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Abstract

Classical computer architectures are based on the concept of utilizing a large system memory to support
communication between computational cores. To remedy the memory access bottleneck that limits optimization
of such systems, the Grid of Processing Cells (GPC) has been proposed as a highly scalable multi-core alter-
native that maximizes the benefits of parallelization. This work introduces a toolbox that aims to immensely
improve benchmarking productivity for the GPC model. The included tools generate random task graphs based
on configurable constraints, as well as their corresponding SystemC timing simulations, C++ executables, and
abstract syntax trees. The synthetic examples can be used to test the feasibility and optimization of mapping data
flow applications to the GPC architecture.
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Abstract

Classical computer architectures are based on the
concept of utilizing a large system memory to sup-
port communication between computational cores. To
remedy the memory access bottleneck that limits opti-
mization of such systems, the Grid of Processing Cells
(GPC) has been proposed as a highly scalable multi-
core alternative that maximizes the benefits of paral-
lelization. This work introduces a toolbox that aims
to immensely improve benchmarking productivity for
the GPC model. The included tools generate random
task graphs based on configurable constraints, as well
as their corresponding SystemC timing simulations,
C++ executables, and abstract syntax trees. The syn-
thetic examples can be used to test the feasibility and
optimization of mapping data flow applications to the
GPC architecture.
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Figure 1: Architecture of SM Designs [1]

1 Introduction

In most computer systems, strategies for hardware
optimization have been centered around increasing
clock speeds, processor counts, and cache sizes. De-
spite the development of sophisticated memory hi-
erarchies, parallel processing, and other specialized
solutions, most modern designs still rely on large,
slow central memory modules to support its processor
cores, as illustrated in Figure 1. The ever increasing
memory access complexity and contention forms the
memory access bottleneck, which becomes the limit-
ing factor in optimization.

The Grid of Processing Cells (GPC) [3] has been
proposed as an alternative design to maximize paral-
lelization benefits by mitigating the memory access
bottleneck. The GPC architecture uses a “checker-
board” pattern tiled by alternating processor and
memory modules, as shown in Figure 2. The design
allows adjacent cores to directly access neighboring
memory modules, reducing the risk of memory access
contention. Optimization of parallelization on such an
architecture becomes limited only by the mapping of
tasks onto the checkerboard.

1.1 Problem Definition

To take full advantage of this architecture, it becomes
necessary to develop a pipeline for mapping applica-
tions to the GPC. Various projects in the past have
manually mapped applications to the GPC architec-
ture. These projects include an APNG encoder [4],
a JPEG encoder [1] (Figure 3), a Mandelbrot Set
Visualizer [5] (Figure 4), and a Canny Edge Detec-
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Figure 2: 4x4 GPC Checkerboard [3]

tor [2]. Despite observing speedups when evaluating
the execution performance of applications mapped
onto the GPC, each project commented on the im-
practicality of manually mapping applications onto
the GPC checkerboard. Thus, in the interest of ac-
celerating benchmarking productivity and extending
the architecture’s use cases, an automatic GPC Com-
piler (GPCC) must handle the mapping of applica-
tions onto the GPC.

The tools developed in this work seek to contribute
toward the development of the GPCC by perform-
ing three tasks: synthetic graph generation, outputting
SystemC simulation source code, and producing for-
matted inputs for the GPCC. This toolbox will help
validate the feasibility of mapping configurable appli-
cation structures, as well as offer a baseline for sim-
ulation comparison. In this report, we will refer to
the collection of included tools as the Synthetic Graph
Toolbox (SGT).

At the time of this report, the GPCC (Figure 6) re-
quires input C++ applications to conform to a spe-
cific set of syntax and structure rules, which we will
call Guided C++ (GCPP). This includes requiring
that all functions be contained within a class called
a Module. Inter-function communication must be
completed by interacting through Channels. In this
form, the GPC parser will be able to generate a GPC
mapping for the application using SystemC, directly
utilizing the modules and channels to represent hard-
ware. The GPCC also requires an Application Task
Graph (ATG, a modified variant of the abstract syn-
tax tree data structure) for mapping input applica-
tions. The ATG contains information describing the
control flow and dependencies within the application,
as well as the local variable names and implemented

functionality within its functions.

1.2 Toolbox Overview

The SGT (Figure 5) includes six C++ files: the syn-
thetic graph generator, the SystemC TLM1 generator,
the SystemC TLM?2 generator, the GCPP generator,
the ATG extraction generator, and a graphic genera-
tor. The graph generator processes the user config-
uration file and generates a text file containing the
graph’s nodes and edges. This graph is used by the
other files to generate outputs. The TLM1 and TLM2
writers produce SystemC model source code, with
user-configurable timing settings. The GCPP writer
produces the aforementioned guided C++ file from
the generated graph, and the graphic generator gener-
ates a Python script that creates a visualization of the
graph. The ATG extraction generator generates an-
other Python file, parsed from the GCPP file, that ex-
tracts the application control flow, dependencies, and
implemented functionality.

Figure 4. GPC Mapping: Mandelbrot Set [5]
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e |

Figure 6: GPCC Flowchart

2 The SGT Executables

In the following sections, we will discuss the imple-
mentation and operation of each tool in the SGT, as
well as the applications of their generated outputs.

2.1 Graph Generator

The graph generator gg.cpp randomly constructs di-
rected acyclic graphs based on constraints specified
in the user configuration file. The graph is repre-
sented using the vector and set data structures, storing
nodes and edges respectively. Along with the ID of
the nodes, we also keep track of the depth and num-
ber of outgoing edges, properties that will be useful
when constructing SystemC models later. The gener-
ator constructs the graph in three stages, as shown in
Figure 7.

2.1.1 Generator Algorithm

First, a primary path is created by initializing H nodes
and connecting them to form a singly linked list,
where H is the height of the graph specified in the

Build Primary Path

Randomly Append
Residual Nodes

Randomly Populate
Edges

Figure 7: Graph Generator Stages

configuration file. Next, nodes are appended ran-
domly to the non-terminal nodes along the primary
path, until the graph contains all N user specified
nodes. The generator is capable of generating graphs
with singular and non-singular outputs, meaning the
graph may terminate at one node or contain multiple
terminal nodes. Should the user specify for singular
output, the generator will connect appended nodes to
the terminal primary node to avoid hanging nodes.

In the final stage, additional edges are randomly
formed between random nodes. The generator iter-
ates through all nodes, where it may randomly form
an edge between it and a random destination node.
Each node has a 30% chance of forming this addi-
tional edge, by default. This probability setting can
be configured by editing the threshold variable within
the graph generator’s source code.

These steps ensure a random graph is generated
within the constraints specified within the configura-
tion file. The completed graph is written to a text file,
which will be used by the other tools within the SGT.
The user should note that the graph generator will fail
if the constraints specified in the configuration file do
not describe a plausible graph.

2.1.2 Input/Output

The configuration file, gg.config, allows for select-
ing a node count, a height (maximum length from



source node to terminal node or nodes), maximum
edge count per node, and singular/non-singular out-
put. A minimum of 2 nodes is required to produce
output from the graph generator, given the height and
maximum edge parameters always describe a plausi-
ble graph. The singular output setting is active high;
setting it to 0 will yield multiple terminal nodes and
setting it to 1 will yield a single terminal node.

The output text file will always specify the number
of nodes in the graph on the first line, and then list
the connections at each node. Each node is denoted
as Vx[d], where x is the node’s ID and d is the node’s
depth. A node’s depth is defined by the number of
edges away it is from the source node, V0.

2.1.3 Example Configuration

// CONFIGURATION FILE (for gg.cpp)
Nodes (min 2): 5

Height: 3

Maximum edges: 3

Singular output [0/1]: 1

Figure 8: Graph Configuration File

Figure 8 shows an example configuration in the
configuration file, describing a graph with five nodes,
maximum height of three, maximum of three edges
per node, and a single terminal node. The graph gen-
erator first connects nodes V0, V1, and V2 in a singly
linked list, completing the primary path of the graph.
Next, in this example, nodes V3 and V4 are appended
to the primary path at random. This example shows
both nodes connecting to V0. Since the configuration
file specifies for singular output, all hanging nodes are
connected to the terminal node V2. In this example,
no additional edges are added. Figure 9 shows the
resulting output text file, describing a graph that satis-
fies all constraints specified in the configuration file.

Nodes: 5

vo[o]: vi[1],v3[1],v4[1],
Vi[1]: v2[2],

v2[2]:

v3[1]: v2[2],

V4[1]: v2[2],

Figure 9: Graph Output Example

2.2 SystemC Simulation Generators

The SGT contains two SystemC generators,
writeTLMl.cpp and writeTLM2.cpp, which
process the text file produced by the graph generator
to generate SystemC simulation models. Each node
in the generated task graph represents a function
or subtask from some application, which will be
assigned to a processor core. Upon conversion
to a SystemC simulation, each node becomes a
module within a Design-Under-Test (DUT). The two
generators differ in how they handle inter-module
(inter-function) communication. Both create DUTs
and simulate their behavior when connected to
Stimulus and Monitor modules.

The TLM1 model (Figure 10(a)) uses channels to
represent communication between modules. These
channels are implemented using FIFO buses. Each
node is represented by a module and has dedicated
channels for incoming and outgoing edges, where
data is read from and written into. Since the SGT
graph generator doesn’t assign any functionality to
the nodes within its task graph, a configurable delay is
imposed at each node to represent some computation
time. This setting can be configured in the TLM con-
figuration file, TLM.config, by changing the value
next to Delay Factor under TLM1, which is mea-
sured in milliseconds. The generator adds code into
each module to calculate the distance of the longest
path from source to terminal node(s). This output is
observable at the Monitor during simulation, by com-
piling and running the generated graph_TLM1.cpp.

The TLM2 model (Figure 10(b)) enables a more
rigorous model for inter-module communication, re-
quiring modules to read and write data from and into
memory modules, with control signals and multiplex-
ers to facilitate parallel access. The implementation
for memory modules and muxes can be found in
the lib/TLM2 folder. Nodes must register I/O sock-
ets with memory modules, specifying access signals
and addresses. The TLM2 simulation also calculates
the distance of the longest path from source to ter-
minal node(s), but utilizes more configurable delay
values than TLM1. In the TLM configuration file,
TLM.config, the memory size, read delay, and write
delay of on and off chip memories can be configured.
Memory size is measured in bytes, and delays are



measured in nanoseconds. Similarly to TLM1, the ar-
tificial computation time can be configured by chang-
ing the value next to Delay Factor under TLM2,
which is measured in milliseconds. After compiling
and running the generated graph_TLM2.cpp simula-
tion, the Monitor will once again display the calcu-
lated longest path(s).
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Figure 10: SystemC Model Examples

2.2.1 Example SystemC Model Configuration

The TLM generators both parse the text file generated
by the graph generator and produce C++ simulation
files. Although both TLM1 and TLM?2 will support

simulation with multiple terminal nodes, only TLM2
utilizes multithreading to read outputs concurrently.
Thus, only the TLM?2 simulation will report accurate
timings at the Monitor.

Using the graph generated in Figure 9 and the con-
figuration file settings in Figure 11, we obtain the sim-
ulations shown in Figure 12 and Figure 13. Due to the
additional timing settings present in the TLM2 simu-
lation, as well as initialization delays hidden within
the source code, the stimulus takes slightly longer to
propagate through the DUT and reach the Monitor.

// CONFIGURATION FILE (for TLM models)
[TLM1]
-- Delay Factor: 1

[TLM2]

—-- 0ff-Chip Memory Size: 8+%1024%*1024
-- 0ff-Chip Read Delay: 100

-- 0ff-Chip Write Delay: 110

-— On-Chip Memory Size: 4*1024%1024
-- On-Chip Read Delay: 5

-- On-Chip Write Delay: 6

-- Delay Factor: 1

Figure 11: TLM Configuration File

2.3 Guided C++ Code Generator

To map applications to the GPC using the GPCC for-
mat, the input application must be translated into a
form that the GPCC can parse. As previously stated,
this form is called guided C++, and requires com-
partmentalizing functions into Modules and perform-
ing communication through Channels. Each Mod-
ule creates a dedicated thread and communicates to
other Modules by sending data through queues (chan-
nels). To perform this translation, the GCPP genera-
tor writeGCPP.cpp also takes the text file generated
by the graph generator as input. The resulting C++
file, graph.cpp, contains the necessary functionality
to perform the same longest-path calculation that the
TLM1 and TLM2 simulations perform, as observed
in Figure 14, which also uses the graph in Figure 9.
The structure of the outputted graph.cpp closely re-
sembles that of the TLM1 simulation (Figure 10(a)).
However, the GCPP simulation is stripped of the tim-
ing information that SystemC provides.



SystemC 2.3.3-Accellera --- May 16 2023 21:54:37
Copyright (c) 1996-2018 by all Contributors,
ALL RIGHTS RESERVED

<> 0 s: Stimulus sent.
>> 3 ms: Monitor received output [3] from V2 after 3 ms delay.
Figure 12: Example TLM1 Simulation Output
SystemC 2.3.3-Accellera --- May 16 2023 21:54:37

Copyright (c) 1996-2018 by all Contributors,
ALL RIGHTS RESERVED
<> 0 s: Stimulus sent.
>> 4001770 ns: Monitor received output [3] from V2 after 4001770 ns delay.

Figure 13: Example TLM2 Simulation Output

<> Stimulus sent [0].
>> Monitor received [3] from V2.
<> Monitor exits simulation.

Figure 14: Example GCPP Output

2.4 ATG Extraction Generator

The GPCC also requires the control flow, dependencies, and functionality of an application’s functions to be
extracted from the GCPP file. This data is stored in an Application Task Graph (ATG), a modified variant of an
abstract syntax tree. To extract the ATG from the GCPP file generated by the GCPP generator, the ATG extraction
generator writeATG.cpp parses the GCPP generator’s output and produces a python script, ATG_parsed.py.
This python script populates an ATG data structure, recording the channels that each Module utilizes and the
functional code within each Module. The script prints this information to the terminal when run, as seen in
Figure 15 and Figure 16, which uses the GCPP code based on the graph in Figure 9. The GPCC may use the
graph.cpp file and the data structure created by running ATG_parsed.py to attempt creating a GPC mapping for
the task graph generated by the graph generator.

The script also generates graph_unparse.cpp, which is reconstructed from the ATG, and when run, yields the
same output as the graph.cpp file generated by the GCPP generator.

2.5 Mapper Generator

The mapper generator writerMapper.cpp generates another python script, mapper.py, which is responsible for
producing a visualization of the generated task graph. The mapper generator also takes the text file generated by
the graph generator as input. The generated graphic for the graph in Figure 9 is shown in Figure 17.



<mapperLib.AppTaskGraph object at 0x7£92ff2b6b90>
SOURCE: graph.cpp
HEADER: 5 lines
GPCC: True
MODULES: 12
MODULE VO
PORT QUEUE_IN<int> input
PORT QUEUE_OUT<int> V1
PORT QUEUE_QUT<int> V3
PORT QUEUE_OUT<int> V4
THREAD main (detached)
Code: 11 lines
MODULE V1
PORT QUEUE_IN<int> VO
PORT QUEUE_QUT<int> V2
THREAD main (detached)
Code: 11 lines
MODULE V2
PORT QUEUE_IN<int> V1
PORT QUEUE_IN<int> V3
PORT QUEUE_IN<int> V4
PORT QUEUE_0OUT<int> output_V2
THREAD main (detached)
Code: 17 lines
MODULE V3
PORT QUEUE_IN<int> VO
PORT QUEUE_QUT<int> V2
THREAD main (detached)
Code: 11 lines
MODULE V4
PORT QUEUE_IN<int> VO
PORT QUEUE_OUT<int> V2
THREAD main (detached)
Code: 11 lines
MODULE DUT
PORT QUEUE_IN<int> Dataln
PORT QUEUE_0OUT<int> V2_out
CHANNEL_INSTANCE QUEUE<int> VO_V1
CHANNEL_INSTANCE QUEUE<int> VO_V3
CHANNEL_INSTANCE QUEUE<int> VO_V4
CHANNEL_INSTANCE QUEUE<int> V1_V2
CHANNEL_INSTANCE QUEUE<int> V3_V2
CHANNEL_INSTANCE QUEUE<int> V4_V2
MODULE_INSTANCE VO vO(DatalIn,VO_V1,V0_V3,V0_V4)
MODULE_INSTANCE V1 v1(VO_V1,V1_V2)
MODULE_INSTANCE V2 v2(V1_V2,V3_V2,V4_V2,V2_out)
MODULE_INSTANCE V3 v3(VO_V3,V3_V2)
MODULE_INSTANCE V4 v4(V0_V4,V4_V2)
Code: 2 lines

Figure 15: ATG Extraction Output [Part 1/2]




MODULE Dataln

PORT QUEUE_IN<int> input
PORT QUEUE_OUT<int> output
THREAD main (detached)
Code: 9 lines

MODULE Datalut

PORT QUEUE_IN<int> input
PORT QUEUE_0UT<int> output
THREAD main (detached)
Code: 9 lines

MODULE Platform

PORT QUEUE_IN<int> input

PORT QUEUE_OUT<int> V2_out
CHANNEL_INSTANCE QUEUE<int> din_dut (1)
CHANNEL_INSTANCE QUEUE<int> dut_V2(1)
MODULE_INSTANCE DatalIn din(input,din_dut)
MODULE_INSTANCE DUT dut(din_dut,dut_V2)
MODULE_INSTANCE DataOut V2(dut_V2,V2_out)
Code: 2 lines

MODULE Stimulus

PORT QUEUE_OUT<int> output
THREAD main (joinable)
Code: 7 lines

MODULE Monitor

PORT QUEUE_IN<int> input_V2
THREAD main (detached)
Code: 8 lines

MODULE Top

CHANNEL_INSTANCE QUEUE<int> stim_plat(1)
CHANNEL_INSTANCE QUEUE<int> plat_mon_V2(1)
MODULE_INSTANCE Stimulus stim(stim_plat)

MODULE_INSTANCE Platform plat(stim_plat,plat_mon_V2)

MODULE_INSTANCE Monitor mon(plat_mon_V2)

Code: 2 lines
INSTANCE TREE:

MODULE_INSTANCE Top top()

FOOTER: 6 lines

Figure 16: ATG Extraction Output [Part 2/2]
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Figure 17: Example Graph Visualization
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3 Experiments and Results

To test the SGT, each of its tools was tested on a va-
riety of input graphs. Using the TLM configuration
from Figure 11, graphs with 5, 10, 25, 50, and 100
nodes were tested, at various heights. Figure 1 dis-
plays each graph’s input attributes, the TLM1 output
and timing, and the TLM2 output and timing. Fig-
ure 2 displays the GPCC simulation output, and the
ATG’s reverse engineered simulation output. All of
the simulations — TLM1, TLM2, GPCC, and the re-
verse engineered ATG — retain the input graph’s at-
tributes. Thus, the simulation models may be used as
an accurate baseline, and the GPCC and ATG can be
used as test cases for the GPCC.

Nodes | Height TLM1 TLM2
5 3 3 at 3ms 3 at 4001770ns
10 8 8 at 8ms 8 at 9001986ns
25 20 20 at 20ms | 20 at 21002638ns
50 43 43 at 43ms | 43 at 44003723ns
100 94 94 at 94ms | 94 at 95005803ns

Table 1: SystemC Simulation Results [Part 1/2]

Nodes | Height | GPCC | ATG Reversed
5 3 3 3
10 8 8 8
25 20 20 20
50 43 43 43
100 94 94 94

Table 2: SystemC Simulation Results [Part 2/2]

Makefile Command Function
clean Remove all generated files
gg Runs graph generator
testTLM 1 Produces TLM1 model
testTLM2 Produces TLM2 model
testGCPP Produces GCPP file
mapper Produces visual
ATG Extracts ATG

Table 3: Makefile Commands

4 Conclusion

Various application have been manually mapped onto
the GPC architecture in an effort to benchmark its
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design. Despite the significant speedups observed
in these experiments, manually mapping applications
onto the GPC checkerboard is impractical. This has
led to the need to develop a compiler, GPCC, for
automatically mapping arbitrary data flow applica-
tions onto the GPC. To quickly evaluate the feasibil-
ity of mapping various application structures onto the
GPC using the GPCC, the SGT can be used to gener-
ate graphs, produce baseline simulations, and format
GPCC inputs.

Furthermore, the SGT can assist the GPCC in be-
coming operational by automatically producing large
quantities of test cases, streamlining testing an debug-
ging. With a functioning GPCC, applications can be-
gin taking full advantage of the highly parallel GPC
architecture.
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