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Abstract

System-level design methodologies evolve in response to increasing complexity of applications. Transaction-
level modeling (TLM) is one technique that allows the designer to capture the specifications of complex digital
systems without defining low-level implementation details. The Grid of Processing Cells (GPC) has been pro-
posed as a highly scalable many-core architecture and is modeled using SystemC TLM-2.0 methodology. This
thesis describes the modeling of a GoogLeNet Convolutional Neural Network (CNN) on the GPC architecture
and evaluates its performance and scalability. The models feature a new modular Memory Access Resources and
Interfaces (MARI) library to improve communication between modules and assist during profiling. This work
also introduces a graphical CAD software called Map Grid-based Layouts (MapGL) to facilitate the design pro-
cess, automatically generate SystemC models, and generate performance reports. Experimental results evaluate
and compare the generated models and show the achieved improvements in terms of memory usage and speed.
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Abstract

System-level design methodologies evolve in re-
sponse to increasing complexity of applications.
Transaction-level modeling (TLM) is one technique
that allows the designer to capture the specifications
of complex digital systems without defining low-level
implementation details. The Grid of Processing Cells
(GPC) has been proposed as a highly scalable many-
core architecture and is modeled using SystemC TLM-
2.0 methodology. This thesis describes the model-
ing of a GoogLeNet Convolutional Neural Network
(CNN) on the GPC architecture and evaluates its
performance and scalability. The models feature a
new modular Memory Access Resources and Inter-
faces (MARI) library to improve communication be-
tween modules and assist during profiling. This work
also introduces a graphical CAD software called Map
Grid-based Layouts (MapGL) to facilitate the design
process, automatically generate SystemC models, and
generate performance reports. Experimental results
evaluate and compare the generated models and show
the achieved improvements in terms of memory usage
and speed.

1 Introduction

Over the last two decades, due to power limitations,
computer systems focus shifted from raising the clock
frequency toward the increase in the number of pro-
cessors [3]. This phenomenon led to higher design
complexity and shared memory contention caused by

the “memory wall” problem [12].

The growth in complexity of applications drives the
need for modeling systems at a higher level of abstrac-
tion called Electronic System Level (ESL) [8]. Then,
Transaction Level Modeling (TLM) techniques allow
refining portions of the system model towards lower
levels. Nowadays, SystemC represents the language
of choice to launch the adoption of ESL and TLM
modeling [4]. It is based on C++, a common language
for software and hardware, and provides simulation
concurrency for both of them.

The Grid of Processing Cells (GPC) architecture
uses the SystemC TLM2.0 methodology and has been
proposed to reduce the shared memory bandwidth
limitation using distributed local memories [7]. The
structure follows a “checkerboard” pattern in which
processing cores and local memories alternate on a
regular 2D mesh. This design increases the number of
pathways between cores, which mitigates the memory
contention effect.

This work aims to push the GPC architecture’s scal-
ability by designing on it a GoogLeNet convolutional
neural network (CNN) application.
The GoogLeNet is a low-parameter image classifi-
cation CNN presented during the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) in
2014 [17].
The regularity of the GoogLeNet CNN structure and
the high parallelization of its inception blocks should
allow a straightforward mapping of its layers into the
GPC architecture. This work has been part of my
master’s thesis at Politecnico di Torino. [16].
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1.1 Report structure

Every section represents one design step towards cre-
ating and profiling the final model.

This introductory section discusses the related
works and goals of our research. Then in Section 2,
the first implementation will be presented along with
its limitations. Section 3 and Section 4 describe the
two tools created to aid the design of the final model
presented in Section 5. Section 6 shows the two mod-
els’ experimental results and compares them to quan-
tify the improvements. Finally, Section 7 will discuss
if the goals have been achieved and the future work
ideas.

1.2 Related Works

This section will briefly describe the three major
works related to our research: the SystemC language,
the GPC architecture and the GoogLeNet CNN.

1.2.1 SystemC

SystemC is a System Level Design Language (SLDL)
that provides constructors required for modeling hard-
ware within the context of C++ [13][10].

The fundamental design components are the Mod-
ules, which are classes derived from the sc module
class. Similar to VHDL’s entities and architectures,
SystemC separates the interface and implementation
of the module by using header and source files.

The SystemC simulator uses a cooperative multi-
tasking model that allows concurrency simulation of
the model. A class called sc time can be used to track
simulation time with 64 bits of resolution. Without in-
troducing any delay, the execution time of every mod-
ule is zero. In this case, the SystemC simulator uses
delta cycles to perform operations in parallel.

With SystemC TLM2.0, the communication be-
tween modules takes place through memory-mapped
bus models [2]. The TLM2.0 classes are built on top
of the SystemC class library and contain interfaces,
sockets, generic payloads and protocols.

1.2.2 GPC Architecture

The GPC is a highly scalable many-processor archi-
tecture designed with SystemC TLM2.0 methodol-

ogy. The structure is constructed by alternating cores
and local memory as shown in Figure 2 for a 4 by
4 grid. Since the pattern resembles a checkerboard,
the structure was initially introduced as the “checker-
board” model [7].

The alternating placement allows for identifying
the block called “cell” formed by a core and a mem-
ory. Looking at Figure 2, it is possible to recognize
two types of cells: the L-type with the green border
and the R-type with the red one.

Every core has a TLM2.0 initiator socket that binds
to a maximum of 4 priority-based multiplexers, one
for each surrounding memory. Figure 1 shows a de-
tailed representation of an R-type cell, with multi-
plexer and the TML2.0 sockets.

Figure 1: R-type cell inside the GPC architecture, re-
drawn from [7].

The advantage of using a distributed memory orga-
nization is that every core connects to smaller memo-
ries, which are expected to be faster than large ones.
The contention is reduced by allowing cores only to
access the surrounding memories. In this way, the
worst-case scenario is four cores that want to access
the same memory. This is a significant improvement
compared to regular multi-processor architectures in
which each core communicates with the same mem-
ory. On the other hand, local memories limit cores
to connect with just their neighbors. External DRAM
memories act as “highways” through which cores far
from each other can communicate directly. Of course,
external memories are expected to be slower than the
ones “ON-chip”, but for large structures, that can be a
valid option to speed up communication.

Some computer vision applications that make use

2



Figure 2: Representation of a 4 by 4 GPC model with “OFF-chip” DRAM memories [7].

of the GPC architecture have been designed by the
CECS group at the University of California, Irvine
[6][9][18].
These works have shown the superiority of the GPC
over traditional multi-processor structures based on
shared memory.

1.2.3 GoogLeNet CNN

The problem of assigning a predetermined descriptive
label to an input image is known as image classifica-
tion.
Convolutional neural networks (CNN) have been used
to solve this problem since they allow fast and rela-
tively accurate classification.

The GoogLeNet is a state-of-the-art CNN for im-
age classification, winner of the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) 2014
with only 6.67% top-5 error [17]. The network is
composed of 22 layers when counting only layers
with parameters or 142 if not. Figure 3 shows the
entire structure of the GoogLeNet CNN.

Caffe is a deep learning framework created by the
Berkeley AI Research group (BAIR) in 2014 that pro-
vides a complete toolkit for training, testing, finetun-
ing, and deploying CNN models [11]. In this work,
the GoogLeNet Caffe model will be used to extract
the network structure information.

OpenCV is a C/C++ open-source library that pro-
vides tools needed to solve real-time computer vision
problems [15]. It also provides constructors that can
be used in CNN applications like the Mat data struc-
ture or the Layer class.

A SystemC model of the GoogLeNet CNN that use
the Caffe model and OpenCV has been designed by
the CECS group at the University of California, Irvine
[1]. This work will use that model as a reference for
the new one mapped on the GPC architecture.

1.3 Goals

This work aims to achieve the three goals described
below.

1. Exploit the scalability of the GPC architec-
ture with a CNN application.
Mapping all the GoogLeNet CNN layers will re-
quire at least 142 cores, which is not trivial for
ordinary multi-processor architecture. We want
to demonstrate that the GPC can handle such
large applications by creating and testing a work-
ing model.

2. Improve the mapping process for GPC-based
applications.
Mapping is accomplished by copying
and pasting C/C++ algorithms inside the

3



Figure 3: GoogLeNet CNN structure, redrawn from [5].

cores main() function definition in the
checkerboard user.cpp file. Even if
this method works well for small models, it
cannot be applied to large applications due to
the time the task demand and the possibility of
creating typos inside the code.

3. Create a new way of profiling GPC models.
Obtaining experimental results about the archi-
tecture delays, occupied area and power con-
sumption is challenging for high-level applica-
tions. Estimating these results can be essential
to confirm the feasibility of the model. For this
reason, we want to generate a tool that allows
evaluating at least part of these data. Ideally, we
also want to use it to profile future models with-
out modifications.

2 GoogLeNet CNN on GPC
(Version 1)

The aim of this section is to analyze the design pro-
cess of the first GoogLeNet CNN on GPC model,
from the Pen and Pencil mapping to the application
profiling. The last paragraph describes the limits of
this model which will then be overcome by the new
model in Section 5. The actual comparison between
the two versions will be analyzed in Section 6.

2.1 Pen and Paper Mapping

The main challenge of this model was its size. To
take advantage of the high scalability of the GPC ar-
chitecture, it was decided to assign one CNN layer

per core. The GoogLeNet CNN has 142 layers1, so
the grid must contain at least 142 cores.

Analyzing the GoogLeNet CNN structure in Fig-
ure 3, it is possible to notice that the first and last lay-
ers are connected in series, while the nine inception
blocks in the middle repeat themself without any sig-
nificant change. The inception block has the structure
shown in Figure 4.

Figure 4: The structure of the inception blocks inside
the GoogLeNet CNN, redrawn from [1].

Considering all this, the real challenge has become
finding the best mapping for the inception block. Two
rules were used:

1. Trying to not leave any unused cores to reduce
area occupation.

1143 if we consider also the first layer called “data”. How-
ever, the testbench already generates the input data so this layer
implementation is not needed.
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2. The last core of the inception block should be
placed close to the first core of the next block. In
this way, repeated blocks will match perfectly.

Looking at Figure 4, it is possible to identify 4
paths connected in parallel: 1 formed by 2 layers, 1
by 3 layers and 2 by 4 layers. The last layer occurs to
be part of the block only two times in the entire struc-
ture when the first layer of the next block is a pooling
layer. This means that we have 7 blocks that contain
14 layers/cores and 2 that contain 15 layers/cores.

For the sake of simplicity, we can assume every
block to contain 15 layers/cores, this allows us to have
a more regular and modular pattern at the minor cost
of 7 extra cores.

2.1.1 MemTools

MemTools is a library written in C++ that allows
a FIFO-like communication between adjacent cores
[6]. The shared memory is divided into equal parti-
tions depending on the required number of channels.
Each partition is split into two parts: the counters
and the queue. Every time some data is pushed in-
side the queue the sent counter is incremented, while
the received counter is incremented when the data is
popped. When the queue is full or empty, the oper-
ation remains blocked until a new pop or push from
another core occurs.

Figure 5 shows the memory mapping organization.
Both counters use four bytes, while the queue size can
be adapted to the quantity of data to store. The de-
signer can also increase the number of partitions, but
the memory size can limit its range.

MemTools Limits The advantage of using parti-
tions is that it avoids memory segmentation. Other
than that, it comes with limitations.

• Every partition has the same maximum number
of slots.

• Every slot has the same size in each partition.

• Even if only one partition is used, the user had to
specify the partition id at every pop or push.

Overall, partitions could only work in specific
cases. Other limitations related to the MemTools li-
brary are:

• Push and pop parameters are redundant, this can
lead to multiple typographical errors.

• The memory part occupied by the channel must
be cleaned by the user before being used.

• In a FIFO-like structure, having indexable con-
tent is not needed, for this reason, having slots
do not bring any benefit.

2.1.2 Fork and Merge

Due to the MemTools partitions limitations, it was de-
cided to not use them and instead find an alternative.
The solution was to specialize some core at splitting
or combining data. These modules were called Fork
and Merge and they are basically a deserializer and a
serializer. The way they work is shown in Figure 6.

The Fork is needed when the user wants to push
data to more than one core using the same memory,
while the Merge is needed when the user wants to pop
data from more than one core using the same memory.
In the Fork module, the slot length of the input must
be equal to the maximum slot length between all the
outputs. In the Merge module, the slot length of the
output must be equal to the maximum slot length be-
tween all the inputs.

Both of the modules can be used as a “forwarding”
module if only one input and one output are present,
as shown in Figure 7.

2.1.3 Inception Block

Figure 9 shows the final version of the inception block
that was used for this model. It is formed of 20 cores,
3 of which are empty, however, the 2 on the top part
can be used by other layers.

Overall, this block requires only 5 cores more than
the theoretical 15 due to the use of Forks and Merges
modules.

Looking at Figure 9 it is possible to confirm that
the two rules imposed for this design in Section 2.1
have been observed.
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Figure 5: MemTools memory organization, redrawn from [6].

Figure 6: Fork and Merge operations with MemTools code.

Figure 7: Fork and Merge used as forwarding module.
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v

conv1/7x7_s2 > M00 M01 > inception_3a/pool > M02 >inception_3a/pool_proj> M03 >inception_3a/relu_pool_proj> M04 M05 > inception_3b/pool > M06 >inception_3b/pool_proj> M07 >inception_3b/relu_pool_proj> M08 M09 > inception_4a/pool > M0010 >inception_4a/pool_proj> M0011 >inception_4a/relu_pool_proj> M0012

v ^ v ^ v ^ v

M10 < conv1/relu_7x7 M11 > pool2/3x3_s2 > M12 inception_3a/relu_5x5_reduce> M13 M14 > merge14 >>>> M15 >>>>inception_3a/output > M16 inception_3b/relu_5x5_reduce> M17 M18 > inception_3b/output > M19 > pool3/3x3_s2 > M0110 inception_4a/relu_5x5_reduce> M0111 M0112 > inception_4a/output>>>>

v ^ vv v ^ v ^ ^^ vv v ^ v ^ ^^ vv v ^ v ^ ^^

pool1/3x3_s2 M20 > conv2/norm2 M21 inception_3a/5x5_reduce> M22 inception_3a/5x5 > M23 >inception_3a/relu_5x5 M24 M25 inception_3b/5x5_reduce> M26 inception_3b/5x5 > M27 >inception_3b/relu_5x5 M28 M29 inception_4a/5x5_reduce> M0210 inception_4a/5x5 > M0211 >inception_4a/relu_5x5 M0212

v ^ vv ^^ vv ^^ vv ^^

M30 conv2/relu_3x3 M31 < fork31 > M32 > inception_3a/1x1 > M33 >inception_3a/relu_1x1> M34 > merge34 M35 < fork35 > M36 > inception_3b/1x1 > M37 >inception_3b/relu_1x1> M38 > merge38 M39 < fork39 > M0310 > inception_4a/1x1 > M0311 >inception_4a/relu_1x1> M0312 > merge0312

v ^ v ^ v ^ v ^

pool1/norm1 M40 inception_3a/3x3_reduce> M41 >inception_3a/relu_3x3_reduce> M42 > inception_3a/3x3 > M43 >inception_3a/relu_3x3> M44 inception_3b/3x3_reduce> M45 >inception_3b/relu_3x3_reduce> M46 > inception_3b/3x3 > M47 >inception_3b/relu_3x3> M48 inception_4a/3x3_reduce> M49 >inception_4a/relu_3x3_reduce> M0410 > inception_4a/3x3 > M0411 >inception_4a/relu_3x3> M0412

v ^

M50 conv2/3x3 M51 <inception_4d/relu_3x3< M52 < inception_4d/3x3 < M53 <inception_4d/relu_3x3_reduce< M54 <inception_4d/3x3_reduce M55 < inception_4c/relu_3x3< M56 < inception_4c/3x3 < M57 <inception_4c/relu_3x3_reduce< M58 <inception_4c/3x3_reduce M59 <inception_4b/relu_3x3< M0510 < inception_4b/3x3 < M0511 <inception_4b/relu_3x3_reduce< M0512 <inception_4b/3x3_reduce

v ^ v ^ v ^ v ^

conv2/3x3_reduce M60 merge61 < M61 <inception_4d/relu_1x1< M62 < inception_4d/1x1 < M63 < fork64 > M64 merge65 < M65 < inception_4c/relu_1x1< M66 < inception_4c/1x1 < M67 < fork68 > M68 merge69 < M69 <inception_4b/relu_1x1< M0610 < inception_4b/1x1 < M0611 < fork0612 > M0612

v ^ vv ^^ vv ^^ vv ^^

M70 >conv2/relu_3x3_reduce M71 inception_4d/relu_5x5< M72 < inception_4d/5x5 M73 <inception_4d/5x5_reduce M74 M75 inception_4c/relu_5x5< M76 < inception_4c/5x5 M77 <inception_4c/5x5_reduce M78 M79 inception_4b/relu_5x5< M0710 < inception_4b/5x5 M0711 <inception_4b/5x5_reduce M0712 fork0712 <<<<

vv v ^ v ^ ^^ vv v ^ v ^ ^^ vv v ^ v ^ ^^ vvvv

<<<< fork80 <<<< M80 <<<<inception_4d/output < M81 M82 <inception_4d/relu_5x5_reduce M83 < inception_4c/output<<<< M84 <<<< merge85 < M85 M86 <inception_4c/relu_5x5_reduce M87 < inception_4b/output<<<< M88 <<<< merge89 < M89 M0810 <inception_4b/relu_5x5_reduce M0811 < fork0812 <<<< M0812

^ v ^ v ^ v

M90 M91 <inception_4d/relu_pool_proj< M92 <inception_4d/pool_proj< M93 < inception_4d/pool < M94 M95 <inception_4c/relu_pool_proj< M96 <inception_4c/pool_proj< M97 < inception_4c/pool < M98 M99 <inception_4b/relu_pool_proj< M0910 <inception_4b/pool_proj< M0911 < inception_4b/pool < M0912

M1000 > inception_4e/pool > M1001 >inception_4e/pool_proj> M1002 >inception_4e/relu_pool_proj> M1003 M1004 > inception_5a/pool > M1005 >inception_5a/pool_proj> M1006 >inception_5a/relu_pool_proj> M1007 M1008 > inception_5b/pool > M1009 >inception_5b/pool_proj> M1010 >inception_5b/relu_pool_proj> M1011 pool5/7x7_s1 > M1012

^ v ^ v ^ v ^ v

M1100 >>>> fork1100 > M1101 inception_4e/relu_5x5_reduce> M1102 M1103 > inception_4e/output > M1104 > pool4/3x3_s2 > M1105 inception_5a/relu_5x5_reduce> M1106 M1107 > merge1107 >>>> M1108 >>>>inception_5a/output > M1109 inception_5b/relu_5x5_reduce> M1110 M1111 > inception_5b/output > M1112 pool5/drop_7x7_s1

^^^^ vv v ^ v ^ ^^ vv v ^ v ^ ^^ vv v ^ v ^ ^^ v

>>>> fork1200 M1200 inception_4e/5x5_reduce> M1201 inception_4e/5x5 > M1202 >inception_4e/relu_5x5 M1203 M1204 inception_5a/5x5_reduce> M1205 inception_5a/5x5 > M1206 >inception_5a/relu_5x5 M1207 M1208 inception_5b/5x5_reduce> M1209 inception_5b/5x5 > M1210 >inception_5b/relu_5x5 M1211 loss3/classifier < M1212

vv ^^ vv ^^ vv ^^ v

M1300 < fork1300 > M1301 > inception_4e/1x1 > M1302 >inception_4e/relu_1x1> M1303 > merge1303 M1304 < fork1304 > M1305 > inception_5a/1x1 > M1306 >inception_5a/relu_1x1> M1307 > merge1307 M1308 < fork1308 > M1309 > inception_5b/1x1 > M1310 >inception_5b/relu_1x1> M1311 > merge1311 M1312

v ^ v ^ v ^ v

inception_4e/3x3_reduce> M1400 >inception_4e/relu_3x3_reduce> M1401 > inception_4e/3x3 > M1402 >inception_4e/relu_3x3> M1403 inception_5a/3x3_reduce> M1404 >inception_5a/relu_3x3_reduce> M1405 > inception_5a/3x3 > M1406 >inception_5a/relu_3x3> M1407 inception_5b/3x3_reduce> M1408 >inception_5b/relu_3x3_reduce> M1409 > inception_5b/3x3 > M1410 >inception_5b/relu_3x3> M1411 prob M1412

v

Inception BlockFirst Serial Layers Last Serial Layers

Figure 8: GoogLeNet CNN on GPC (version 1) structure.

Figure 9: GoogLeNet CNN on GPC (version 1) in-
ception block design.

2.1.4 Complete structure

The spreadsheet with the complete mapping of the
first GoogLeNet model is shown in Figure 8.
The three main parts were colored to give the reader
a rough idea of the structure.

The grid used measures 15 by 13 cells. Of the 195
available cores, 26 were not used.
Some arrows indicate the direction of the stream of
data through the grid. The input image is fed to the
model from the top using the external memory. Then,
the two memories to the sides shorten the path be-
tween inception blocks on different “rows”. Finally,
the generated array of probabilities is stored in the
bottom external memory.

Inside the inception blocks (in red), the four paths
of layers run in parallel, while the first (in yellow)
and last (in green) layers of the CNN are connected in
series.

2.2 Implementation

The implementation of the GoogLeNet model re-
quires different steps to follow. Figure 10 shows
the overall process used to automatically generate
the model and profile the application. The following
paragraphs explain in detail all the steps required.
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Figure 10: GoogLeNet CNN on GPC (version 1) complete implementation steps.
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2.2.1 Parsing

The GoogLeNet Caffe (Convolutional Architecture
for Fast Feature Embedding) model was used to ob-
tain pre-trained network parameters [11]. The model
includes two files: a binary .caffemodel file that con-
tains pre-trained parameters such as weights and bi-
ases and a human-readable .prototxt file that describes
the network architecture.

The parser.py takes these two files as input and
generates, among many other things, a Python dic-
tionary containing all the required information about
the layers, like inputs, outputs and other parame-
ters. This parser is part of the Netspec generator used
to automatically generate the SystemC model of the
GoogLeNet [1]. Listing 1 shows the parsing result of
the first Convolutional layer.

1 "conv1/7x7_s2": {
2 "type": "Convolution",

3 "num_output": 64,

4 "pad": 3,

5 "kernel": 7,

6 "stride": 2,

7 "dilation": 1,

8 "group": 1,

9 "weight": [

10 64,

11 3,

12 7,

13 7

14 ],

15 "bias": 64,

16 "inputs": [

17 "data"

18 ],

19 "outputs": [

20 "conv1/relu_7x7"

21 ],

22 "input_shape": [

23 [

24 1,

25 3,

26 224,

27 224

28 ]

29 ],

30 "output_shape": [

31 [

32 1,

33 64,

34 112,

35 112

36 ]

37 ]

38 }

Listing 1: First Convolutional layer description.

2.2.2 Mapping Validation

In the validation phase the layers dictionary, gener-
ated during parsing, is compared with the application
mapping provided by the user.

Using Microsoft Excel as a CAD Due to the fact
that we are working with a grid-based structure, it was
decided to use the .csv file format to describe the user
mapping. The main advantage of this choice is that it
is possible to visualize and/or modify .csv files inside
spreadsheet editors like Microsoft Excel. Figure 11
shows how the first inception block can be described
on the spreadsheet.

Figure 11: GoogLeNet CNN on GPC (version 1)
spreadsheet description of the first inception block.
The four paths are highlighted in the bottom image.

The red squares are the cores and must contain the
name of the modules associated with them, while the
blue squares are the memories and must contain their
own id. The white squares are used to define the chan-
nels and the direction of the “arrows” represent the
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direction of the data stream. Finally, the grey squares
should not contain anything.

The Validation Algorithm The .cvs file is passed
to the parse mapping() function to validate the de-
signed structure.

The algorithm iterates between the output channels
of each core until the name of one of the connected
modules correspond to the target name. The target is
one of the output names written inside the .prototxt
file. When the search finishes without finding the re-
quested name, a “missing connection” error occurs.
When a fork or a merge module is connected to the
core, the algorithm checks its outputs recursively. If
the name is found then the complete searching path
is included inside the mapping dictionary along with
the size of the exchanged data. Figure 12 shows a
simplified version of the validation algorithm.

Figure 12: Validation algorithm.

Also, a warning is printed on the terminal in case
of extra input or output connections. This allows the

identification of subtle mistakes that sometimes do
not interfere with the application execution but incre-
ments memory occupation.

2.2.3 Code Generation

The main advantage of this framework is that it
automatically generates parts of the application,
in particular the checkerboard user.cpp and the
config.hpp files. The first one is used to describe
the cores’ behavior and the communication between
them. The last one contains macros for each layer
parameter and exchanged data size. This separation
allows the user to easily modify parameters or sizes
without the need to re-generate the entire structure,
which most of the time remains the same.

The information required to complete
the checkerboard user.cpp are filled in-
side a reference file provided by user called
checkerboard user empty.cpp. This gives the
user a little bit more control over the generated
file. The generation algorithm searches inside the
checkerboard user empty.cpp file the main()
method definitions and the constructors of all the
used cores. The file is scanned line-by-line and
Regular Expressions are used to identify the correct
pattern.

Inside the constructor, the layer module will be in-
stantiated and the thread stack size will be modified
accordingly using the set stack size() function. While
inside the main() method definition, the MemTools
channels will be instantiated and the layer object will
call the run() method, which will read the input data
from the channels and generate the output results.

The layers are declared as template classes into
separate header files and make use of the OpenCV
library. The generator automatically includes all the
layers classes into the checkerboard user.cpp file.
As an example, Listing 2 shows the implementation
of the first layer inside the checkerboard user.cpp

after being generated.
Looking at Listing 2 we can see that the genera-

tor produces some extra code needed to debug and/or
profile the application. In particular, “verbose lev”,
“dump data” and “core size” are variables that can be
set by the user launching the application with the op-
tions -v/-vv, -dump and -size. All the options and their
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1 void Core00 ::main(){

2

3 // conv1_7x7_s2

4

5 MemTools memIn_up(CoreBus , sig_up , id_to_memAddress (-1, 0), OFF_CHIP_MEMORY_SIZE , 1,

CONV1_7X7_S2_MEM_INP0_SLOT_SIZE , 1);

6 memIn_up.InitMem ();

7

8 MemTools memOut_right(CoreBus , sig_right , id_to_memAddress (0, 0), ON_CHIP_MEMORY_SIZE , 1,

CONV1_7X7_S2_MEM_OUT0_SLOT_SIZE , 1);

9 memOut_right.InitMem ();

10

11 memIn_up.PopData(conv1_7x7_s2.inpVec [0].data , CONV1_7X7_S2_MEM_INP0_SLOT_SIZE , 0);

12

13 if(verbosity_level > 0) {

14 printf("[conv1 /7x7_s2 (Core00)] %lu bytes popped\n", conv1_7x7_s2.inpVec [0]. total ()*

conv1_7x7_s2.inpVec [0]. elemSize ());

15 }

16

17 if (dump_data) {

18 dumpData(STR(DUMP_DATA_FOLDER) "conv1_7x7_s2_in0.bin", conv1_7x7_s2.inpVec [0].data ,

CONV1_7X7_S2_MEM_INP0_SLOT_SIZE);

19 }

20

21 conv1_7x7_s2.run();

22

23 if(core_size) {

24 std:: string str = "(Core00) conv1_7x7_s2 " + std:: to_string(conv1_7x7_s2.size());

25 storeData(size_file_name.c_str (), str);

26 }

27

28 memOut_right.PushData(conv1_7x7_s2.outVec [0].data , CONV1_7X7_S2_MEM_OUT0_SLOT_SIZE , 0);

29

30 if(verbosity_level > 0) {

31 printf("[conv1 /7x7_s2 (Core00)] %lu bytes pushed\n", conv1_7x7_s2.outVec [0]. total ()*

conv1_7x7_s2.outVec [0]. elemSize ());

32 }

33

34 if (dump_data) {

35 dumpData(STR(DUMP_DATA_FOLDER) "conv1_7x7_s2_out0.bin", conv1_7x7_s2.outVec [0].data ,

CONV1_7X7_S2_MEM_OUT0_SLOT_SIZE);

36 }

37

38 }

Listing 2: Implementation of the conv1 7x7 s2 layer inside checkerboard user.cpp file.
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meaning are explained in the next paragraph.

2.2.4 Compilation

The model was compiled by using the GCC C++
Compiler 9.4.0 and the provided Makefile. The model
makes use of three external libraries: OpenCV 3.4.18,
SystemC 2.3.3 language and TLM 2.0.5 (included in-
side the SystemC language).

Some options can be passed to the executable file
by using the command line. The complete list is
shown below:

• -v and -vv activate level 1 and level 2 verbosity.
This allows the printing of debugging informa-
tion on the terminal.

• -img <path-to-img-file> let the user choose the
input image of the GoogLeNet CNN. By default,
it is the ./img/space shuttle.jpg

• -dump lets the application generate binary files
containing the cores inputs and outputs FIFOs
content during the simulation.

• -sizes <path-to-size-file> lets the application
generate a human-readable file containing the in-
trinsic memory usage of the layer during the sim-
ulation. This file can be used to improve the pro-
filing results by passing it to the profiler.py.

2.2.5 Profiling

The profiler aims to generate a report containing use-
ful information about memory usage.

It requires the mapping dictionary generated in the
validation phase and optionally the file generated by
passing the -sizes option to the application before
launching it. The first one contains information about
the inputs and outputs channels and the exchanged
data size, everything related to the shared memory us-
age. The last one contains the memory occupation of
every single layer, also called local usage because this
data is stored in the memory inside the same cell. The
total memory usage is the sum of the shared and the
local usages.

The results of the profiling will be discussed in Sec-
tion 6.

2.3 Limits of the model

The first GoogLeNet CNN on GPC model shows
that it is feasible to design large applications on the
GPC architecture. However, this implementation is
far from perfect. During the design process compro-
mising was necessary more than once. In this sec-
tion, we will describe the problems faced in the first
model, which will be solved in the second version of
the model, as explained in Section 5.

2.3.1 MemTools, Fork and Merge

MemTools limitations have been already discussed in
Section 2.1.1. Avoiding partitions led to the use of
Fork and Merge modules throughout the structure.
Considering that the inception block requires 5 extra
cores due to these modules and that inside the CNN 9
inception blocks are present, we could reduce by 45
the required number of cores. In percentage, we have
a reduction of about 23% of the all grid area occupa-
tion by improving the multi-channel implementation.

2.3.2 Hard profiling

The data structures created by parsing the CNN infor-
mation simplify the code generation, not the profil-
ing. The mapping dictionary does not let the designer
quickly obtain essential information, such as the grid
size. This data needs to be searched inside the gen-
erated code, increasing the profiling complexity. The
complete memory usage report requires the simula-
tion of the application, which could be avoided by us-
ing an improved data structure.
Without these difficulties, other types of reports
would have been designed, such as one about appli-
cation delays.

2.3.3 Microsoft Excel is not a CAD

Describing the structure using spreadsheet editors
works well for simple designs, but when a core has
multiple inputs or outputs is much more complex.

Figure 13 shows a case in which the format used
becomes unclear. In the example, we have three FI-
FOs: the first connects Core10 to Core00, the second
Core10 to Core11 and the third Core10 to Core20.
Since Core10 has three outputs, we cannot know to
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Figure 13: Spreadsheet unclear description.

which one the correct FIFO is attached.
A possible solution is to impose an output order from
top to bottom, but we have to adjust Core10 accord-
ingly every time, which becomes cumbersome.
For our model, this was possible because, during the
validation phase, the algorithm automatically ordered
every output. Without the network information pro-
vided by the Caffe model, this would be much more
tricky.

Other than that, the spreadsheets allow us to visual-
ize the data flow of the model, but it is not possible to
edit the channels or modules parameters from there.
For this reason, spreadsheets could be used during the
first steps of the design process but not for debugging
or fine-tuning, which makes their usage limited.

3 MARI: Memory Access Resources
and Interfaces library

MARI library is a novel alternative to the MemTools
library described in Section 2.1.1.

The GPC architecture aims to solve the shared
memory bottleneck problem [12], still present in
modern multi-processor structures, using local shared
memories. Lowering the congestion and the need for
caches allows designers to increase the number of

cores inside the chip, which leads to an increase in
memory accesses.
Considering all that, formal communication protocols
between cores are crucial for large applications like
the GoogLeNet model.

MARI library aims to simplify interactions be-
tween cores by providing a set of high-level commu-
nication channel interfaces, which emulate the behav-
ior of commonly used channels throughout a memory.
In this report, we will only present the FIFO, but other
types of channels will be implemented in the future,
like Stacks (LIFO).
This library also introduces the Memory Interface that
virtually attaches the selected core to one of its sur-
rounding memories.

The relation between channel interfaces and chan-
nels is comparable to memory interfaces and mem-
ories. Interfaces allows the user to alter the state of
specific data structures through operations like push(),
pop(), read() or write(). On the other hand, data struc-
tures like channels or memories are passive containers
that store data in a precise format.

Channel interfaces require a memory interface by
which they can communicate with the memory. When
the user instantiates a new channel interface inside the
core, a portion of the shared memory is initialized to
contain the channel. For the communication to work,
all the cores in play must know the channel’s exact
length and location (offset) inside the memory.
MARI library distinguishes between input and output
channel interfaces. For a FIFO channel, the input in-
terface communicates with the FIFO head, while the
output with its tail.

Figure 15 and Figure 14 show two views of a sim-
ple example of communication between cores through
the use of FIFOs.

3.1 Memory Interfaces

The most important difference from its predecessor
(MemTools) is that MARI introduces the concept of
Memory Inteface.
In the MemTools library, creating more than one
channel using the same memory is complex2. Parti-

2It should be possible to create different channels in the same
memory by adjusting their starting address accordingly. How-
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Figure 14: Example of communication between cores
using MARI library, Channels View.

Figure 15: Example of communication between cores
using MARI library, Memories View.

tions are sub-channels inside the object that “embed”
the memory interface. MARI’s solution is to separate
the channel from the memory interface.

First, the user creates a memory interface of type
Mem if for each memory he wants to use. Then the
memory interface is passed by reference to every in-
stantiated channel interface that uses a portion of that
memory for its channel. This process works well be-
cause, in reality, channels are an abstraction; there
are no hardware FIFOs, just one memory. More-
over, creating memory interfaces take away from the
user the tedious task of initializing every channel with
memory-related parameters except the offset. How-
ever, in the MARI library, the offsets of the channels
are simpler to investigate because they are relative to
the start address of the memory interface to which
they are connected. Listing 3 shows the parameters
required to construct a Mem if object.

The first argument references the TLM2.0 initia-
tor socket through which the interface communicates
with the memory.
The second argument is a reference to the SystemC
event called every time a channel interface changes
the content of the memory, as an interrupt signal.
The last argument is the physical starting address as-
signed to the shared memory.

It is possible to read and write from memory
through the use of the channels interfaces or by sim-
ply calling the read() and write() methods declared
inside the Mem if class, as shown in Listing 3.
Referencing a Mem if object allows accessing a spe-
cific memory without passing all these parameters
again. The reasons why read() and write() methods
have multiple implementations will be explained in
Section 3.3.

3.2 FIFO Interfaces

MARI library contains 3 type of FIFO interfaces:
FIFO in, FIFO out and FIFO inout.

• FIFO in connects to the input of a FIFO. The
user can push data through it and check if it is

ever, MemTools describe the startAdress parameter used to con-
struct a channel as “the starting address of the memory unit” sug-
gesting that its value should not change when referring to the
same memory.
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1 Mem_if(tlm:: tlm_initiator_socket <>& socket , sc_core :: sc_event &int_sig , uint32_t startAddr);

2 void write(uint32_t id , uint32_t mem_offset , void *data , uint32_t len);

3 void write(uint32_t mem_offset , void *data , uint32_t len);

4 void read(uint32_t id, uint32_t mem_offset , void *data , uint32_t len);

5 void read(uint32_t mem_offset , void *data , uint32_t len);

Listing 3: Methods declarations of the Mem if class inside the MARI library.

full.

• FIFO out connects to the output of a FIFO. The
user can pop data through it and check if it is
empty.

• FIFO inout connects to one side of a chan-
nel composed of two FIFOs in opposite direc-
tions. The user can push and pop data through
this channel and check whether it is full or
empty. Basically, it is a FIFO in combined with
a FIFO out.

The way all FIFOs work is much simpler compared
to MemTools.
MARI keeps the sent and received counters, but there
are no partitions and slots. MARI’s FIFOs store data
in bytes, so it is up to the user to decide the size of
each element inside the queue3. Listing 4 shows the
parameters required to construct the three types of
FIFO interface objects.

All the FIFO interface constructors require the ref-
erence to a memory interface, the location inside the
memory expressed as the number of bytes from the
starting address (offset)4 and the size of the queue in
bytes.

The reasons why the constructors have multiple im-
plementations will be explained in Section 3.3.

3.2.1 Ring Buffering

The mechanism in which data is pushed or popped in-
side the queue recall the one used for ring (or circular)
buffers.
When the queue is empty, the FIFO interface

3If the length of the FIFO and the element size are multiple of
4 bytes there is a reduction of memory accesses, due to the 32-bit
interface implementation of GPC memories.

4Zero is the first available offset in each memory.

writes/reads from the queue’s first to last byte. Once
it reaches the end, the writing/reading starts over from
the first byte. When some bytes are pushed while the
queue is full, the FIFO interface raises the interrupt
event to inform the other cores that the queue is full
and waits until new space is available.
On the other hand, if some bytes are popped while the
queue is empty, the FIFO interface raises the inter-
rupt event to inform the other cores that the queue is
empty and waits until some data is written. Figure 16
shows an example of the ring buffering mechanism
while pushing 10 bytes inside an 8-byte long FIFO.

Looking at Figure 16, we can see that the FIFO
waits for the 4 bytes to be popped before pushing the
2 remaining bytes.

3.3 Profiling

MARI library allows the user to extract data about the
memory accesses that can improve the profiling qual-
ity of the model.
Using the library with the “MARI LOG” external
variable set to “true”, enables the generation (during
the simulation) of a binary file called mari.log, which
contains the record of all the memory accesses.

Since, in many cases, the number of interactions
with the memories could be high, the file has been
encoded to reduce its size. Figure 17 shows how every
access has been encoded.

All the values stored inside the file use the big-
endian ordering notation.
Starting from the right, the first 4 bytes are the length
in bytes of the data written or read inside the memory.
Then there are the two 6-byte-long simulation time
stamps in picoseconds taken at the end and the begin-
ning of the memory access. Only the SystemC simu-
lator scheduler advances the simulation time, so these
stamps are platform-independent.
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1 FIFO_in(Mem_if &mem_if , uint32_t mem_offset , uint32_t size);

2 FIFO_in(uint32_t id , Mem_if &mem_if , uint32_t mem_offset , uint32_t size);

3 void push(void* data , uint32_t len = 1);

4 bool full();

5

6 FIFO_out(Mem_if &mem_if , uint32_t mem_offset , uint32_t size);

7 FIFO_out(uint32_t id, Mem_if &mem_if , uint32_t mem_offset , uint32_t size);

8 void pop(void* data , uint32_t len = 1);

9 bool empty();

10

11 FIFO_inout(Mem_if &mem_if , uint32_t mem_offset , uint32_t size);

12 FIFO_inout(uint32_t id , Mem_if &mem_if , uint32_t mem_offset , uint32_t size);

Listing 4: MARI library FIFO interfaces constructors.

Operation Encoding Operation Meaning

READ 0b0000XXXX Reading through a memory interface.

WRITE 0b1000XXXX Writing through a memory interface.

POP READ 0b0000XXXX
Reading performed by a FIFO interface

during a pop operation.

POP WRITE 0b1000XXXX
Writing performed by a FIFO interface

during a pop operation.

PUSH READ 0b0100XXXX
Reading performed by a FIFO interface

during a push operation.

PUSH WRITE 0b1100XXXX
Writing performed by a FIFO interface

during a push operation.

ACT POP 0b0010XXXX
The operation that actually reads the queue

performed by a FIFO interface during a pop.

ACT PUSH 0b1110XXXX
The operation that actually writes the queue

performed by a FIFO interface during a push.

INIT POP 0b1001XXXX
Writing performed by a FIFO out interface

during the initialization.

INIT PUSH 0b1101XXXX
Writing performed by a FIFO in interface

during the initialization.

Table 1: FLAGS field encoding used inside the mari.log file.
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Figure 16: Example of ring buffering inside an 8-byte
long FIFO.

The last 4 bytes are used for identification purposes.
Table 1 shows the encoding used for the FLAGS field,
which identifies the operation performed.

For the ID field, the user can choose the encoding
he prefers. In the GoogLeNet on GPC model (version
2), the first 10 bits are used to identify the grid coordi-
nates of the memory that has been written/read. Each
coordinate requires 5 bits instead of just 4 because it
accepts -1 and 17 values to identify external memo-
ries.
The last 14 bits are a unique number associated with
each channel inside the memory.
The ID values can be passed as the first argument of
the read() and write() methods or of the FIFO inter-
faces constructors, as shown in Listing 3 and List-
ing 4. The flags cannot be modified by the user. By
default, the ID value is 0xFFFFFF, which stands for
“NO ID”.

The mari.log file will be an essential ingredient for
the MapGL timing reports generation, as discussed in
Section Section 4.

4 MapGL

MapGL (Map Grid-based Layouts) is a CAD software
written using the PyQt5 library [19]. It lets the user
design custom applications for the GPC architecture.
MapGL can auto-generate the SystemC model and
create reports that give the user important informa-
tion about memories usage and execution delays. The
software structure was designed with modularity in

mind so that it can be extended to other architectures
in the future.

MapGL lets the user focus on the application
design without caring about the specific program-
ming language description, making the project highly
reusable and portable. The entire MapGL design can
be saved within a single JSON file.

Inside the MapGL editor, every design is defined
by using Modules and Channels. A module is a com-
ponent that can be attached to a core of the GPC to
describe its behavior. In order to use it, the user must
drag and drop the module on one of the cores. On
the other hand, a channel allows two or more cores
to communicate. The SystemC code generator fully
uses the MARI library to implement channels.

4.1 Memories and Channels views

On launch, MapGL is set on Memories View by de-
fault as shown in Figure 18. The user can then switch
between views using the two buttons on top.

In Memories View, the user can look at a more “re-
alistic” representation of the structure.
The blue squares represent the memories, while the
red squares the cores. Both memories and cores con-
tain parameters that the user can adjust. To do this,
the component that has to be modified must be se-
lected by clicking on it. By doing that, its parameters
list will appear on the Parameters tab on the right and
the user will be able to modify it. On the other hand,
by clicking on the white background, it is possible to
edit the parameters of the GPC itself, like grid width
and height.

In Channels View, the user can visualize all the un-
derlying interconnections between cores. Here, new
channels can be created by clicking on one of the four
memory interfaces that surround each core and then
clicking again on a different memory interface. This
action will render a black arrow between the two in-
terfaces, representing the newly created channel. This
operation will abort if the two interfaces are not con-
nected to the same memory.
A channel can be deleted by simply clicking on it and
pressing “Delete” on the keyboard.
As for the Memory view, the user can modify core
or channel parameters through the Params tab after
clicking on one of these components.
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Figure 17: Memory access encoding inside the mari.log binary file.

Figure 18: MapGL startup window.
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In both views, it is possible to copy and paste core
or channel parameters. To do that, the user has to first
select a core or a channel by clicking on it and then
press “Ctrl+C” on the keyboard to copy its parameters
into the internal clipboard. Then, the user has to select
another existing core or channel and press “Ctrl+V”
to update all its parameters with the ones copied.

On both views, zooming is possible by us-
ing the mouse wheel or pressing “Ctrl+Plus” or
“Ctrl+Minus” on the keyboard. The architecture can
be auto-fitted into the view by pressing “Ctrl+F”.

4.2 Modules

A module in MapGL describes the behavior of a core.
Every core can have just one module assigned to it,
but it is possible to use the same module for differ-
ent cores. The three main characteristics that every
module should have are:

• A name, required for identification.

• Some parameters, which increase customization
and reusability of the Module.

• Some dependencies, the files that contain the
Module’s description for different exportations.

How the module is defined depends on the exported
project language. At the moment, MapGL only al-
lows generating SystemC projects5, so modules must
be defined using C++ function templates.

1 template <uint8_t bytes_size >

2 void adder(FIFO_out& in_a , FIFO_out& in_b ,

FIFO_in& out_sum) {

3

4 // getting the inputs

5 uint64_t a, b;

6 in_a.pop(&a, bytes_size);

7 in_b.pop(&b, bytes_size);

8

9 // adding together a and b

10 uint64_t sum = a + b;

11

12 // generating the output

13 out_sum.push(&sum , bytes_size);

14

15 }

Listing 5: Example of an adder MapGL module
implementation.

5In the future MapGL may support VHDL export.

Listing 5 shows one of the possible definitions of
an adder as a MapGL module.
For SystemC-based projects, the module is the code
a core executes during the application simulation. In
this specific example, Listing 5 makes the processor
behave like an adder.
At this stage of development, the designer does not
need to know the hardware implementation of the
core’s processor. This simplification reduces the sim-
ulation time and speeds up the design process.

4.2.1 How to create a module

In this paragraph, the adder MapGL module will be
used as a reference to explain the process of creating
a module from scratch.

The first step is to describe in C/C++ the main al-
gorithm that our core will execute. Then, we need to
put it inside the definition of a function template or a
regular function, as shown in Listing 5. The function’s
name will be our module’s name.

Exported SystemC project uses MARI library FI-
FOs to handle cores’ communications. Our newly
created module has to use the FIFOs interfaces (in-
stantiated inside its core) to exchange data with the
surrounding cores. To do that, we must pass our
function the references to those interfaces. The main
advantage of using references is that it detaches the
FIFO interface from the module implementation. In
other words, we can freely adjust the channel parame-
ters without touching the module to which it is bound.

The FIFO out interfaces are the inputs of the mod-
ule, while the FIFO in interfaces are the outputs6.
Looking at Listing 5 we can see that the pop() and
push() methods are called in the beginning and end of
our function to collect and transmit data.

The final step is to increase the customization of
our module by adding extra parameters7. We can pass
that to our function, as we did for FIFO interfaces, or
we can use the template parameter list. MapGL editor
always treats module parameters like constants, so
it is recommended to use template parameters when

6For those familiar with VHDL, we are basically describing
the entity of our module.

7For those familiar with VHDL, we are implementing gener-
ics in our module.
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this is possible. For example, in Listing 5, the inte-
ger type of the “bit size” parameter allows it to be a
template parameter. On the other hand, FIFOs inter-
faces cannot be template parameters because they are
references, so they are passed as regular function ar-
guments.

Now that we have the C++ declaration and defini-
tion of the module, we need to compile it into a static
or dynamic library together with all the other modules
that we want to import in the same “package”.
However, MapGL cannot import libraries directly8.
We first need to create a JSON file containing our
module’s name, parameters and dependencies, which
are used during the project exportation. Listing 6
shows the JSON file implementation of the adder
module in Listing 5.

1 {
2 "dependencies" : {
3 "SystemC" : {
4 "inc_dirs" : ["./inc",

↪→ "../../3 rdparty/mari/inc"],

5 "lib_files" : [["./lib", [

↪→ "libadder.a"]], [

↪→ "../../3 rdparty/mari/lib", [

↪→ "libmari.a"]]],

6 "modules_dec" : ["adder.hpp"]

7 }
8 },
9 "modules" : {

10 "adder" : {
11 "in_a" : {
12 "val" : null,

13 "type" : "str"

14 },
15 "in_b" : {
16 "val" : null,

17 "type" : "str"

18 },
19 "out_sum" : {
20 "val" : null,

21 "type" : "str"

22 },
23 "bit_size" : {
24 "val" : 1,

25 "min" : 1,

26 "max" : 8,

27 "template" : true

28 }
29 }
30 }
31 }

Listing 6: Example of the JSON file used to import
the adder module.

8In the future, a parser will be created to import header files.

Since we want to use the modules in a SystemC ex-
portation, we need to provide: the paths to the folders
containing the header files, the paths to the static or
dynamic libraries and the name of all the header files
in which our modules are declared.

The key “modules” contains the parameters of
all the modules defined inside the dependency files.
However, in this example, it is just the adder module.
We can add attributes to each parameter, enabling
unique behaviors inside the MapGL editor. For ex-
ample, in Listing 6, the “bit size” value is restricted
between 1 and 8 by using “min” and “max” attributes.
So inside the MapGL editor, the user cannot modify
the “bit size” value outside this range.

The “val” attribute is the parameter default value
and must always be present. At the moment, its value
can only be one of three types: integer (int), floating-
point (float) or string (str).
The “val” attribute can also be null, but MapGL will
raise an error if the user exports the project while at
least one parameter has its value null. This solution
prevents the user from leaving critical parameters un-
set, like names of input or output channels, which
would cause compiling errors.
The MapGL editor can detect a parameter type by
reading its value. However, if its default value is null,
the detection will not work, so the user must specify a
type for that parameter by using the “type” attribute.

The complete list of all attributes is shown below:

• val sets the parameter’s default value and must
always be present. Its value can be null, an inte-
ger, a floating-point number or a string.

• type is only required when the val attribute is
null. The accepted values are “int”, “float” and
“str”.

• min sets the lower limit of the parameter value.
By default, this attribute is equal to minus infi-
nite.

• max sets the upper limit of the parameter value.
By default, this attribute is equal to plus infinite.

• readonly does not allow the user to change the
parameter’s value when set to true. Even if it
is not modifiable, the value still appears in the
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MapGL editor. By default, this attribute is equal
to false.

• template tells the code generator to put the pa-
rameter’s value inside the template parameter list
when set to true. Otherwise, it will be passed to
the function as an argument. By default, this at-
tribute is equal to false.

• rule allows executing self-referential code to au-
tomatically adjust the parameter’s value based on
the others. The input must be a string and the
module’s parameters can be accessed by writing
self[‘<name-of-the-parameter >’].

• size contains the memory occupation in bytes of
the module. Its value will be used during the
generation of the memories usage report. By de-
fault, this attribute is equal to zero.

• label is the identification name that the MapGL
editor shows for this specific module instance.
The original name of the module will be used
when its value is not set. By default, this attribute
is empty.

After the JSON file importation, our custom mod-
ules would appear on the Modules tab on the left, un-
der a section called as the JSON file. To use it, the de-
signer has to drag and drop it inside one of the cores
blocks in red.

4.3 Memory Structure

The MapGL editor automatically handles the struc-
ture and order in which the channels are stored inside
the memories. This automatization prevents memory
segmentation, but sometimes, it is necessary to visu-
alize and manually change the memory mapping.

The memory structure window allows the designer
to visualize and change the order in which the chan-
nels are stored without generating unwanted “holes”
inside the memory.

The window can be opened by double-clicking on
a memory or a channel. Figure 19 shows a possible
layout of one of the GPC memories displayed through
the help of the Memory Structure window.

Looking at Figure 19, we notice how the table rep-
resents the memory while the rows are the continuous

channels sorted by offset. When the size of one chan-
nel is modified, its relative memory addresses shrink
accordingly. Then, the offset of all the other channels
inside the same memory is adjusted to avoid segmen-
tation.

4.4 Project Export

The MapGL editor allows designers to convert their
mapping into actual models by automatically gener-
ating all the necessary files for the project. In this
report, we will analyze the SystemC export process
because it is the only one that MapGL supports at the
moment.

Before generating the code, a check is performed
to control that all the parameters have values differ-
ent from null. If not, the dialog shown in Figure 20
pops up and the export stops. In the dialog, MapGL
tells the designer which parameters must be set. If the
control does not find any errors, another window al-
lows the user to choose the output folder in which the
SystemC project will be generated.

The list below shows the steps that the generator
follows to construct the project:

1. Create the ./src, ./inc and ./obj folders.

2. Create a copy of the checkerboard arch.cpp

file inside the ./src folder.

3. Create a copy of the checkerboard arch.h file
inside the ./inc folder.

4. Create a copy of the top.cpp file inside
the output folder and rename the file has
tb <project name>.cpp.

5. Generate the config.hpp file inside the ./inc

folder.

6. Generate the checkerboard user.hpp file in-
side the ./inc folder.

7. Generate the checkerboard user.cpp file in-
side the ./src folder.

8. Generate a Makefile inside the output folder that
will link the modules’ dependencies to the appli-
cation.
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Figure 19: MapGL Memory Structure window.

Figure 20: Error dialog that appears when at least one
parameter has still the “val” attribute null.

The checkerboard arch.cpp and the
checkerboard arch.h files contain the SystemC
model description of the GPC architecture.

The top.cpp file contains the definition of the top
model, a stimulus module, a monitor module, the
sc main() and a DumpMemory() function useful for
debugging purposes. This file aims to be a bare-bone
testbench implementation that allows the designer to
start simulating the application easily.

After the export, the SystemC project can be com-
piled using the command “make all”, which will gen-

erate the application’s executable.

4.5 Profiling

Once the mapping has been completed, MapGL al-
lows designers to perform two types of analysis. The
memories usage analysis requires just the informa-
tion provided during the design process. On the other
hand, the timing analysis needs the SystemC project
to be exported, compiled and executed. In other
words, the first does not require the model to be sim-
ulated, while the second does.

4.5.1 Memories Usage Analysis

The memories usage analysis evaluates how much
each memory is occupied by channels and cores
(modules) data. It can also be used to check if mem-
ory is overflowing, meaning that the stored data size
is larger than the memory itself.

The Memories Usage Analysis window, shown in
Figure 21, lets the user configure some of the analysis
parameters.
The “Output Directory” field contains the relative
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Figure 21: Memories Usage Analysis window.

path to the folder in which all the files generated dur-
ing the analysis will be placed. In the example, the
output directory corresponds to the project folder.
The checkbox “Generate heatmap” lets the user de-
cide whether to generate the model’s heatmap image
or not. The Memories usage heatmap allows the user
to roughly estimate how much data is contained inside
each memory.

The analysis will start immediately after pressing
the “Generate” button on the bottom-right of the win-
dow. It usually takes only a few milliseconds to be
performed. Then, a report file containing all the de-
tailed information about the memories usages will
be generated in the output directory, along with the
heatmap image if the checkbox was checked.

Memories Usage Report An example of a memo-
ries usage report is shown in Listing 7.
The preamble presents general information about the
project.
The Summary section shows the analysis results per-
formed on the overall structure.
The Memories usage section shows the list of memo-
ries sorted by the most to least occupied. The “Core
usage” represents the portion of memory required by
the core on the same cell. On the other hand, the
“Challels usage” represents the combination of all the
parts of memory used by its channels. Finally, the
“Total” is the sum of the core and channels usages.
When the “Total” value is higher than the actual mem-
ory size, the term “OVF” will appear next to it and an
error message will be shown on the first line of the
file. In this way, the user could quickly identify mem-

ory overflows.
Two other sections list the same data from the core’s
and channels’ perspectives sorted by memory occu-
pation.

Figure 22: Timing Analysis window.

4.5.2 Timing Analysis

The timing analysis allows the designer to estimate
channels’ and modules’ delays. This analysis gives
a rough idea of the application performance, but the
results are only as accurate as the delay values that are
provided to the simulator since MapGL works with
high-level models.

The Timing Analysis window, shown in Figure 22,
lets the user configure some of the analysis parame-
ters.
The first three fields that can be adjusted are the local
memories read and write delays and the multiplexers
propagation delay. These values can be chosen based
on real hardware components, giving more accurate
results or arbitrarily chosen ones.
The “Output Directory” field contains the relative
path to the folder in which all the generated files will
be located.
The “Generate heatmap” checkbox lets the de-
signer decide whether to generate the model delays
heatmaps. In this case, the analysis will create three
heatmaps that show the contribution of the channels,
cores and idles delays.
Finally, the “Activate verbose” checkbox lets the de-
signer decide whether to print debugging messages to
the terminal.

When the “Generate” button is clicked, a dialog
will pop up, allowing the designer to choose the ex-
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1 *******************************************************

2 * MEMORIES USAGE REPORT

3 *

4 * Project : canny_GPC.json

5 * Version : 1.0.0

6 * Date : sab ott 01 12:51:05 2022

7 *

8 * Grid Width : 2

9 * Grid Height : 4

10 * Memories Size : 134217728 bytes

11 *******************************************************

12

13 *******************************************************

14 * Summary

15 *******************************************************

16 Total Cores Memories Usage : 2819563 bytes

17 Total Channels Memories Usage : 691456 bytes

18 Total Memories Usage : 3511019 bytes

19 Most Used Memory by Cores : Mem30 (Core Memory Usage: 614417 bytes)

20 Most Used Memory by Channels : Mem20 (Channels Memory Usage: 153616 bytes)

21

22 *******************************************************

23 * Memories Usage

24 *******************************************************

25 Memory ID: Core Usage: Channels Usage: Total:

26 Mem30 614417 153616 768033 bytes

27 Mem20 460812 153616 614428 bytes

28 Mem31 438378 153616 591994 bytes

29 Mem10 460912 76808 537720 bytes

30 Mem21 460820 76808 537628 bytes

31 Mem01 384112 0 384112 bytes

32 Mem11 0 76808 76808 bytes

33 Mem00 112 184 296 bytes

34

35 *******************************************************

36 * Cores Memories Usage

37 *******************************************************

38 Core ID: Module: Memory Usage:

39 Core30 non_max_supp 614417 bytes (Mem30)

40 Core10 blur_y 460912 bytes (Mem10)

41 Core21 magnitude_x_y 460820 bytes (Mem21)

42 Core20 derivative_x_y 460812 bytes (Mem20)

43 Core31 apply_hysteresis 438378 bytes (Mem31)

44 Core01 blur_x 384112 bytes (Mem01)

45 Core00 make_gaussian_kernel 112 bytes (Mem00)

46

47 *******************************************************

48 * Channels Memories Usage

49 *******************************************************

50 Channel ID: Memory Usage:

51 smoothedim (FIFO_10_0) 76808 bytes (Mem10)

52 tempim (FIFO_11_0) 76808 bytes (Mem11)

53 delta_x1 (FIFO_20_0) 76808 bytes (Mem20)

54 delta_y1 (FIFO_20_1) 76808 bytes (Mem20)

55 magnitude1 (FIFO_21_0) 76808 bytes (Mem21)

56 delta_x2 (FIFO_30_0) 76808 bytes (Mem30)

57 delta_y2 (FIFO_30_1) 76808 bytes (Mem30)

58 magnitude2 (FIFO_31_0) 76808 bytes (Mem31)

59 nms (FIFO_31_1) 76808 bytes (Mem31)

60 kernel2 (FIFO_00_0) 92 bytes (Mem00)

61 kernel1 (FIFO_00_1) 92 bytes (Mem00)

Listing 7: Example of Memories usage analysis report.
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ported SystemC project location. The reason is that
the timing analysis uses the SystemC project simula-
tion to get the data required to calculate the final re-
sults.
After selecting the folder, MapGL will make a copy of
the project. Inside the copied folder, the application
will be compiled and executed in MARI debug mode,
which generates the mari.log file described in Sec-
tion 3.3. For this reason, before performing the tim-
ing analysis, the designer must ensure that the project
compiles and executes without errors.

Using the time stamps of all the memory accesses
inside the mari.log file, MapGL can reconstruct the
delays of channels and then modules.

During a FIFO communication the channel can en-
ter into two different phases: idle or execution. The
channel is in the idle phase when it is waiting for cores
to push or pop data, while it is in the execution phase
when the channel reads or writes the memory. The
times spent into these phases are called idle delay and
real execution delay.
The sum of these two delays is called execution delay
and, by definition, is the time interval from the start
of the first memory access to the end of the last one
for that specific channel.
Finally, we have the latency, which is the span be-
tween the start of the first memory access and the start
of the actual memory read or write operation (defined
in Section 3.3 as act pop and act push).
Figure 23 shows the life span of the channel commu-
nication with the time spent in each of the previously
mentioned phases.

Figure 23: Channel communication life span with de-
lays contributions.

On the other hand, modules have three phases: idle,
execution or communication. The module is in the
idle phase when at least one of its channels is in the
idle phase and it is in the communication phase when

at least one of its channels is in the execution phase.
For the modules, the idle delay is the sum of the idle
delays of its channels and the channels delay is the
sum of the real execution delays of its channels.
When the module is not in one of these two phases,
it is in the execution phase, in which it executes its
algorithm. The time spent in this phase is called real
execution phase.
The modules’ latency is defined as the interval from
the start of the simulation to the first pop operation
performed by one of its channels.
The execution delay is the span between the first pop
and the last push operations or it can also be defined
as the sum of the idle, channels and real execution de-
lays.
Figure 24 shows the life span of the module with
the time spent in each of the previously mentioned
phases.

Figure 24: Module life span with delays contribu-
tions.

Timing Report An example of a timing report is
shown in Listing 8.
The initial part shows general information about the
project and its parameters.
The Cores Delays section shows the previously de-
scribed delays’ values calculated for every core. The
list is sorted by using the real execution delay.
On the other hand, the Channels Delays section shows
the channels’ communication delays. There are two
lists, one for the push and one for the pop operation
and they are sorted by using the real execution delay.
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1 *******************************************************

2 * TIMING REPORT

3 *

4 * Project : canny_GPC.json

5 * Version : 1.0.0

6 * Date : sab ott 01 12:55:43 2022

7 *

8 * Grid Width : 2

9 * Grid Height : 4

10 * Memory Write Delay : 2.50e-09 s

11 * Memory Read Delay : 2.50e-09 s

12 * Mux Delay : 2.50e-10 s

13 *******************************************************

14

15 *******************************************************

16 * Cores Delays

17 *******************************************************

18 Core ID: Module: Latency: Exec: Idle: Channels: Real Exec:

19 Core10 blur_y 1.000e+06 8.174e+07 4.445e+07 2.881e+05 3.700e+07 ns

20 Core01 blur_x 1.000e+06 4.454e+07 9.307e+06 2.401e+05 3.500e+07 ns

21 Core30 non_max_supp 9.198e+07 3.467e+07 1.734e+07 3.361e+05 1.700e+07 ns

22 Core21 magnitude_x_y 9.184e+07 1.772e+07 3.360e+05 3.841e+05 1.700e+07 ns

23 Core31 apply_hysteresis 1.093e+08 3.050e+07 1.731e+07 1.921e+05 1.300e+07 ns

24 Core20 derivative_x_y 8.264e+07 9.720e+06 2.400e+05 4.801e+05 9.000e+06 ns

25 Core00 make_gaussian_kernel 1.000e+06 2.985e+02 1.425e+02 1.480e+02 8.000e+00 ns

26

27 *******************************************************

28 * Channels Delays

29 *******************************************************

30

31 PUSH:

32 Channel ID: Latency: Exec Delay: Idle Delay: Real Exec Delay:

33 tempim (FIFO_11_0) 4.521124e+07 3.360605e+05 1.440225e+05 1.920380e+05 ns

34 magnitude2 (FIFO_31_0) 1.094114e+08 1.440335e+05 4.801450e+04 9.601900e+04 ns

35 smoothedim (FIFO_10_0) 8.259530e+07 1.440265e+05 4.800750e+04 9.601900e+04 ns

36 delta_x1 (FIFO_20_0) 9.178734e+07 1.440265e+05 4.800750e+04 9.601900e+04 ns

37 delta_y1 (FIFO_20_1) 9.207539e+07 1.440265e+05 4.800750e+04 9.601900e+04 ns

38 magnitude1 (FIFO_21_0) 1.092674e+08 1.440265e+05 4.800750e+04 9.601900e+04 ns

39 delta_x2 (FIFO_30_0) 9.193136e+07 1.440265e+05 4.800750e+04 9.601900e+04 ns

40 delta_y2 (FIFO_30_1) 9.221942e+07 1.440265e+05 4.800750e+04 9.601900e+04 ns

41 imageout (FIFO_down_0) 1.396995e+08 1.152180e+05 6.720850e+04 4.800950e+04 ns

42 nms (FIFO_31_1) 1.266035e+08 4.800950e+04 0.000000e+00 4.800950e+04 ns

43 kernel1 (FIFO_00_1) 1.000008e+06 1.485000e+02 7.450000e+01 7.400000e+01 ns

44 kernel2 (FIFO_00_0) 1.000156e+06 1.420000e+02 6.800000e+01 7.400000e+01 ns

45

46 POP:

47 Channel ID: Latency: Exec Delay: Idle Delay: Real Exec Delay:

48 tempim (FIFO_11_0) 4.525924e+07 3.360635e+05 1.440225e+05 1.920410e+05 ns

49 magnitude2 (FIFO_31_0) 1.094595e+08 1.440385e+05 4.801650e+04 9.602200e+04 ns

50 delta_x2 (FIFO_30_0) 9.197937e+07 1.440295e+05 4.800750e+04 9.602200e+04 ns

51 delta_x1 (FIFO_20_0) 9.183534e+07 1.440295e+05 4.800750e+04 9.602200e+04 ns

52 delta_y2 (FIFO_30_1) 9.226742e+07 1.440295e+05 4.800750e+04 9.602200e+04 ns

53 magnitude1 (FIFO_21_0) 1.093154e+08 1.440295e+05 4.800750e+04 9.602200e+04 ns

54 delta_y1 (FIFO_20_1) 9.212339e+07 1.440295e+05 4.800750e+04 9.602200e+04 ns

55 smoothedim (FIFO_10_0) 8.264331e+07 1.440295e+05 4.800750e+04 9.602200e+04 ns

56 imagein (FIFO_up_0) 1.011521e+07 9.602350e+04 4.801100e+04 4.801250e+04 ns

57 nms (FIFO_31_1) 1.266515e+08 4.803600e+04 1.450000e+01 4.802150e+04 ns

58 kernel1 (FIFO_00_1) 1.000018e+06 2.065000e+02 1.295000e+02 7.700000e+01 ns

59 kernel2 (FIFO_00_0) 1.000205e+06 1.025000e+02 1.650000e+01 8.600000e+01 ns

Listing 8: Example of Timing analysis report.
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5 GoogLeNet CNN on GPC
(Version 2)

This section aims to describe the design process that
led to an improved version of the GoogLeNet on GPC
model presented in Section 2. The MARI library and
the MapGL editor, introduced in Section 3 and Sec-
tion 4, cover a central role in the development.

The comparison of the experimental results ob-
tained by the two versions will be analyzed in Sec-
tion 6.

5.1 Inception Block

The inception block structure is the first significant
improvement over the old model.
By using MARI instead of the MapGL library, it is
possible to remove the Fork and Merge Modules pre-
sented in Section 2.1.2. The simplified implementa-
tion of the inception block is shown in Figure 25.

This new version contains 15 cores without leaving
any unused ones. According to the analysis made in
Section 2.1, this is theoretically the most packed ob-
tainable structure. In comparison, the first implemen-
tation used 20 cores, which, in percentage, are 25%
more cores.

The last layer is placed close to the first core of the
next inception block to increase its repeatability, like
in the first version.

5.2 Complete Structure

After completing the new inception block design, we
started mapping the application using MapGL.
The mapping process lasted longer than the old
spreadsheet implementation since, in this case, the de-
signer must manually write the value of every mod-
ule and channel parameter. The previous GoogLeNet
on GPC version automatically filled the parameters,
parsed from the .prototxt file, during the generation
phase.
Unfortunately, MapGL does not include such a parser
at the moment. However, the possibility of copying
all the parameters of other completed modules came
in handy.

The CNN layers used for the previous GoogLeNet
model were converted into MapGL modules by fol-

Figure 25: GoogLeNet CNN on GPC (version 2) in-
ception block design.

lowing the steps described in Section 4.2.1. The pro-
cess required squeezing the C++ template class defi-
nitions inside template functions.
Then, these modules were included in the standard
modules package of the MapGL editor to be reused in
future CNN-related applications.

Figure 26 shows the final MapGL mapping of the
GoogLeNet on GPC (version 2) model.

This version makes use of a 15 by 10 grid. Of the
150 available cores, only one was not used. Over-
all, this solution contains only 7 cores more than the
optimal implementation of 142 cores, as described in
Section 2.1.
These extra cores were mainly used to allow all the
inception blocks to have the same structure, which
keeps the mapping simple.

As for the first GoogLeNet on GPC model, some
colors were used to identify the three main parts of the
structure. The first serial layers are in yellow, the last
serial layers are in green, and the parallel layers inside
the inception blocks are in red. In this version, we
also used the top external memory to receive the input
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Figure 26: GoogLeNet CNN on GPC (version 2) structure.

image, the two memories on the sides to shorten the
path between cores and the bottom memory to store
the output data.

It is worth mentioning that, in the left part, we use
one core to “forward” the data from both the first lay-
ers and the sixth inception block. This solution is
possible thanks to the versatility of the MARI library
channels.

5.3 Profiling

The application’s profiling was performed using the
memories usage and timing analyses provided by the
MapGL editor. These two analyses require the map-
ping generated in the previous paragraph.

In the first version of the GoogLeNet on GPC
model, the FIFOs sizes were set equal to the input
data size. In other words, every MemTools FIFO has
just one slot.
This solution works well when the designer wants to
maximize the application speed without caring about
the occupation of memories.

The new GoogLeNet model can easily modify all

the channel parameters, thanks to the use of MapGL.
For this reason, it was decided to make two imple-
mentations of the same model: one high-speed and
one low-speed. The high-speed implementation re-
duces the application delay by increasing the use of
memories. The low-speed implementation reduces
the use of memories and increases the application de-
lay.
However, the first version of the model will be com-
pared only to the high-speed implementation because
both maximize the FIFOs sizes.

For all the modules used until now, it was assumed
that their execution delay was equal to zero. At this
level of abstraction, it is impossible to know all the
timing specifications of the processor used in the final
architecture.

The closest we can get to obtaining some rough val-
ues was by running the layers on a known processor
and calculating the required execution delays.
The processor used is an Intel Xeon E3-1240 with a
clock frequency of 3.4 GHz. The installed operating
system in which the analyses were performed is Cen-
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tOS 7.6 and simulation times were measured using
/usr/bin/time [1].
Delays were calculated 500 times using the same im-
age to obtain more reliable results.

The results of all the analyses will be discussed in
Section 6.

6 Experiments and Results

In this section, we will analyze and compare the re-
sults of the two model versions.
All the results are just rough estimations since the ap-
plication has been designed using a high-level of ab-
straction.

6.1 Version 1

The profiling of the first version of the GoogLeNet
on GPC model generates a report containing all the
memory occupations divided by shared, local and to-
tal usage. The shared usage is the memory’s channels
occupation, the local usage is the data occupation of
the core inside the same cell and the total usage is the
sum of the previous two.

Listing 9 shows an extract of the GoogLeNet CNN
on GPC (version 1) report.

Looking at Listing 9, we notice that our cho-
sen mapping lets memory M10 overflow. To
solve this problem, we can try to find a differ-
ent mapping or manually modify the generated
checkerboard user.cpp file. In this case, we man-
ually adjusted the FIFO (shared memory) size by di-
viding its length in half. The conv1/relu 7x7 module
needs to send the two halves of the data one by one,
slightly increasing the overall delay but avoiding the
memory overflow.
In the end, M10 shared memory occupation becomes
1605632 bytes, leading to a total memory occupation
of 8028160 bytes.

This solution dedicates lots of memory to the chan-
nels to maximize the model’s speed.

For this model, the timing profiling was too com-
plex to implement.
Nevertheless, we can obtain the application delay by
simply printing the time stamp of the SystemC sim-
ulator at the end of the simulation. Before doing

that, the memories and multiplexer delays must be ad-
justed manually inside the generated code through the
macros present inside the checkerboard user.cpp

file. The used values are discussed in Section 6.2.2.
When the simulation ended, the printed application
delay was 158784755 ns.

6.2 Version 2

For the new model, we analyzed both the memory us-
age and the timing of the two implementations: high-
speed and low-speed.
For the high-speed case, we set the length of the FI-
FOs equal to the size of the data to send/receive so
that the operation takes just one transfer. For the low-
speed case, we set the length of all the FIFOs to an ar-
bitrary value of 64 bytes, except the first and the last,
which use the top and bottom external memories. The
reason is that the size of these memories is not related
to the architecture.

Finally, another timing profiling was performed for
both implementations, where each layer had an exe-
cution delay calculated as described in Section 5.3.

6.2.1 Memories Usage

Figure 27 shows the heatmaps generated after the
memories usage analysis of the high-speed and low-
speed implementations.

Looking at the top-left part of the two heatmaps, we
notice that, as aspected, in the high-speed implemen-
tation, the memories are redder than in the low-speed
one, meaning they are more used. We can also no-
tice that the first layers of the GoogLeNet CNN are
the ones that require bigger FIFOs or more space for
the core’s data. However, both implementations were
designed without memory overflow, as confirmed by
the two extracts of the memories usage reports shown
in Listing 10 and Listing 11.

6.2.2 Timing

MapGL timing analysis evaluates channels’ delays
using three parameters: the memory read and write
delays and the multiplexer propagation delay. The
designer can set their values before starting the
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1 ****************************************************

2 module: checkerboard

3 date: Thu Sep 22 18:44:49 2022

4 ****************************************************

5

6 Grid Height : 15

7 Grid Width : 13

8

9 ON-Chip Mem Size : 0x00800000 (8388608) bytes

10 OFF -Chip Mem Size : 0x20000000 (536870912) bytes

11

12 Total Cores Memories Usage : 140212032 bytes

13 Total Channels Memories Usage : 71774144 bytes

14 Total Memories Usage : 211986176 bytes

15

16 The memory that has the higher shared usage : M00 3211264 bytes

17 The memory that has the higher local usage : M10 6422528 bytes

18 The most used memory : M10 9633792 bytes

19

20 The core that uses local memory the most : conv1_relu_7x7(Core10) 6422528 bytes

21

22 Memories usage: Shared Local Total

23 M10 3211264 6422528 9633792 bytes

24 M00 3211264 3851264 7062528 bytes

25 M20 2408448 4014080 6422528 bytes

26 M21 1204224 4816896 6021120 bytes

27 M30 802816 4816896 5619712 bytes

Listing 9: Extract of the GoogLeNet CNN on GPC (version 1) profiling report.

simulation.

The memory read and write delays were referred
from [14]. In this case, we assumed that the OFF-chip
memories are DRAM, while the ON-chip memories
are SRAM.
The OFF-chip memory read and write delay values
were set inside the testbench manually.

The propagation delay of the multiplexer was arbi-
trarily chosen to be one-tenth of the ON-chip memory
read/write delay.

The chosen communication delays are shown in Ta-
ble 2.

Delay Type Delay [ns]
OFF-chip memory read (DRAM) 50
OFF-chip memory write (DRAM) 50
ON-chip memory read (SRAM) 2.5
ON-chip memory write (SRAM) 2.5

Multiplexer propagation 0.25

Table 2: Communication delays used for the timing
profiling [9].

Figure 28 shows the channel delays’ heatmaps gen-
erated after the timing analysis of the high-speed and
low-speed implementations.

Looking at Figure 28 seems that the two heatmaps
look identical even if the channels should be faster in
one implementation and slower in the other.
The reason is that the delays are normalized to the
highest value. On the contrary, in the memories us-
age heatmaps in Figure 27, we notice a color differ-
ence because values are normalized to the memory
size. The memory dimensions depend on the GPC
grid size, so it remains the same in the two implemen-
tations.

We can also notice a correlation between the tim-
ing heatmaps in Figure 28 and the memories usage
heatmaps in Figure 27. The similarity in behavior is
present because, by increasing the quantity of data to
send, we increase the channel delay.

Listing 12 and Listing 13 shows the extracts of the
timing reports of the two implementations.

The latency is the time from the start of the simula-
tion to the first value popped. The execution delay is
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Figure 27: Memories usage analysis heatmaps of the
two implementations of the GoogLeNet on GPC (ver-
sion 2).

the time from the first pop to the last push. The idle
delay is the span in which the core waits for the other
cores to push or pop the data. The channel delay is
the time spent for communication purposes. Finally,
the real execution delay is the time spent elaborating
the data, which in this case is zero since we did not
specify any delay inside our modules.

The values are sorted using the real execution de-
lay, but in this case, they are basically randomly or-
dered.

The overall application delay of the high-speed
implementation was 81708403 ns, while for the low-
speed was 104018256 ns. The delay is reduced by
21% in the high-speed implementation but memories
usage increases by 42%.

Adding delays to the layers The last timing pro-
filing was performed by adding the execution delays
calculated as described in Section 5.3 to each layer.
These values are only used to get a rough estimation
of the overall application behavior. They are not to be
intended as accurate performance results.

Figure 29 shows the real execution delays’
heatmaps generated after analyzing the high-speed
and low-speed implementations.

In this case, the two heatmaps are the same by def-
inition. We notice that the conv2/3x3 module has a
higher execution delay than the other modules.
In future models, we could increase the size of the FI-
FOs for that particular core to mitigate the bottleneck.
Another solution could be splitting that module’s op-
erations into two cores.

This time, the reports shown in Listing 12 and List-
ing 13 are sorted correctly, thanks to the non-zero real
execution delays. This way, we can have a rough idea
of which cores are the slowest inside the structure for
future improvements.

In this case, the overall application delay of the
high-speed implementation was 351072036 ns, while
for the low-speed was 369080897 ns. These results
are much higher than the previous case in which the
layer execution delay was equal to zero. The chan-
nels’ contributions to the application delay are mini-
mal using these delay values. Modifying the layers’
execution delays can drastically change the results.

31



1 *******************************************************

2 * MEMORIES USAGE REPORT

3 *

4 * Project : googlenet_GPC_high_speed.json

5 * Version : 1.0.0

6 * Date : sab ott 01 12:43:30 2022

7 *

8 * Grid Width : 10

9 * Grid Height : 15

10 * Memories Size : 8388608 bytes

11 *******************************************************

12

13 *******************************************************

14 * Summary

15 *******************************************************

16 Total Cores Memories Usage : 122867776 bytes

17 Total Channels Memories Usage : 52152724 bytes

18 Total Memories Usage : 175020500 bytes

19 Most Used Memory by Cores : Mem10 (Core Memory Usage: 6422528 bytes)

20 Most Used Memory by Channels : Mem00 (Channels Memory Usage: 3211272 bytes)

21

22 *******************************************************

23 * Memories Usage

24 *******************************************************

25 Memory ID: Core Usage: Channels Usage: Total:

26 Mem10 6422528 1605644 8028172 bytes

27 Mem00 3851264 3211272 7062536 bytes

Listing 10: Extract of the high-speed GoogLeNet CNN on GPC (version 2) memories usage report.

1 *******************************************************

2 * MEMORIES USAGE REPORT

3 *

4 * Project : googlenet_GPC_low_speed.json

5 * Version : 1.0.0

6 * Date : sab ott 01 12:40:23 2022

7 *

8 * Grid Width : 10

9 * Grid Height : 15

10 * Memories Size : 8388608 bytes

11 *******************************************************

12

13 *******************************************************

14 * Summary

15 *******************************************************

16 Total Cores Memories Usage : 122867776 bytes

17 Total Channels Memories Usage : 12528 bytes

18 Total Memories Usage : 122880304 bytes

19 Most Used Memory by Cores : Mem10 (Core Memory Usage: 6422528 bytes)

20 Most Used Memory by Channels : Mem31 (Channels Memory Usage: 144 bytes)

21

22 *******************************************************

23 * Memories Usage

24 *******************************************************

25 Memory ID: Core Usage: Channels Usage: Total:

26 Mem10 6422528 72 6422600 bytes

27 Mem30 4816896 72 4816968 bytes

Listing 11: Extract of the low-speed GoogLeNet CNN on GPC (version 2) memories usage report.
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Figure 28: Timing analysis channel delays’ heatmaps
of the two implementations of the GoogLeNet on
GPC (version 2).

The aim of this last profiling was just to show how
to use the timing profiling of MapGL at its highest
potential, not to get any accurate results.

6.3 Comparison

In this section, we will compare the first version of
the model with the high-speed and low-speed imple-
mentations of the second one.
For an even comparison, we will consider only the
profiling results in which the layers’ execution delays
are equal to zero.

Table 3 shows the results of the three models, while
Table 4 shows how the high-speed and low-speed im-
plementations perform compared to the first version
of the model.

Grid size Total memories
usage [MB] Total delay [ms]

1st version 15×13 210 159

2nd version
(high-speed) 15×10 175 82

2nd version
(low-speed) 15×10 123 104

Table 3: Results of the first and second versions of the
GoogLeNet on GPC model. The second version has
high-speed and low-speed implementations.

Grid size Total memories
usage Total delay

high-speed −23.1% −16.8% −48.5%

low-speed −23.1% −41.6% −34.5%

Table 4: Comparison between the first model and the
high-speed and low-speed implementations.

The results in Table 3 are not to be considered ac-
curate, they are just rough estimations.
More interesting are the percentages in Table 4, which
give an idea of the improvements from the first to the
second model.

One of the main reasons for the superiority of the
second version over the first is the reduction of almost
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1 *******************************************************

2 * TIMING REPORT

3 *

4 * Project : googlenet_GPC_high_speed.json

5 * Version : 1.0.0

6 * Date : sab ott 01 12:43:59 2022

7 *

8 * Grid Width : 10

9 * Grid Height : 15

10 * Memory Write Delay : 2.50e-09 s

11 * Memory Read Delay : 2.50e-09 s

12 * Mux Delay : 2.50e-10 s

13 *******************************************************

14

15 *******************************************************

16 * Cores Delays

17 *******************************************************

18 Core ID: Module: Latency: Exec: Idle: Channels: Real Exec:

19 Core81 inception_4d/output 7.463e+07 1.474e+06 9.565e+05 5.175e+05 0.000e+00 ns

20 Core71 inception_4d/relu_pool_proj 7.575e+07 6.274e+04 0.000e+00 6.274e+04 0.000e+00 ns

21 Core50 conv2/relu_3x3 3.960e+07 3.011e+06 0.000e+00 3.011e+06 0.000e+00 ns

22 Core70 conv2/3x3 3.760e+07 2.007e+06 2.000e+00 2.007e+06 0.000e+00 ns

23 Core1408 inception_5b /3x3 9.094e+07 7.058e+04 0.000e+00 7.058e+04 0.000e+00 ns

24 Core1407 inception_5b/relu_3x3_reduce 9.090e+07 4.706e+04 0.000e+00 4.706e+04 0.000e+00 ns

25 Core84 inception_4c/output 7.227e+07 1.443e+06 9.408e+05 5.018e+05 0.000e+00 ns

Listing 12: Extract of the GoogLeNet CNN on GPC (version 2) timing report for the high-speed implementation.

1 *******************************************************

2 * TIMING REPORT

3 *

4 * Project : googlenet_GPC_low_speed.json

5 * Version : 1.0.0

6 * Date : sab ott 01 12:33:49 2022

7 *

8 * Grid Width : 10

9 * Grid Height : 15

10 * Memory Write Delay : 2.50e-09 s

11 * Memory Read Delay : 2.50e-09 s

12 * Mux Delay : 2.50e-10 s

13 *******************************************************

14

15 *******************************************************

16 * Cores Delays

17 *******************************************************

18 Core ID: Module: Latency: Exec: Idle: Channels: Real Exec:

19 Core86 inception_4c/relu_5x5_reduce 8.798e+07 5.694e+04 2.784e+04 2.911e+04 0.000e+00 ns

20 Core96 inception_4c /5 x5_reduce 8.733e+07 6.744e+05 3.118e+05 3.627e+05 0.000e+00 ns

21 Core19 inception_4a/output 6.808e+07 1.416e+07 1.354e+07 6.209e+05 0.000e+00 ns

22 Core09 inception_4a/relu_5x5 6.906e+07 1.710e+05 1.128e+05 5.822e+04 0.000e+00 ns

23 Core84 inception_4c/output 8.688e+07 3.117e+06 2.496e+06 6.209e+05 0.000e+00 ns

24 Core85 inception_4c/relu_1x1 8.673e+07 3.041e+05 1.489e+05 1.552e+05 0.000e+00 ns

25 Core28 inception_4a /1x1 6.728e+07 7.984e+05 3.909e+05 4.075e+05 0.000e+00 ns

Listing 13: Extract of the GoogLeNet CNN on GPC (version 2) timing report for the low-speed implementation.

34



conv1/7x7_s2 M00 inception_3a/
5x5_reduce M01 inception_3a/

5x5 M02 inception_3a/
relu_5x5 M03 inception_3b/

5x5_reduce M04 inception_3b/
5x5 M05 inception_3b/

relu_5x5 M06 inception_4a/
5x5_reduce M07 inception_4a/

5x5 M08 inception_4a/
relu_5x5 M09

conv1/
relu_7x7M10 inception_3a/

relu_5x5_reduceM11 inception_3a/
relu_1x1M12 inception_3a/

outputM13 inception_3b/
relu_5x5_reduceM14 inception_3b/

relu_1x1M15 inception_3b/
outputM16 inception_4a/

relu_5x5_reduceM17 inception_4a/
relu_1x1M18 inception_4a/

outputM19

pool1/3x3_s2 M20 pool2/3x3_s2 M21 inception_3a/
1x1 M22 inception_3a/

relu_pool_proj M23 forw1to4 M24 inception_3b/
1x1 M25 inception_3b/

relu_pool_proj M26 pool3/3x3_s2 M27 inception_4a/
1x1 M28 inception_4a/
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conv2/norm2M30 inception_3a/
poolM31 inception_3a/

pool_projM32 inception_3a/
relu_3x3M33 inception_3b/

poolM34 inception_3b/
pool_projM35 inception_3b/

relu_3x3M36 inception_4a/
poolM37 inception_4a/

pool_projM38 inception_4a/
relu_3x3M39

pool1/norm1 M40 inception_3a/
3x3_reduce M41 inception_3a/

relu_3x3_reduce M42 inception_3a/
3x3 M43 inception_3b/

3x3_reduce M44 inception_3b/
relu_3x3_reduce M45 inception_3b/

3x3 M46 inception_4a/
3x3_reduce M47 inception_4a/
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relu_3x3_reduceM58 inception_4b/

3x3_reduceM59
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relu_3x3 M61 inception_4d/

pool_proj M62 inception_4d/
pool M63 inception_4c/

relu_3x3 M64 inception_4c/
pool_proj M65 inception_4c/

pool M66 inception_4b/
relu_3x3 M67 inception_4b/

pool_proj M68 inception_4b/
pool M69

conv2/3x3M70 inception_4d/
relu_pool_projM71 inception_4d/

1x1M72 forw1to4M73 inception_4c/
relu_pool_projM74 inception_4c/

1x1M75 forw1to4M76 inception_4b/
relu_pool_projM77 inception_4b/

1x1M78 forw1to4M79

forw2 M80 inception_4d/
output M81 inception_4d/

relu_1x1 M82 inception_4d/
relu_5x5_reduce M83 inception_4c/

output M84 inception_4c/
relu_1x1 M85 inception_4c/

relu_5x5_reduce M86 inception_4b/
output M87 inception_4b/

relu_1x1 M88 inception_4b/
relu_5x5_reduce M89

conv2/
relu_3x3_reduceM90 inception_4d/

relu_5x5M91 inception_4d/
5x5M92 inception_4d/

5x5_reduceM93 inception_4c/
relu_5x5M94 inception_4c/

5x5M95 inception_4c/
5x5_reduceM96 inception_4b/

relu_5x5M97 inception_4b/
5x5M98 inception_4b/

5x5_reduceM99

inception_4e/
5x5_reduce M1000 inception_4e/

5x5 M1001 inception_4e/
relu_5x5 M1002 inception_5a/

5x5_reduce M1003 inception_5a/
5x5 M1004 inception_5a/

relu_5x5 M1005 inception_5b/
5x5_reduce M1006 inception_5b/

5x5 M1007 inception_5b/
relu_5x5 M1008 pool5/7x7_s1 M1009

inception_4e/
relu_5x5_reduceM1100 inception_4e/

relu_1x1M1101 inception_4e/
outputM1102 inception_5a/

relu_5x5_reduceM1103 inception_5a/
relu_1x1M1104 inception_5a/

outputM1105 inception_5b/
relu_5x5_reduceM1106 inception_5b/

relu_1x1M1107 inception_5b/
outputM1108 pool5/

drop_7x7_s1M1109

forw1to4 M1200 inception_4e/
1x1 M1201 inception_4e/

relu_pool_proj M1202 pool4/3x3_s2 M1203 inception_5a/
1x1 M1204 inception_5a/

relu_pool_proj M1205 forw1to4 M1206 inception_5b/
1x1 M1207 inception_5b/

relu_pool_proj M1208 loss3/
classifier M1209

inception_4e/
poolM1300 inception_4e/

pool_projM1301 inception_4e/
relu_3x3M1302 inception_5a/

poolM1303 inception_5a/
pool_projM1304 inception_5a/

relu_3x3M1305 inception_5b/
poolM1306 inception_5b/

pool_projM1307 inception_5b/
relu_3x3M1308 M1309

inception_4e/
3x3_reduce M1400 inception_4e/

relu_3x3_reduce M1401 inception_4e/
3x3 M1402 inception_5a/

3x3_reduce M1403 inception_5a/
relu_3x3_reduce M1404 inception_5a/

3x3 M1405 inception_5b/
3x3_reduce M1406 inception_5b/

relu_3x3_reduce M1407 inception_5b/
3x3 M1408 prob M1409
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Figure 29: Timing analysis real execution de-
lays’ heatmaps of the two implementations of the
GoogLeNet on GPC (version 2).

one-fourth of the grid size. By reducing the number
of cores used, the application becomes faster and uses
fewer memories.

Another critical factor is the number of accesses
to external memories. Both models use the two
side memories to shorten the path between incep-
tion blocks, which ideally is a good solution. How-
ever, Table 2 shows that DRAMs are much slower
than SRAMs. The first version of the model pushes
the same data through the side memories four times,
while the second version pushes it just one time,
thanks to the use of the forw1to4 module. This lack
drastically increases the first version application de-
lay. However, this effect could be mitigated by reduc-
ing access delays to external memories.

7 Conclusion

In this report, we described the design process and the
profiling of two versions of the GoogLeNet on GPC
model. We also introduced the MARI library and the
MapGL editor that aids the analysis and mapping of
new GPC applications.

The GoogLeNet model allowed us to exploit the
scalability of the GPC architecture by designing and
making simulations on a grid of up to 195 cores.

Using the MapGL editor, we created, visualized
and modified our mapping without using any specific
programming language. It also allowed us to save
our project and automatically generate the SystemC
model. Ultimately, we profiled our application using
MapGL integrated tool for the memories usage and
timing analyses.

7.1 Future works

Even using MapGL, mapping large applications on
the GPC still requires lots of effort. Sometimes, a mi-
nor detail can lead the designer to redesign the entire
structure.
A possible solution could be the implementation of
an auto-mapper, which exploits all the possible map-
pings and chooses the best according to some con-
straints imposed by the designer. For each mapping,
the auto-mapper could check the results of the appli-
cation profiling, searching for critical paths or mem-
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1 *******************************************************

2 * TIMING REPORT

3 *

4 * Project : googlenet_GPC_high_speed.json

5 * Version : 1.0.0

6 * Date : sab ott 01 12:55:21 2022

7 *

8 * Grid Width : 10

9 * Grid Height : 15

10 * Memory Write Delay : 2.50e-09 s

11 * Memory Read Delay : 2.50e-09 s

12 * Mux Delay : 2.50e-10 s

13 *******************************************************

14

15 *******************************************************

16 * Cores Delays

17 *******************************************************

18 Core ID: Module: Latency: Exec: Idle: Channels: Real Exec:

19 Core70 conv2/3x3 (convolution) 7.486e+07 7.109e+07 2.000e+00 2.007e+06 6.908e+07 ns

20 Core46 inception_3b /3x3 (convolution) 1.951e+08 3.529e+07 0.000e+00 6.272e+05 3.466e+07 ns

21 Core00 conv1/7x7_s2 (convolution) 1.753e+07 3.602e+07 7.150e+06 2.383e+06 2.648e+07 ns

22 Core1402 inception_4e /3x3 (convolution) 3.230e+08 1.842e+07 0.000e+00 2.352e+05 1.818e+07 ns

23 Core43 inception_3a /3x3 (convolution) 1.667e+08 1.810e+07 0.000e+00 4.391e+05 1.766e+07 ns

24 Core51 inception_4d /3x3 (convolution) 2.918e+08 1.499e+07 0.000e+00 2.117e+05 1.478e+07 ns

25 Core05 inception_3b /5x5 (convolution) 1.908e+08 1.245e+07 0.000e+00 2.509e+05 1.220e+07 ns

Listing 14: Extract of the GoogLeNet CNN on GPC (version 2) timing report with layers delays for the high-
speed implementation.

1 *******************************************************

2 * TIMING REPORT

3 *

4 * Project : googlenet_GPC_low_speed.json

5 * Version : 1.0.0

6 * Date : sab ott 01 12:58:38 2022

7 *

8 * Grid Width : 10

9 * Grid Height : 15

10 * Memory Write Delay : 2.50e-09 s

11 * Memory Read Delay : 2.50e-09 s

12 * Mux Delay : 2.50e-10 s

13 *******************************************************

14

15 *******************************************************

16 * Cores Delays

17 *******************************************************

18 Core ID: Module: Latency: Exec: Idle: Channels: Real Exec:

19 Core70 conv2/3x3 (convolution) 7.691e+07 7.401e+07 2.446e+06 2.484e+06 6.908e+07 ns

20 Core46 inception_3b /3x3 (convolution) 2.023e+08 3.618e+07 7.447e+05 7.762e+05 3.466e+07 ns

21 Core00 conv1/7x7_s2 (convolution) 1.753e+07 3.887e+07 9.534e+06 2.860e+06 2.648e+07 ns

22 Core1402 inception_4e /3x3 (convolution) 3.396e+08 1.875e+07 2.792e+05 2.911e+05 1.818e+07 ns

23 Core43 inception_3a /3x3 (convolution) 1.721e+08 1.872e+07 5.213e+05 5.433e+05 1.766e+07 ns

24 Core51 inception_4d /3x3 (convolution) 3.055e+08 1.529e+07 2.513e+05 2.620e+05 1.478e+07 ns

25 Core05 inception_3b /5x5 (convolution) 1.988e+08 1.281e+07 2.978e+05 3.105e+05 1.220e+07 ns

Listing 15: Extract of the GoogLeNet CNN on GPC (version 2) timing report with layers delays for the low-speed
implementation.
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ory overflows. All the information extracted from the
profile reports could be used to find the best mapping
possible.
For CNN applications, the Caffe model file format
that describes the network structure represents the
perfect input. The auto-mapper can also decide
whether a core should use one or more memories to
store data or whether to use external or local memo-
ries.

At the moment, MapGL supports only SystemC ex-
port. However, it could be possible in the future to ex-
port projects using other languages, such as VHDL or
SystemVerilog. The editor works at a high level of ab-
straction and is modular, so it should not be too com-
plex to implement. The limit could still come from
the language itself.

It could also be possible to include inside MapGL
the possibility to map application using other many-
processor architectures. For example, one of them
could be a 3D version of the GPC introduced in [7].
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