
Center for Embedded and Cyber-Physical Systems
University of California, Irvine

Improved Canny Edge Detector for Parallel Color Video
Processing

Xiangdong Che, Rainer Dömer

Technical Report CECS-24-01
April 29, 2024

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

(949) 824-8919

xiangdc2@uci.edu
http://www.cecs.uci.edu

xiangdc2@uci.edu
http://www.cecs.uci.edu

Improved Canny Edge Detector for Parallel Color Video
Processing

Xiangdong Che, Rainer Dömer

Technical Report CECS-24-01
April 29, 2024

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

(949) 824-8919

xiangdc2@uci.edu
http://www.cecs.uci.edu

Abstract

Canny edge detection [1] is a well-known algorithm for filtering out edges in grey-scale images. In this
report, we describe our improvement of the original implementation by Mike Heath [3] for processing color
video streams efficiently. We extend the single image filter application to process a stream of video frames with
three color channels. Further, we parallelize the process by slicing the image frames vertically and horizontally
for separate processing. The increased parallelism can significantly increase the processing speed and reduce
the memory usage for small embedded processors. Our experiments show that image quality closely matches the
original frames, resulting in a smooth-playing video.

xiangdc2@uci.edu
http://www.cecs.uci.edu

Contents

1 Introduction 1
1.1 Original Edge Detection . 1
1.2 Sliced Edge Detection . 1

2 Improvements 2
2.1 Color Images Input . 2
2.2 Slicing Approach . 2
2.3 Quality Issues and Solution . 2

2.3.1 Missing Pixels at Boundaries Between Slices . 2
2.3.2 Inconsistency in Edge Images . 4

3 Experiments and Results 4
3.1 Color Image Input . 4
3.2 Slice Approach . 6

3.2.1 Impact of Fixed Threshold on Edge Images . 6
3.2.2 Impact of The Number of Slices on Edge Images . 6

4 Conclusion 7

References 7

ii

List of Figures

1 SystemC model of canny seq.c . 1
2 Example of 2x2 slicing . 1
3 New arrays that store RGB information . 2
4 New arrays which store RGB information . 2
5 Slicing approach . 3
6 Edge image with slicing boarders . 3
7 Edge image after fix . 3
8 Lines that were removed . 4
9 Loops that were modified . 4
10 New boundary check . 4
11 Edge image with inconsistent thresholds . 5
12 Edge image after fix . 5
13 Lines that were removed . 5
14 Chart of differences on 100 color frames . 5
15 Chart of differences on 100 frames with consistent thresholds 6
16 Chart of difference among 4 ways of slicing on 100 frames . 6

iii

List of Tables

1 Comparison between using color image input and grey-scale image input 5
2 Comparison between original edge images and 1x1 slice approach 6

iv

Improved Canny Edge Detector for Parallel Color Video Processing

X. Che, R. Dömer
Center for Embedded and Cyber-Physical Systems

University of California, Irvine
Irvine, CA 92697-2620, USA

xiangdc2@uci.edu
http://www.cecs.uci.edu

Abstract

Canny edge detection [1] is a well-known algorithm
for filtering out edges in grey-scale images. In this re-
port, we describe our improvement of the original im-
plementation by Mike Heath [3] for processing color
video streams efficiently. We extend the single image
filter application to process a stream of video frames
with three color channels. Further, we parallelize the
process by slicing the image frames vertically and
horizontally for separate processing. The increased
parallelism can significantly increase the processing
speed and reduce the memory usage for small em-
bedded processors. Our experiments show that image
quality closely matches the original frames, resulting
in a smooth-playing video.

1 Introduction

The Canny Edge Detector [1] is a widely used algo-
rithm for edge detection in image processing. It was
developed by John F. Canny in 1986 but has since un-
dergone several adaptations and optimizations, one of
which we used was implemented by Mike Heath [3].

1.1 Original Edge Detection

The original version we use in EECS222 [2] and
ECPS203 [4] class that was adapted from the source
code from Mike Heath [3]. This version of the de-
tector has a single-threaded implementation where
data is passed via local variables on the stack.
There are 8 sequential processing stages and 6 of
them (blurX, blurY, derivative x y, magnitude x y,

Figure 1: SystemC model of canny seq.c

non max supp, apply hysteresis) are in the DUT
module, as shown in Figure 1.

1.2 Sliced Edge Detection

Figure 2: Example of 2x2 slicing

We have made two improvements to canny seq.c.
The first change is that the algorithm can take color
images in ppm format instead of greyscale images

1

xiangdc2@uci.edu
http://www.cecs.uci.edu

in pgm format and then process information in three
color channels of RGB to improve the quality of edge
images. The second change is the image processing
stage which not only allows the program to run in par-
allel but also reduces the memory usage during pro-
cessing images to 1 / (M*N) where M and N are pa-
rameters that can be adjusted as needed. For example,
input images are sliced into 4 pieces as shown in Fig-
ure 2.

2 Improvements

We describe our changes in detail in the following
sections.

2.1 Color Images Input

To maintain RGB information across all three color
channels, we use six additional arrays, with three des-
ignated for storing input images and the remaining
three for corresponding edge images. To make the
program more organized, we implemented two arrays
for efficient storage of these images, as illustrated in
Figure 3.

int main(void)
{

unsigned char imageRed[SIZE];
unsigned char imageGreen[SIZE];
unsigned char imageBlue[SIZE];
unsigned char edgeRed[SIZE];
unsigned char edgeGreen[SIZE];
unsigned char edgeBlue[SIZE];
unsigned char* imageRGB[3];
unsigned char* edgeRGB[3];

...

imageRGB[0] = imageRed;
imageRGB[1] = imageGreen;
imageRGB[2] = imageBlue;
edgeRGB[0] = edgeRed;
edgeRGB[1] = edgeGreen;
edgeRGB[2] = edgeBlue;

Figure 3: New arrays that store RGB information

After collecting edge images, the output image is
manually generated through the data out() function.
This process involves merging images from the three
distinct RGB channels, where pixels are marked as

”EDGE” if detected in at least one of the three chan-
nels, as illustrated in Figure 4.

void data_out(unsigned char *edge,
unsigned char **edgeRGB,
unsigned int i) {

...
int index = 0;
for (index = 0; index < SIZE; ++index) {

edge[index] = NOEDGE;
if (edgeRGB[0][index] == EDGE ||

edgeRGB[1][index] == EDGE ||
edgeRGB[2][index] == EDGE) {
edge[index] = EDGE;

}
}
...
write_pgm_image(outfilename, edge, ROWS,

COLS, "", 255) == 0)
}

Figure 4: New arrays which store RGB information

2.2 Slicing Approach

To achieve the goal of less memory usage, we use an-
other approach when performing the detection algo-
rithm on images. Instead of calling canny() on the en-
tire image, we divide input images into multiple rect-
angular slices by M rows and N columns. We then
apply canny() to each of the images individually to
produce edge images of each slice. Finally, the re-
sulting edge images from each slice are combined to-
gether back to one at the end, as illustrated in Figure
5.

2.3 Quality Issues and Solution

Naive slicing results in reduced image quality that we
address as follows.

2.3.1 Missing Pixels at Boundaries Between
Slices

In the original algorithm, the edge images’ boundaries
were set to empty by default, and all loops skipped
pixels on these boundaries for efficiency, as tracking
an edge off the image’s side was unnecessary. How-
ever, this practice is problematic with our slicing ap-
proach because the pixels on the boundaries of each

2

void canny_slice(unsigned char* image, unsigned char* edge) {

int i = 0, j = 0;
unsigned char slicedImage[SLICESIZE];
unsigned char slicedEdge[SLICESIZE];

for (i = 0; i < SLICENUM_ROW; ++i) {

for (j = 0; j < SLICENUM_COL; ++j) {

int desOffset = 0;
int srcOffset = (i * ROWPERSLICE * COLS) + j * COLPERSLICE;
int index = 0;

/* copy sliced image from src image to buffer*/
for (index = 0; index < ROWPERSLICE; ++index) {

memcpy(slicedImage + desOffset, image + srcOffset, COLPERSLICE);
desOffset += COLPERSLICE;
srcOffset += COLS;

}

canny(slicedImage, ROWPERSLICE, COLPERSLICE, SIGMA, TLOW, THIGH, slicedEdge);

desOffset = (i * ROWPERSLICE * COLS) + j * COLPERSLICE;
srcOffset = 0;
index = 0;

/* copy sliced edge from buffer to edge*/
for (index = 0; index < ROWPERSLICE; ++index) {

memcpy(edge + desOffset, slicedEdge + srcOffset, COLPERSLICE);
desOffset += COLS;
srcOffset += COLPERSLICE;

}
}

}
}

Figure 5: Slicing approach

Figure 6: Edge image with slicing boarders Figure 7: Edge image after fix

3

slice are no longer boundaries once reassembled. Ob-
vious white lines can be found vertically and horizon-
tally at the center of the edge image before the fix, as
shown in Figure 6, compared with the image after the
fix, as shown in Figure 7.

To fix this issue, we removed the lines of code that
set boundary pixels to zero in apply hysteresis(), as
shown in Figure 8.

void apply_hysteresis() {
...

/*
for(r=0,pos=0;r<rows;r++,pos+=cols){

edge[pos] = NOEDGE;
edge[pos+cols-1] = NOEDGE;

}
pos = (rows-1) * cols;
for(c=0;c<cols;c++,pos++){

edge[c] = NOEDGE;
edge[pos] = NOEDGE;

}
*/

...
}

Figure 8: Lines that were removed

We also changed the starting index of the loop and
initialization of pointers in non max supp() to ensure
it covers every pixel including boundaries, as shown
in Figure 9.

void non_max_supp() {
...

for(rowcount=0,magrowptr=mag,gxrowptr=gradx,
gyrowptr=grady,resultrowptr=result;
rowcount<nrows;
rowcount++,magrowptr+=ncols,
gyrowptr+=ncols, gxrowptr+=ncols,
resultrowptr+=ncols){
for(colcount=0,magptr=magrowptr,

gxptr=gxrowptr,gyptr=gyrowptr,
resultptr=resultrowptr;
colcount<ncols;
colcount++,magptr++,gxptr++,gyptr++,
resultptr++) {

...
}

Figure 9: Loops that were modified

To compensate for not having zero on the bound-

aries, we add a condition in follow edges() to check
if the pointer is going off boundaries, as shown in Fig-
ure 10.

void follow_edges(unsigned char *edgemapptr,
short *edgemagptr, short lowval,
int cols, int r, int c) {

/* prevent overwrite */
if(r < 0 || c < 0 ||

r >= ROWPERSLICE ||
c >= COLPERSLICE) return;

...

Figure 10: New boundary check

2.3.2 Inconsistency in Edge Images

In the original algorithm, edges are determined by
two thresholds, i.e. LOWTHRESHOLD and HIGH-
THRESHOLD. These two thresholds are computed
dynamically for every image based on the intensity of
pixels in input images. Therefore, after slicing the in-
put images, each small slice will have different thresh-
olds which generate inconsistent edge images as illus-
trated in Figure 11, compared with the image after the
fix, as shown in Figure 12.

To fix this issue, we removed the lines of code that
calculate thresholds and hard-coded LOWTHRESH-
OLD and HIGHTHRESHOLD values, as shown in
Figure 13.

3 Experiments and Results

To evaluate the differences and improvements, we use
a tool called ImageDiff to compare images which cal-
culates the number of different pixels between two
images and then calculates the percentage relative to
its resolution.

3.1 Color Image Input

We compare the edge images by using color images
and grey-scale images as input. We observe that the
edge images generated using color images as input
have 1.5% more pixels on average, as shown in Table
1 and plotted in Figure 14.

4

Figure 11: Edge image with inconsistent thresholds Figure 12: Edge image after fix

void apply_hysteresis() {
...

/*
for(r=0;r<32768;r++) hist[r] = 0;
for(r=0,pos=0;r<rows;r++){

for(c=0;c<cols;c++,pos++){
if(edge[pos] == POSSIBLE_EDGE) {

hist[mag[pos]]++;
}

}
}

for(r=1,numedges=0;r<32768;r++){
if(hist[r] != 0) maximum_mag = r;
numedges += hist[r];

}

highcount = (int)(numedges * thigh + 0.5);
r = 1;
numedges = hist[1];
while((r<(maximum_mag-1)) &&

(numedges < highcount)){
r++;
numedges += hist[r];

}
highthreshold = r;
lowthreshold = (int)(highthreshold * tlow + 0.5);
*/

highthreshold = HIGHTHRESHOLD;
lowthreshold = LOWTHRESHOLD;

}

Figure 13: Lines that were removed

Mismatched pixels Percentage
Frame 1 71373 1.74%
Frame 2 71150 1.73%
Frame 3 67465 1.64%
Frame 4 67563 1.64%
Frame 5 64927 1.58%
...
Frame 96 46923 1.14%
Frame 97 49148 1.20%
Frame 98 42253 1.03%
Frame 99 41678 1.01%
Frame 100 38725 0.94%
Average 61910 1.51%

Table 1: Comparison between using color image input
and grey-scale image input

Figure 14: Chart of differences on 100 color frames

5

3.2 Slice Approach

Our image slicing also affects the image quality.

3.2.1 Impact of Fixed Threshold on Edge Images

In our evaluation, we initially compare the original
edge images with those generated using the slice ap-
proach with a single slice (1x1) as shown in Table 2.

Mismatched pixels Percentage
Frame 1 25941 0.631%
Frame 2 25941 0.672%
Frame 3 25941 0.628%
Frame 4 25941 0.720%
Frame 5 25941 0.79%
...
Frame 96 99825 2.429%
Frame 97 91515 2.227%
Frame 98 106379 2.588%
Frame 99 117203 2.852%
Frame 100 124174 3.021%
Average 50317 1.224%

Table 2: Comparison between original edge images
and 1x1 slice approach

We observe that the differences between the two
methods increase across different frames, as illus-
trated in Figure 15.

Figure 15: Chart of differences on 100 frames with
consistent thresholds

The reason is that some frames may have com-

plicated backgrounds while others are relatively sim-
ple. The program employs fixed thresholds, which
are hard-coded at the outset, for edge detection across
all images. Therefore, as images change, the fixed
thresholds may result in larger differences in edge de-
tection results.

3.2.2 Impact of The Number of Slices on Edge
Images

Here, we treat 1x1 slicing as the reference and com-
pare four different ways of slicing. We observe that as
the slice number increases, the differences increase,
as plotted in Figure 16.

Figure 16: Chart of difference among 4 ways of slic-
ing on 100 frames

By slicing the input images into smaller pieces,
many factors affect the accuracy. For example, there
is a risk of missing some global information that can
help in accurately detecting edges and the edge may
become discontinued resulting in missing edges.

6

4 Conclusion

In conclusion, this report has introduced an improved
version of the Canny edge detection algorithm capa-
ble of processing color images, thereby enhancing the
accuracy of edge detection. Moreover, the optimized
program demonstrates parallelism with lower mem-
ory usage without significant compromise in accu-
racy. However, it is imperative to acknowledge two
critical factors influencing the quality of edge images:
the fine-tuning of thresholds according to varied input
image scenarios and the impact of image segmenta-
tion on edge quality. Increasing the number of image
slices adversely affects edge image quality.

References

[1] John Canny. A computational approach to edge
detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-8, 1986.

[2] EECS 222. https://canvas.
eee.uci.edu/courses/sis course id:
CourseSpace-Section-W24-17360/
assignments/syllabus.

[3] Heath. M, Sarkar. S, Sanocki.T, and Bowyer.K.
Comparison of edge detectors: a methodology
and initial study. In Computer Vision and Pattern
Recognition, San Francisco, U.S.A, June 1996.

[4] MECPS 203. https://canvas.
eee.uci.edu/courses/sis course id:
CourseSpace-Section-F23-15205/assignments/
syllabus.

7

https://canvas.eee.uci.edu/courses/sis_course_id:CourseSpace-Section-W24-17360/assignments/syllabus
https://canvas.eee.uci.edu/courses/sis_course_id:CourseSpace-Section-W24-17360/assignments/syllabus
https://canvas.eee.uci.edu/courses/sis_course_id:CourseSpace-Section-W24-17360/assignments/syllabus
https://canvas.eee.uci.edu/courses/sis_course_id:CourseSpace-Section-W24-17360/assignments/syllabus
https://canvas.eee.uci.edu/courses/sis_course_id:CourseSpace-Section-F23-15205/assignments/syllabus
https://canvas.eee.uci.edu/courses/sis_course_id:CourseSpace-Section-F23-15205/assignments/syllabus
https://canvas.eee.uci.edu/courses/sis_course_id:CourseSpace-Section-F23-15205/assignments/syllabus
https://canvas.eee.uci.edu/courses/sis_course_id:CourseSpace-Section-F23-15205/assignments/syllabus

	Introduction
	Original Edge Detection
	Sliced Edge Detection

	Improvements
	Color Images Input
	Slicing Approach
	Quality Issues and Solution
	Missing Pixels at Boundaries Between Slices
	Inconsistency in Edge Images

	Experiments and Results
	Color Image Input
	Slice Approach
	Impact of Fixed Threshold on Edge Images
	Impact of The Number of Slices on Edge Images

	Conclusion
	References

