Nov, 1999

[10] Jyunyu Peng, Lukai Cai, Design of a JBIG
Encoder using SpecC Methodology, University of
California, Irvine, Technical Report ICS-00-13,
Jun 2000

[11] Daniel Gajski, Nikil Dutt, High-Level Synthesis:
Introduction To Chip and System Design

