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Abstract

Convolutional neural networks (CNN) are a class of artificial neural networks, commonly
used to solve the image classification problem. Exploring parallelism available in a CNN model
deepens our understanding of its behavior and enables simulation speedup. In this report, we
describe six untimed TLM-1.0 and TLM-2.0 SystemC models of GoogLeNet, a state of the art
deep CNN using OpenCYV library. The models are designed to examine different opportunities
for parallelism. Towards this end, we use Recoding Infrastructure for SystemC (RISC) to exploit
the introduced parallelism and provide extensive experimental results for all six models on four
different hardware platforms over five RISC versions. The results confirm four hypotheses, (HI)



more aggressive simulation modes exploit more parallelism, (H2) newer RISC versions show
higher simulation speedup, (H3) less restrictive transaction types enable higher parallelism and
(H4) abstract TLM-1.0 models carry less workload than memory accurate TLM-2.0 models.



Contents

1 Introduction
1.1 Image Classificationusing CNN . . . . . . .. ... .. .. . ... ..
1.2 GoogleNet Structure . . . . . . . . . . . v i it

2 Hypotheses
2.1 HI: More aggressive simulation modes exploit more parallelism . . ... ... ..
2.2 H2: Newer RISC versions show higherspeedup . . . . . . .. ... ... ... ..
2.3 H3: Less restrictive transaction types enable higher parallelism . . . . .. ... ..
2.4 H4: Abstract TLM-1.0 carries less workload than memory accurate TLM-2.0

3 SystemC TLM modeling of Googl.eNet

3.1 Reference Model using OpenCV . . . . . . . . ... ... ... ... .......
32 TLMModeling Goals . . . . . . . . . . ..
3.3 TLM-1.0 Layer Implementation . . . . . . ... ... ... .. ..........

3.3.1 Channel variants . . . . . . . . ...
3.4 TLM-2.0 Layer Implementation . . . . . ... ... ... ... ... .....
3.5 Netspec Generator . . . . . . . . ..ot e e e e e e e e e
3.6 Validation by Simulation . . . ... ... oL oL L
3.7 Parallelism . . . ..
3.8 Modular Source File Structure and BuildFlow . . . . . ... ... ... ... ...

4 Results
4.1 Performance Setup . . . . . . . . ...
4.2 Simulation Results . . . . . . . . . . . ... e
43 Analysis . . ..o L e e
43.1 HI: SimulationModes . . . . . .. .. .. ... ... .
432 H2:RISCVersions . . . . . . . . . . . i ittt i
433 H3:Transaction Types . . . . . . . . . . . . . .. ...,
434 H4: TLM-1.0vsTLM-2.0 . . . ... . .. ... .. ... ...

5 Conclusion
5.1 Futurework . . . . . . . . e

References
Appendix A Measurements

Appendix B Visualization

iii

18
18
18
20
20
21
21
22

25
26

27

29

35



List of Figures

0 O N kAW~

Architecture of LeNet-5, a CNN for digits recognition [8] . . . ... ... .. ..
GooglLeNet network with all the bells and whistles [14] . . . . . . ... ... ...
Schematic view of a SystemC convolutionmodule . . . . . . . ... ... .....
Inception module in GoogleNet . . . . ... ... ... ... ...........
TLM-2.0 model connections . . . . . . . . . . . . i v i vt it e
(Top) feed forward (bottom) double handshake mechanism in TLM-2.0 model . . .
(a) TLM-1.0 (b) TLM-2.0 top-level testbench . . . . . . . .. ... ... .. ...
Build flow with Accellera SystemC . . . . . . ... ... .. ... .........
Build flow with RISC [10] . . . . . . . . . . . e
Elapsed time for OOO simulation on 4-core machine . . . . ... ... ... ...
Visualized SystemC TLM-1.0 model of GoogLeNet generated by visual [11]

Visualized SystemC TLM-2.0 model of GoogLeNet generated by visual [11]

v



List of Tables

0 O N kAW~

GoogleNet layer summary . . . . . . . . . . . . it e e 2
TLM-1.0 models summary . . . . . . . .. ... . i 11
TLM-2.0 models summary . . . . . . . . . . . . i 14
Platform specification . . . . . . . . . . .. ... ... e 20
Speedup heat map table for validating hypothesis H1 . . . . .. ... ... .. .. 22
Measurement results for validating hypothesis H2 . . . . . ... ... ... .... 23
Measurement results for validating hypothesis H3 . . . . . .. ... ... ... .. 24
Data conflicts and event notifications in TLM-1.0models . . . . . . ... ... .. 25
Measurement results for validating hypothesis H4 (SEQ) . . . . . ... ... ... 25
Measurement results for validating hypothesis H4 (OOO) . . . . ... ... .. .. 26
Measurement results on 4-core host (‘omicron’, HToff) . . . . . . ... ... ... 30
Measurement results on 8-core host (‘omicron’, HTon) . . . . . . ... ... ... 31
Measurement results on 16-core host (‘phi’, HT off) . . . . . . .. ... ... ... 32
Measurement results on 32-core host (‘phi’, HTon) . . . . . . ... ... ... .. 33
Summary of elapsed time on 4, 8, 16,32 corehosts . . . . . .. ... ... .... 34



List of Listings

LISTINGS/conv_tlml.cpp . . . . . . . . o o i e e e e e e e 8
LISTINGS/conv_main_tlml.cpp . . . . . . ... ... ... . ... .. .. ....... 9
LISTINGS/conv_tIm2.cpp . . . . . . o o o vt e e e e e e e 13
LISTINGS/conv_tlIm2.cpp . . . . . . o i o e e e e e e e e e e e 14
LISTINGS/conv_main_tlIm2.cpp . . . . . . . . . . . o i ittt 15

vi



Systematic Evaluation of Six Models of GoogLeNet using PDES

E. M. Arasteh, R. Domer
Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
emalekza,doemer@uci.edu
http://www.cecs.uci.edu

Abstract

Convolutional neural networks (CNN) are a
class of artificial neural networks, commonly
used to solve the image classification prob-
lem. Exploring parallelism available in a CNN
model deepens our understanding of its be-
havior and enables simulation speedup. In
this report, we describe six untimed TLM-1.0
and TLM-2.0 SystemC models of GoogLeNet,
a state of the art deep CNN using OpenCV
library. The models are designed to exam-
ine different opportunities for parallelism. To-
wards this end, we use Recoding Infrastruc-
ture for SystemC (RISC) to exploit the intro-
duced parallelism and provide extensive exper-
imental results for all six models on four dif-
ferent hardware platforms over five RISC ver-
The results confirm four hypotheses,
(H1) more aggressive simulation modes ex-
ploit more parallelism, (H2) newer RISC ver-
sions show higher simulation speedup, (H3)
less restrictive transaction types enable higher
parallelism and (H4) abstract TLM-1.0 mod-
els carry less workload than memory accurate
TLM-2.0 models.

sions.

1 Introduction

Computer vision (CV) as a scientific field aims
to gain understanding of images and video.
CV covers a wide range of tasks, such as object
recognition, scene understanding, human mo-
tion recognition, etc. One of the core problems
in visual recognition is image classification.

1.1 Image Classification using CNN

Image classification is the problem of assign-
ing a descriptive label to an input image from a
fixed set of categories. Deep learning and con-
volutional neural network (CNN) have been
shown to solve this hard image classification
problem fast and with acceptable precision.
Early work on CNN dates back to 1989 with
the LeNet network for handwritten digit recog-
nition [7]. However, the early 2010s started
a new era for CNN applications by the intro-
duction of AlexNet [6] for image classifica-
tion. Growth of computing power, availability
of huge datasets that can be used for training,
and rapid innovation in deep learning architec-
tures have paved the way for the success of
deep learning techniques in recent years [13].
A CNN mainly consists of alternating con-



volution layers and pooling (sub-sampling)
layers. Each convolution layer extracts fea-
tures in the input by applying trainable fil-
ters to the input. Later, the convolved fea-
ture is fed to an activation function, for ex-
ample a Rectifier Linear Unit (ReLU) to intro-
duce nonlinearity and obtain activation maps.
Each pooling layer downsamples the activa-
tion maps to reduce computation and mem-
ory usage in the network. Features extracted
from previous convolution and pooling layers
are fed to a fully connected layer to perform
classification. Typically, a softmax activation
function can be placed following the final fully
connected layer to output the probability cor-
responding to each classification label. For ex-
ample, LeNet-5, a CNN for digit recognition,
as depicted in Figure 1, contains three convolu-
tion layers, two sub-sampling layers, and one
fully connected layer [8].

In this report, we describe details of un-
timed TLM-1.0 and TLM-2.0 SystemC mod-
els of GoogLeNet [14], a state of the art deep
CNN. We extend the original model initially
described in SystemC [1] to six variants to ex-
plore higher level of parallelism available in
the model.

The rest of this paper is organized as fol-
lows: Subsection 1.2 describes high level
structure of GoogLeNet.  Section 2 out-
lines four hypotheses regarding models be-
havior and RISC improvements. Section 3
describes SystemC modeling details of each
layer and the overall Googl.eNet models. Sec-
tion presents simulation results of all six mod-
els with analysis of each hypothesis. At last,
Section 5 concludes this case study.

1.2 GoogLeNet Structure

GoogleNet is a deep CNN for image classifi-
cation and detection that was the winner of the
ImageNet Large Scale Recognition Competi-
tion (ILSVRC) in 2014 with only 6.67% top-5
error [14]. Googl.eNet was proposed and de-
signed with computational efficiency and de-
ployability in mind. The two main features
of GoogLeNet are (1) using 1x1 convolution
layer for dimension reduction and (2) applying
Network-in-Network architecture to increase
representational power of the neural network
[14].

GoogLeNet is 22 layers deep when counting
only layers with parameters. The overall num-
ber of layers (independent building blocks)
is 142 distinct layers. The main constituent
layers are convolution, pooling, concatenation
and classifier. Googl.eNet includes two auxil-
iary classifiers that are used during training to
combat the vanishing gradient problem. The
detailed types of layers inside GooglLeNet and
the number of each type of layers are summa-
rized in Table 1.

Table 1: GoogLeNet layer summary

Layer type ‘ Count ‘
Convolution 57
ReLLU 57
Pooling 14
LRN 2
Concat 9
Dropout 1
InnerProduct 1
Softmax 1
Total | 142
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Figure 1: Architecture of LeNet-5, a CNN for digits recognition [8]

Our focus for now is on inference by using
the proposed neural network architecture and
not training for fine-tuning network parame-
ters or suggesting improved network architec-
ture. Therefore, our model does not include
the two auxiliary classifier layers.

A schematic view of Googl.eNet is depicted
in Figure 2. An image is fed in from the bot-
tom, and processed by all layers. Then, a vec-
tor with probabilities for the set of categories
comes out on the top. The index of a class with
a maximum probability is looked up in a table
of synonym words that outputs the class of the
object in the image, i.e. “space shuttle”.

To get pre-trained network parameters, we
have used the Caffe (Convolutional Archi-
tecture for Fast Feature Embedding) model
zoo. Caffe is a deep learning framework orig-
inally developed at University of California,
Berkeley, and is available under BSD license
[5]. The GoogLeNet Caffe model comes with
(1) a binary file .caffemodel that con-
tains network parameters, and (2) a text file
.prototxt that specifies network architec-
ture. Including weights and bias values, there
are a total of 5.97 million learned parameters
in GoogleNet.

We also use another text file listing 1000 la-
bels used in ILSVRC 2012 challenge that in-
cludes a synonym ring or synset of those la-
bels.

2 Hypotheses

Based on the initial TLM-1.0 model of
GoogleNet [1], we start by designing vari-
ous SystemC models to expose the inherent
parallelism in GooglLeNet. Having RISC in-
frastructure available, we are equipped with a
SystemC aware compiler and parallel simula-
tor to exploit this introduced parallelism. This
is beneficial for model exploration and faster
simulation. Having said that, we have devised
four initial hypotheses considering the models
and RISC versions as follows:

2.1 HI1: More aggressive simulation
modes exploit more parallelism

The SystemC Accellera proof-of-concept sim-
ulator is based on co-routine semantics [4],
hence it schedules only a single thread at each
simulation step. In contrast, Parallel Dis-
crete Event Simulation (PDES) allows paral-
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Figure 2: GoogLeNet network with all the
bells and whistles [14]

lel simulation on multi-core processors. The
PDES approach, by imposing a total order
on event delivery and time advance, makes
delta- and time-cycles absolute barriers for
thread execution. Instead, by analyzing po-
tential data dependencies in the model, RISC
introduces out-of-order PDES by breaking the
simulation-cycle barrier and as well as letting
data-independent threads run out-of-order and
in parallel [3].

Therefore, we expect that simulation time
using the Accellera reference simulator will be
longer than using PDES, and that simulation
time using PDES will be longer than that us-
ing OoO PDES on multi-core processors.

2.2 H2: Newer RISC versions show
higher speedup

RISC has been under continuous development
since its introduction in 2014 at the Center
for Embedded and Cyber-physical Systems at
UCI, and each release adds various new fea-
tures and makes the infrastructure more ef-
ficient and stable. The latest RISC versions
available for this work are: V0.5.1, V0.5.2,
V0.5.3 [9], V0.6.0 and V0.6.1 [10]. Since
TLM-2.0 support is added from V0.5.3, TLM-
2.0 models are only built and simulated using
the three latest RISC versions since older ver-
sions do not support TLM-2.0 modeling style..

We expect that the performance of every
RISC version continuously improves and that
therefore, the latest version shall deliver the
best performance in terms of simulator run
time.



2.3 H3: Less restrictive transaction
types enable higher parallelism

TLM-1.0 transactions are modeled with
buffers inside a channel. SystemC offers
a predefined primitive channel sc_fifo
that implements read and write access
functionality. Write function in turn calls
request_update () function that causes
the scheduler to queue an update request
for the current primitive channel. Calls to
request_update () run  sequentially
in the scheduler and degrade simula-
tion performance. Therefore, designing
a customized channel without calls to
request_update () can improve the
simulation performance. Furthermore, using
channels with customized buffer sizes can
increase the parallelism available in the model.
Lastly, channels that do not induce any wait
statement for write access can increase the
simulation performance even further.

2.4 H4: Abstract TLM-1.0 carries less
workload than memory accurate
TLM-2.0

As previously known, the higher abstraction
level of a model, the faster its simulation will
be. We also know that TLM-2.0 standard
provides the facilities such as core interfaces,
sockets, generic payload and base protocol
for modeling memory-mapped buses with ex-
plicit support for timing annotation. The mem-
ory accuracy exhibited in the TLM-2.0 stan-
dard incurs more overhead to simulation com-
pared to the abstract TLM-1.0 model. Adding
these extra implementation details to a model
may slow down simulation speed for TLM-
2.0 models. Hence, we expect simulation time
for TLM-2.0 models to be longer than for the

TLM-1.0 models.

3 SystemC TLM modeling of
GoogLeNet

We now describe how we design SystemC
TLM-1.0 and TLM-2.0 models of GoogLeNet.

3.1 Reference Model using OpenCV

Our SystemC models of GoogleNet are im-
plemented based on an original model using
OpenCV 3.4.1, a library of computer vision
functions mainly aimed for real-time applica-
tions written in C/C++ [12]. The OpenCV li-
brary was originally developed by Intel and is
now free for use under the open-source BSD
license. OpenCV uses an internal data struc-
ture to represent an n-dimensional dense nu-
merical single-channel or multi-channel array,
a so called Mat class. Therefore, our models
use the Mat data type to store images, weight
matrices, bias vectors, feature maps, and class
scores. This becomes practical while interact-
ing with various OpenCV APIs.

Furthermore, OpenCV provides an inter-
face class, Layer, that allows for construc-
tion of constituent layers of neural networks.
A Layer instance is constructed by passing
layer parameters and is initialized by storing
its learned parameters. A Layer instance
computes an output Mat given an input Mat
by calling its forward method. We refer to
this class as OpenCV layer for the rest of
this paper. OpenCV also provides utility func-
tions to load an image and read a Caffe model
from .prototxt and .caffemodel files.



3.2 TLM Modeling Goals

Given the OpenCV primitives, we set three de-
sign goals in the early stage of model develop-
ment [1] as follows:

1. Generic layers: Since GoogleNet is
composed of only a handful of layer
types, the layers shall be parameterized
by their attributes using a custom con-
structor. For example, a pooling layer
shall be parameterized by its type (max-
pooling or average pooling), its kernel
size, its stride, and the number of padding
pixels.

2. Self-contained layers: Each layer shall
implement the functionality it requires
without the need of an external scheduler
to load its input or in case load its param-
eters. For example, a convolution layer
shall have a dedicated method to load its
parameters (weight matrix and bias vec-
tor) used only at the time of construction.

3. Reuseable and modular code: Since most
CNNSs share a common set of layers, the
code shall be structured in a way to enable
the feeding of any kind of CNN with min-
imum effort. For example, the layer im-
plementation shall be organized as code
template blocks and the SystemC model
shall be autogenerated using only the net-
work model defined by Caffe model files.

Note that these goals will allow us to easily
generate SystemC models also for other Caffe
CNNs. At the same time, the models generated
will have a well-organized structure that en-
ables static analysis. Specifically, this allows
us to perform parallel simulation with RISC
[9][10], as described in Section 3.8 below.

Furthermore, to have models with practical
significance, we set three extra goals for TLM
modeling:

4. Maximum throughput: Model shall pro-
cess as many images as possible in a
shortest possible amount of time.

5. Maximum parallelism:  Model shall
demonstrate maximum parallelism.

6. Minimum buffer: Model shall use mini-
mum number of buffers.

3.3 TLM-1.0 Layer Implementation

Each layer in the CNN is defined as a
scmodule with one input port and one
output port. Ports are defined as sc_port and
are parameterized either by sc_fifo_in if
and sc_fifo_out_if primitive interface
classes or our own defined interface classes,
mat_inif and mat_out_if. These
user-defined interfaces are derived from
sc.interface and declare read and
write access methods with a granularity of
Mat. The choice of Mat for a granularity of
port parameterization simplifies the design by
focusing on the proper level of abstraction
at this stage of modeling. Depending on the
communication mechanism, the appropriate
interface class is derived and plugged in
channel declaration. As an example, the
module definition of the first convolution layer
convl_7x7_s2 is shown in Listing 1.

As shown in lines 38-50 of Listing 1, each
module has several attributes that are all de-
fined as data members inside the class defini-
tion. For example, a convolution module is de-
fined by its name, number of outputs, number
of pixels for padding, kernel size, and number
of pixels for stride. If a layer also has learned



parameters, two Mat objects are defined as
member variables to store the weight matrix
and the bias vector. In that case, their val-
ues are initialized at the time of module con-
struction. For example, a convolution module
has a designated load method that reads pre-
trained Caffe model files and stores weight and
bias values in the weights and bias mem-
ber variables.

Listing 2 shows the definition of the main
method for conv1_7x7_s2 in TLM-1.0 mod-
eling style. Main method contains an end-
less loop that continuously reads the input port,
processes the received data and writes the re-
sults to the output port.

Each module has also a main thread that
continuously reads its input port, computes re-
sults, and writes those to its output port. Data
processing is handled by the run method.
Here, we rely on OpenCV to perform the com-
putations. The run method creates an instance
of OpenCV layer and calls its forward
method by passing references to input Mat and
output Mat objects.

As an example, Figure 3 illustrates the
module defining the first convolution layer in
GoogleNet. The input to the module is a Mat
object containing 3 color channels of 224x224
pixels of the input “space shuttle” image and
the output is another Mat object containing 64
feature maps with the size of 112x112 pixels.

3.3.1 Channel variants

We develop multiple channels to explore par-
allelism available in the model. These chan-
nels differ in (1) their way of interacting with
the scheduler and (2) their buffer sizes. We
classify the channels based on their interaction
mechanism with the scheduler into three cate-
gories as follows:

1. Blocking channel: In a blocking channel,
read access suspends once the buffer is
empty and write access suspends once the
buffer is full.

2. Non-blocking channel: In a non-blocking
channel, write access does not suspend
and continuously accepts new elements to
place in its buffer. If the buffer is already
full, there is a risk that the buffer will be
overwritten with a new data. On the other
hand, read access suspends once there is
no element in the buffer to read.

3. SystemC FIFO channel: This channel is
built on the predefined primitive chan-
nel sc_fifo with default read and write
member functions to access elements in
the buffer.

As a primitive channel, sc_fifo, calls the
request_update () function to queue an
update request in the scheduler. In contrast,
the user-defined channels, blocking and non-
blocking channels, do not have any call to
request_update (). Hence, they do not
impose any sequential execution on the sched-
uler. Furthermore, a non-blocking channel
does not induce any wait statement in its write
access function, so it increases the possibility
that an out-of-order PDES simulator schedules
more aggressively.

Buffer size in a channel is another factor
that affects the level of parallelism available
in the model. The more buffers that exist in
the channels, the more possibilities there are
for pipelining of images in the network. How-
ever, increasing buffer sizes of all channels
without thorough inspection of the model does
not have any practical significance. In that re-
gard, GoogLeNet can also be seen as stacks



5

16

const int convl_7x7_s2_t::weight_sz[4]

const int convl_7x7_s2_t::bias_sz [4] = {1, 1, 1, 64};
class convl_7x7_s2_t : sc_module
{
public:
sc_port<mat_in_if> blob_in0;
sc_port<mat_out_if> blob_outO0;
SC_HAS PROCESS (conv1_7x7_s2_t);
convl_7x7_s2_t(sc_module_name n_,
String name._,
unsigned int num_output_,
unsigned int pad_,
unsigned int kernel_size_,
unsigned int stride_ ,
unsigned int dilation_ ,
unsigned int group-)
sc_module(n_) ,
name (name_) ,
num-_output(num-_output_),
pad (pad_)
kernel_size (kernel_size_),
stride (stride_) ,
dilation (dilation_),
group (group.-) ,
weights (4, weight_sz, CV_.32F, weight_data),
bias (4, bias_sz, CV_32F, bias_data)
{
load () ;
SC_THREAD ( main )
}
void load () ;
void main() ;;
void run(std:: vector <Mat> &inpVec,
std :: vector <Mat> &outVec) ;
private:
String name ;
unsigned int num_output;
unsigned int pad;
unsigned int kernel_size;
unsigned int stride ;
unsigned int dilation ;
unsigned int group;
static const int weight_sz[4];
unsigned int weight_data[64+3%7+7];
static const int bias_sz[4];
unsigned int bias_data [64];
Mat weights ;
Mat bias ; 8

Listing 1: TLM-1.0 conv1_7x7_s2 module definition

{64, 3. 7, 7};



1 void conv1_7x7_s2_t::main ()

{

std :: vector<Mat> inpVec (1), outVec(l);

5 while (1)

6 {

7 inpVec [0] = blob_in0—>read () ;
8 run (inpVec, outVec);

9 blob_out0—>write (outVec[0]) ;
10 }

Listing 2: TLM-1.0 conv1_7x7_s2 main method definition

convyl/7x7_s2

A
— O

+ load()
+ main()

\

| +run(Mat &mage_in, Mat &feature_out) |

Figure 3: Schematic view of a SystemC convolution module

of layers group together under a so called “in-
ception module”. Each inception module con-
tains multiple convolution, ReLU and pooling
layers with different attributes. For example,
the first inception module in GoogLeNet is de-
picted in Figure 4. As shown with down ar-
rows, each inception module has four parallel
tracks with various workloads.

Given the TLM modeling goals, channels
with double buffers increase the parallelism in
the model. While the producer layer writes to

the front buffer, the consumer layer simultane-
ously reads the data from the back buffer, and
vice versa. To maintain a continuous stream
of images in every delta cycle, the channels
connected to the output layer of the inception
module in branch 0 and branch 3 require ex-
tra buffers. Therefore, by a adopting double
buffering scheme, the channels connected to
the output layer require 4, 2, 2 and 3 buffers
in tracks 0, 1, 2 and 3 respectively.

In case of modeling with non-blocking
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Figure 4: Inception module in GoogLeNet

channels, channels should have enough free
slots to avoid any buffer overflow. Since the
main threads in layers run indeterministicly, it
can happen that the producer layer writes to
the channel before the consumer layer starts
to read the content of the channel from the
previous delta cycle. This requires the chan-
nel to have enough free slots for reading the
content of the current delta cycle and also the
previous delta cycles. In the worst case sce-
nario, all producer layers write to the chan-
nel before consumer layers read the channel.
To dimension the channel sizes for this worst
case scenario, non-blocking channels should
have space for the maximum total number of
producer layers in the entire model plus one,
namely 63 elements.

Given the channel types and channel sizes,
we develop four variants of TLM-1.0 mod-

10

els listed in Table 2. First, we start with a
TLM-1.0 model using sc_fifo with buffer
size of one. Due to its simplicity, measure-
ments for this model haven’t been taken. Sec-
ond, we identify that double buffers and ex-
tra buffers inside the inception layers can in-
crease the available parallelism. Hence, we
develop t1ml_sc_mul. Third, we use our
own user-defined channels (blocking chan-
nel) with one single element to avoid calls
to request_update () in the write access
function (t1ml_blk_min). Fourth, we in-
crease the number of buffers in blocking chan-
nels and instantiate those channels in the
model (t1ml blk mul). Fifth, we replace
blocking channels with non-blocking channels
with buffer size of 63 elements to remove any
induced wait statements in write access func-
tion (t 1ml_nb_max).



Table 2: TLM-1.0 models summary

Model name ‘ Description

tim1_blk_min

Blocking channels with buffer size of 1

tim1_blk_mul

Blocking channels with double buffers and
(4, 2, 2, 3) buffers in the output layer of inceptions

tlm1_sc_mul

SystemC FIFO channels with double buffers and
(4, 2, 2, 3) buffers in the output layer of inceptions

tlm1_nb_max

Non-blocking channels with buffer size of 63

3.4 TLM-2.0 Layer Implementation

In TLM-2.0 modeling of GoogLeNet, input
and output ports are replaced with initia-
tor sockets connected to target sockets on a
shared memory. The communication is re-
alized through memory-mapped modules and
each module has a dedicated address space in-
side the memory to read and write buffers. Fig-
ure 5 shows the connections of initiator sock-
ets of the first convolution and ReL.U layers in
GooglLeNet to target sockets of shared mem-
ory.

To notify the consumer layer when the pro-
ducer fills the shared buffer, two handshake
protocols are devised: (1) feed forward (2)
double. In feed forward, the producer sim-
ply notifies the consumer via an event once
the buffer is filled. In double handshake, the
consumer reads the buffer when the producer
has sent a notification for a new buffer as
well as when the consumer is ready to pro-
cess that new buffer. Figure 6 illustrates the
event connections between convl1/7x7_s and
convl/relu_7x7 layers in both feed forward and
double handshakes. Feed forward handshake
is fragile and only works with Accellera sim-
ulator and the synchronous mode of a paral-
lel simulator but double handshake works with
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all simulation modes including non-prediction
and out-of-order.

As event connection is depicted in Figure
6, to read a new buffer, conv1/7x7_s2 mod-
ule waits for notification from the previous
layer via a strobe event (inO_stb) and ensures
convl/relu_7x7 is also ready to accept the pro-
cessed data via its ready event (outO_ready).
Once conv1/7x7_s2 receives both notifications,
it reads the data, processes, and writes to a
buffer for convl/relu_7x7 to fetch. Finally,
conv1/7x7_s2 notifies convl/relu_7x7 that the
new data is ready to process via strobe event
(out0O_stb) and also notifies the previous layer
via ready event (inO_ready) to signal that it
is ready to accept a new buffer to read. As
an example, the module definition of the first
convolution layer convl_7x7_s2 in TLM-
2.0 modeling style is shown in Listing 3. Table
3 summarizes the properties of two developed
TLM-2.0 models.

Listing 4 shows the definition of the main
method for conv1_7x7_s2 in TLM-2.0 mod-
eling style. Main method contains an end-
less loop that continuously reads the input data
from a buffer in the memory, processes and
writes the result back to the memory. First, the
module waits for a start event from the previ-



Figure 5: TLM-2.0 model connections

startO

in0_stb

in0_ready

done0

outO_stb

out0_ready

Figure 6: (Top) feed forward (bottom) double handshake mechanism in TLM-2.0 model

ous layer to ensure that the input data is in the
memory (line 18). Then, it generates a read
transaction using a generic payload to read the
input buffer from the memory (lines 20-28).
After processing the input data, it generates a
write transaction using the same generic pay-
load to write the result to the output buffer in
memory (lines 36-44). Finally, it notifies the
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next layer via a done event that its input data is
ready to fetch (line 50).

3.5 Netspec Generator

Each SystemC module has specific attributes
based on its layer type and its correspond-
ing TLM model. Writing module declara-



I const int convl_7x7_s2_t::weight_sz[4] {64, 3, 7, 7};

> const int convl_7x7_s2_t::bias_sz[4] = {1, 1, 1, 64};
4 class convl_7x7_s2_t : sc_module

5 {

6 public:

7 simple_initiator_socket<convl_7x7_s2_t> port;

8 sc_event &in0O_stb ;

9 sc_event &in0O_ready ;
10 sc_event &outO_stb ;

) sc_event &outO_ready ;

13 SC_HAS_PROCESS(convl_7x7_s2_t);
15 convl_7x7_s2_t(sc_module_name n_,

16 String name._,
17 unsigned int num-output._,

18 unsigned int pad_,

19 unsigned int kernel_size_,
20 unsigned int stride_ ,

21 unsigned int dilation_ ,

2 unsigned int group-_,

23 unsigned int num_-inO_buf_,
24 unsigned int num_out_buf_,
25 sc_event &in0_stb_ ,

26 sc_event &inO_ready_,

27 sc_event &outO_stb_,

28 sc_event &outO_ready-)

29 sc_.module(n.),

30 name (name_) ,
31 num-_output(num-_output_),

32 pad(pad_),

33 kernel_size (kernel_size_),

34 stride (stride_),

35 dilation (dilation_),

36 group (group-),

37 num_in0O_buf(num_inO_buf_),

38 num_out_buf(num_out_buf_),

39 in0_stb (in0_stb_),

40 inO_ready (in0O_ready.),

41 outO_stb (outO_stb_),

4 outO_ready (outO_ready._),

43 weights (4, weight_sz, CV_.32F, weight_data),
44 bias (4, bias_sz, CV_32F, bias_data)
s A

46 load () ;

Listing 2: TLM-2.0 conv1_7x7_s2 module definition
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62

SC_THREAD ( main )

}

void main() ;
void run(std

: vector <Mat> &inpVec,

std :: vector <Mat> &outVec) ;

void load () ;

private:

String name;
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
static const
unsigned int
static const
unsigned int
Mat

Mat

unsigned int
unsigned int
static const
unsigned int
static const
unsigned int

num_output;

pad;

kernel_size ;

stride ;

dilation ;

group;

int weight_sz[4];
weight_data [64%3%7%7];

int bias_sz[4];
bias_data[64];
weights;
bias ;
num_inO_buf;
num_out_buf;

int in0O_sz [4];
in0_data[l1%3%224%224];

int out_sz[4];
out_data[l1+64x112%x112];

Listing 3: TLM-2.0 conv1_7x7_s2 module definition (cont)

Table 3: TLM-2.0 models summary

Model name | Description

tlIm2_nil_mul | Double buffers and (4, 2, 2, 3) buffers in the output layer of inception

with feed forward handshake

tlm2_db_mul | Double buffers and (4, 2, 2, 3) buffers in the output layer of inception

with double handshake

tions by hand for 142 SystemC modules for
each of the six TLM models is a tremen-
dously error-prone and tedious task. Further-
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more, declaring all modules and interconnec-
tions in the top level Googl.eNet module, in-
stantiating them with the correct parameters,



{1, 3, 224, 224};
{1, 64, 112, 112};

I const int convl_7x7_s2_t::in0_sz[4]
> const int convl_7x7_s2_t::out_sz[4]

i+ void conv1_7x7_s2_t:: main ()

5 {

6 std :: vector <Mat> inpVec (1), outVec(1l);

7 tlm:: tlm_generic_payload trans;

8 sc_core ::sc_time delay = sc_core :: SC.ZZERO_TIME;
9 unsigned int i0 = 0;

10 unsigned int j = 0;

) unsigned int inO_addr;

12 unsigned int out_addr;

13 inpVec [0] = Mat(4, inO_-sz, CV_32F, in(O_data);
14 outVec[0] = Mat(4, out_sz, CV_32F, out_data);

16 while (1)

17 {

18 wait(start0);

19 in0_addr = CONV1.7X7_S2_INO_BUFO_ADDR + i0 = CONVI1_.7X7_S2_INO_-BUF_SIZE;
20 trans .set_command ( tlm : : TLM_ READ.COMMAND) ;

21 trans .set_address (inO_addr);

2 trans .set_data_ptr (inpVec [0]. data);

23 trans .set_data_length(sizeof(inO_data));

24 trans .set_streaming_width (sizeof(in0O_data));

25 trans .set_byte_enable_ptr (0);

26 trans .set_dmi_allowed (false);

27 trans .set_response_status (tlm :: TLM_INCOMPLETE_RESPONSE) ;
28 port—>b_transport(trans , delay);

29 if (trans.get_response_status () != tlm :: TLM_OK_RESPONSE)
30 {

31 SC_REPORT_FATAL (name () , trans.get_response_string ().c_str());

i0 = (i0 + 1) % num_in0O_buf;
34 run (inpVec, outVec);
35 out_addr = CONV1_.7X7_S2_.OUT_BUFO_ADDR + j % CONVI1_.7X7_S2_OUT_BUF_SIZE ;
36 trans .set_command ( tlm : : TLM_WRITE.COMMAND) ;
37 trans .set_address (out_addr);

38 trans .set_data_ptr (outVec[0]. data);
39 trans .set_data_length (sizeof(out_data));
40 trans .set_streaming_width (sizeof (out_data));
41 trans .set_byte_enable_ptr (0);
12 trans .set_dmi_allowed (false);
43 trans .set_response_status (tlm :: TLM_INCOMPLETE_RESPONSE) ;
44 port—>b_transport (trans , delay);
15 if (trans.get_response_status () != tlm :: TLM_OK_RESPONSE)
46
47 SC_REPORT_FATAL (name () , trans.get_response_string ().c_str());
18 }
49 j = + 1) % num_out_buf;
50 done0.notify (sc_core :: SCZERO_TIME) ;
51 }
52 }
15

Listing 4: TLM-2.0 conv1_7x7_s2 main method definition with feed forward handshake



binding either queues or sockets to the right
modules, and in the case of TLM-2.0 mod-
els, connecting events between neighboring
modules, are all laborious tasks. Therefore,
we develop a generator tool to automatically
extract the network architecture from a tex-
tual protocol buffer .prototxt and the net-
work learned parameters from a binary pro-
tocol buffer .caffemodel. The genera-
tor, called netspec, is written in Python
and uses Python interface to Caffe library,
pyCaffe, in order to read .caffemodel
and .prototxt files to construct its inter-
nal data representation of the neural network.
Net spec then uses this data structure to gen-
erate SystemC codes for all the modules, as
well as the top level GoogleNet module with
all its interconnection.

Netspec generates both TLM-1.0 and
TLM-2.0 models based on modeling type,
buffer architecture and channel type. In the
case of TLM-2.0 models, net spec generates
an extensible memory module with an arbi-
trary number of target sockets. It also automat-
ically generates an address map file based on
buffer architecture and supports memory ad-
dress generation for multiple buffers for any
layer in the network.

3.6 Validation by Simulation

A top level test bench validates our
GoogleNet SystemC model against the
reference OpenCV implementation.  The

top level test bench instantiates our Sys-
temC GoogleNet module which contains
all modules inside the network with all the
interconnection as Design under Test (DUT).
It also instantiates a stimulus module to feed
the design with images of size 224x224 with
three color channels, and a monitor module
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to read the final class scores and output the
label with the maximum probability. Figure 7
(a) shows TLM-1.0 top-level test bench that
stimulus and monitor are connected using
FIFO with granularity of Mat. And Figure 7
(b) shows TLM-2.0 top-level test bench that
stimulus and monitor are instead connected
via sockets to shared memory inside DUT.

To measure the performance of the model,
our test bench can also be configured to con-
tinuously feed in a stream of images. In that
case, a checker module is plugged inside the
monitor to check the correct class and its prob-
ability against the reference model.

3.7 Parallelism

Stimulus module aims to feed the models ev-
ery delta cycle to achieve a maximum through-
put. The modules inside t lm1_blk min and
t1ml blk_mul models can only process data
every other delta cycle. That simply means ev-
ery module is idle every other cycle and this
reduces the throughput to half of the theoreti-
cal maximum throughput. The t 1m1_nb _max
model accepts a new image every delta cycle
but this comes with a high price of 63 buffers
inside all channels. The t 1m1_sc_mul mod-
ules can process data every delta cycle with
minimum number of buffers in channels.

The modules inside t1m2_ nil mul and
t1lm2_db_mul models can accept new in-
put every delta cycle. These models show
maximum parallelism with minimum possi-
ble buffers inside the memory. Therefore, our
TLM-2 models can achieve the maximum the-
oretical throughput and have maximum paral-
lelism with minimum number of buffers.
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Figure 7: (a) TLM-1.0 (b) TLM-2.0 top-level test bench

3.8 Modular Source File Structure
and Build Flow

Following good practices of SystemC coding,
we place each module definition in a header
file . hpp and the corresponding module im-
plementation in a .cpp file. Also, to ex-
plore parallelism existing in the GoogLeNet
system level model using RISC, we decide
to split the implementation into two sepa-
rate .cpp files. One .cpp file contains
only methods that directly call OpenCV APIs
(module_name_cv.cpp) and the other only
contains the main method implementation

that does not directly interact with OpenCV
APIs (module_name.cpp).  This prevents
RISC from unnecessarily analyzing and instru-
menting the code inside the OpenCV library,
by only feeding object files generated from CV
parts and not including OpenCV library source
code.

First .caffemodel and .protoxt files
are fed to the netspec tool to generate
code for convolution modules and the over-
all GoogLeNet module. Once these mod-
ules are generated, all (module_name.cpp)
and (module_name _cv.cpp) files are passed to



the GNU compiler to generate the object files.
Then, the object files are passed all together to
the GNU linker with OpenCV and SystemC li-
braries to obtain the final executable. Running
the executable requires the Caffe model files
to load convolution modules with weights and
bias values and also a synset file to read the
class names.

The build flow specifically for RISC re-
quires minimum effort due to our early deci-
sion to split the OpenCV source code from
the model source code. Since RISC prefers
all the source code in a single file, all header
files and implementation files are merged into
one file. This flattened source code, with ob-
ject files generated from the OpenCV part of
the modules, is then fed to RISC which then
generates a multithreaded parallel executable.
Figure 9 depicts the build flow for RISC com-
pilation and execution.

4 Results

Our untimed TLM-1.0 and TLM-2.0 SystemC
models of Googl.eNet compile and simulate
successfully with Accellera SystemC 2.3.1.
For parallel simulation, we also compile and
simulate the models using the five latest RISC
versions. All simulation results match the
OpenCV reference model output.

4.1 Performance Setup

We use two different computer platforms to
benchmark the simulations. The specifications
of each platform are shown in Table 4. We
name platforms based on the number of log-
ical cores visible to the operating system. The
number of logical cores is double the number
of physical cores when hyper-threading tech-
nology (HTT) is enabled.
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To have reproducible experiments, the
Linux CPU scaling governor is set to ‘perfor-
mance’ to run all cores at the maximum fre-
quency, and file I/O operations i.e. cout are
minimized. SystemC 2.3.1 and OpenCV 3.4.1
are built with debugging information !.

Moreover, the OpenCV library can be built
with support for several parallel frameworks,
such as POSIX threads (pthreads), Thread-
ing Building Blocks (TBB), and Open Multi-
Processing (openMP), etc. We build OpenCV
with the support for pthread to run only on
a single thread. Lastly, the stimulus module
is configured to feed 500 images with size of
224x224 pixels to the model.

4.2 Simulation Results

For benchmarking, we measure simulation
time using Linux /usr/bin/time under Cen-
tOS. This time function provides informa-
tion regarding the system time, the user time,
and the elapsed time. Measurements are re-
ported for sequential SystemC simulation us-
ing Accellera SystemC compiled with POSIX
threads. Parallel simulations are performed us-
ing RISC simulators V0.5.1, V0.5.2, V0.5.3,
V0.6.0 and V0.6.1 in three simulation modes:
synchronous (SYN), non-prediction (NPD)
and out-of-order (OOO).

For reliability of the results, each measure-
ment is performed three times. Later, if the dis-
tance of each recorded value (user time, sys-
tem time and elapsed time) from its median is
greater than +2%, that entire measurement is
ignored. Among the remaining measurements,
the first one is selected for further analysis.

Tables 11 to 14 in Appendix A show de-
tailed results of measurements for four TLM-

10penCV has built with -O0 flag meaning (almost)
no compiler optimizations.
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Table 4: Platform specification

Platform name 4—(?0re g—core 16—cgre 32—.core
(Omicron) | (Omicron HT) (Phi) (Phi HT)
OS CentOS 7.6 | CentOS 7.6 CentOS 6.10 | CentOS 6.10
Intel Xeon Intel Xeon Intel Xeon Intel Xeon
CPU Model name | g5 154 E3-1240 E5-2680 E5-2680
CPU frequency 3.4 GHz 3.4 GHz 2.7 GHz 2.7 GHz
#cores 4 4 8 8
#processors 1 1 2 2
#threads per cores | 1 2 1 2

1.0 and two TLM-2.0 models for each simu-
lation mode on four different platforms. In
case of parallel simulations, we set the max-
imum number of concurrent threads allowed
by the RISC simulator to the number of avail-
able logical cores on each platform. Further-
more, RISC support for TLM-2.0 was added
from RISC V0.5.3.

4.3 Analysis

We analyze the measurement results obtained
from the simulations of six models using five
RISC versions on four hardware platforms.
We create various heat map tables to identify
the relevant results regarding each hypothe-
sis. The results confirm the initial hypothe-
ses described in Section 2 regarding simula-
tion modes, RISC versions, transaction types
and transaction level modeling.

4.3.1 H1: Simulation Modes

As discussed in Subsection 2.1, we expect
more aggressive simulation modes to exploit
more parallelism. Table 5 shows the heat map
table for gained speedup in each simulation
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mode compared to sequential simulation. Each
box in the table shows the simulation speedup
using different simulation modes on a specific
RISC version. Red color is used for minimum
speedup, green for maximum and a linear gra-
dient from red through yellow to green for val-
ues in between. For example, the top right
box shows the speedup for all six models us-
ing RISC VO0.6.1. As shown, switching from
SEQ simulations to SYN simulations increases
the speedup by 2.5x-2.8x and switching from
SYN to NPD and OOO increases speedup even
further to 2.8x-3.5x.

As mentioned earlier, TLM-2.0 support is
added to RISC from VO0.5.3. Hence, no
speedup values are reported for TLM-2.0 mod-
els with earlier versions and those cells are col-
ored gray. Furthermore, the t1m2 nil mul
model is not safe for out-of-order parallel sim-
ulation, so no speedup values for NPD and
OO0O simulations are reported for this model.
It is worth mentioning that in the case of the
t1ml_nb_max model, RISC VO0.5.1 runs the
model in SEQ mode even for parallel simula-
tions which is fixed from V0.5.3 and later ver-
sions.



As seen in all the boxes in Table 5, in al-
most all simulation models, the speedup im-
proves from sequential to synchronous, from
synchronous to non-prediction and from non-
prediction to out-of-order mode. The maxi-
mum speedup gained on the 4-core machine
(omicron) is 3.52x which is very close to the
optimal speedup of 4x. Comparing speedup
results between 4/8-core and 16/32-core ma-
chines shows hyper-threading technology is
largely ineffective for this application.

4.3.2 H2: RISC Versions

As explained in Subsection 2.2, we expect that
newer RISC versions show higher speedup.
Table 6 shows the heat map table for speedup
of out-of-order simulations compared to se-
quential simulations using the five latest RISC
versions. Each of the four main boxes is dedi-
cated to speedups of a specific platform. Look-
ing across the models in each box, the left-
most column shows the speedup for the old-
est RISC version (RISC V0.5.1) and the right-
most column shows the speedup for the latest
RISC version (RISC V0.6.1). Although sup-
port for TLM-2.0 models was added in RISC
V0.5.3, that specific version has a bug and
is unable to handle NPD and OOO simula-
tions. Hence, no speedup numbers are reported
for these two simulation modes under RISC
V0.5.3.

As shown in all the platforms, the lat-
est RISC version delivers the absolute best
speedup for TLM-2.0 models. For TLM-1.0
models, the latest RISC version also delivers
high speedup with a few exceptions. For ex-
ample, RISC V0.5.2 shows slightly better val-
ues than RISC V0.6.1 and the reason is unclear
for us at this time. Overall, continuous de-
velopment of the RISC project proves to con-
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tribute to higher speedup for our models.

4.3.3 H3: Transaction Types

As pointed out in Subsection 2.3, less re-
strictive transaction types enable higher par-
allelism. Table 7 shows the elapsed time of
the models in SYN, NPD and OOO simulation
modes using RISC V0.6.1. The models are
ordered based on time of development during
the project, with the earliest developed model
listed first.

Considering the 4-core machine (omicron),
the first model, t 1m1_sc_mul uses SystemC
FIFOs to implement channels. SystemC FIFO
forces synchronous simulation. Hence, the
elapsed time of t 1m1_sc_mul for SYN, NPD
and OOQ are almost identical as reflected in
the first row. The three other TLM-1.0 models
each use transactions that have more freedom
to run in parallel. The t 1m1 blk_min model
removes calls to request_update () func-
tion. The t1ml blk_mul model uses mul-
tiple buffers to increase the possibility for
pipelining in addition to removing calls to
request_update (). The tlml_nb_max
model removes wait statements in the write
function to let the OOO scheduler schedule
multiple threads together. As can be seen in the
second, third and the fourth rows, the elapsed
time for SYN simulation mode increases.
However, the OOO simulation exploits the in-
troduced parallelism and reports slightly better
elapsed time than t 1m1_sc_mul.

Table 8 shows the number of data con-
flicts and event notifications in all four TLM
1.0 models generated by the RISC com-
piler.  As illustrated, the tlml_sc.mul
model, that uses sc_fifo and has calls to
request_update (), does not have any
event notifications. In contrast, the other



Omicron risc_v0.5.1 risc_v0.5.2
Speedup SEQ SYN NPD OOO SEQ SYN NPD OOO
tim1_blk_min 212 246 213 244 292 292
tim1_blk_mul 219 254 227 245 311 3.16
tim1_sc_mul 2.87 2.86 2.88

tim1_nb_max

tim2_nil_mul

tim2_db_mul

Omicron HT risc_v0.5.1 risc_v0.5.2
Speedup SEQ SYN NPD OOO SEQ SYN NPD OOO
tim1_blk_min 2.09 245 214 252 2.90 2.80
tim1_blk_mul 212 255 217 254 292 2091
tim1_sc_mul 3.04 3.03 2.99

tim1_nb_max

tim2_nil_mul

tim2_db_mul

Phi risc_v0.5.1 risc_v0.5.2
Speedup SEQ SYN NPD OOO SEQ SYN NPD OOO
tim1_blk_min 2.60 3.46 284 3.57 452 451
tim1_blk_mul 272 349 287 3.71 473 479
tim1_sc_mul

tim1_nb_max

tim2_nil_mul

tim2_db_mul

Phi HT risc_v0.5.1 risc_v0.5.2
Speedup SEQ SYN NPD OOO SEQ SYN NPD OOO
tim1_blk_min 2.68 3.44 264 344 441 432
tim1_blk_mul 2.81 3.44 279 3.73 457 458
tim1_sc_mul 478 4.80 4.78 4.88 4.84 4.89
tim1_nb_max

tim2_nil_mul

tim2_db_mul

SEQ SYN NPD 00O

risc_v0.5.3 risc_v0.6.0 risc_v0.6.1
SEQ SYN NPD OO0 SEQ SYN NPD OOO SEQ SYN NPD OOO
242 294 272 2.38 296 2.95 244 283 2.85
256 2.96 3.00 241 312 3.16 264 282 284
2.60 2.61 2.55 296 292 3.15 2.83 2.83 283
240 2.85 294 237 281 297 2.69 275 2.87
2251} 2.30 2.80
251 222 239 274 2.81 27901852
risc_v0.5.3 risc_v0.6.0 risc_v0.6.1
SEQ SYN NPD OOO SEQ SYN NPD OOO SEQ SYN NPD OOO
245 294 3.02 247 291 2.89 244 293 294
251 292 3.01 251 290 294 2.69 291 294
3.08 3.00 2,92 2.93 292
234 275 293 244 271 297 2.69 2.82 295
2.85 2.47 291
2.61 227 251 2.87 2.90 2.80[13153
risc_v0.5.3 risc_v0.6.0 risc_v0.6.1

SEQ SYN NPD OOO SEQ SYN NPD OOO

3.38 454 4.70 351 458 457 3.56| 4.87 4.89
3.68 4.78 4.86 3.79 481 4.83 410 4.86 4.87
463 515 4.68 480 4.78 4.85
3.26 4.08 4.54 341 4.18 465 4.06 4.28 4.70
4.08 3.26 4.82
3.13 2.80 301 4.14 481 4.80[1561
risc_v0.5.3 risc_v0.6.0 risc_v0.6.1
SEQ SYN NPD OO0 SEQ SYN NPD OO0 SEQ SYN NPD 00O
3.32 430 451 342 437 441 3.44/ 479 4.82
3.64 4.55 4.66 3.72 458 461 395 4.78 4.76
485 486 4.86 478 4.62 4.90 469 483 483
331 3.98 4.22 3.60 4.17 456 400 419 4.64
3.88 3.29 470
3.06 2.83 296 4.01 471 4.67//5:60

Table 5: Speedup heat map table for validating hypothesis H1

three models that use user-defined channels
and omit the request _update () function,
reports zero event notification.

As previously stated, the t1m2 nil mul
model is not safe for out-of-order parallel
simulation, so elapsed time for NPD and
OOO simulations are not reported for this
model.  While both t1m2 nil mul and
t1m2_db_mul models have similar elapsed
time in SYN simulation mode, OOO simula-
tion can again exploit a higher level of paral-
lelism introduced in t 1m2 _db_mul model and
reports the shortest simulation time. The exact
same pattern applies to the other TLM-1.0 and
TLM-2.0 models on machines with a higher
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number of cores.

Having models that use transaction types
with less restrictions enables out-of-order par-
allel scheduler to exploit the opportunities for
parallelism.

4.3.4 H4: TLM-1.0 vs TLM-2.0

As noted in Subsection 2.4, abstract TLM-1.0
models are expected to carry less workload
than memory accurate TLM-2.0 models. Table
9 shows the heat map table for elapsed time of
all six models in sequential simulation mode.
The last two rows for TLM-2.0 models indi-
cate slightly longer elapsed time than the first



Omicron
Speedup
tim1_blk_min
tim1_blk_mul
tim1_sc_mul
tim1_nb_max
tim2_nil_mul
tim2_db_mul

risc_v0.5.1

000 000

Omicron HT
Speedup
tim1_blk_min
tim1_blk_mul
tim1_sc_mul
tim1_nb_max
tim2_nil_mul
tim2_db_mul

risc_v0.5.1
000
2.14
2.17

000

Phi

Speedup
tim1_blk_min
tim1_blk_mul
tim1_sc_mul
tim1_nb_max
tim2_nil_mul
tim2_db_mul

risc_v0.5.1

Phi HT
Speedup
tim1_blk_min
tim1_blk_mul
tim1_sc_mul
tim1_nb_max
tim2_nil_mul
tim2_db_mul

risc_v0.5.1

risc_v0.5.2
risc_v0.5.2
risc_v0.5.2

risc_v0.5.2
000 000 (e]e]0] 000

2.64
2.79

risc_v0.5.3
000

risc_v0.6.0
000

risc_v0.6.1
000

27482

risc_v0.6.0
000

risc_v0.5.3
000

risc_v0.6.1
000

risc_v0.5.3

risc_v0.6.0
000 000 (e]e]e] 000

2.84
2.87

risc_v0.6.1
000

414 IS

risc_v0.5.3 risc_v0.6.0 risc_v0.6.1

000

4.01 [NNS60

Table 6: Measurement results for validating hypothesis H2

four rows for TLM-1.0 models. This could
come from the difference in number of mem-
ory copies in TLM-1.0 and TLM-2.0 mod-
els. TLM-1.0 models use shallow copy for as-
signing Mat objects in reading and writing to
channels. However, TLM-2.0 models use two
memory copies to read and write from/to the

memory module. This can increase the work-
load for TLM-2.0 models in comparison with
TLM-1.0 models.

The user time in out-of-order parallel sim-
ulation can also be interpreted as another in-
dication for this hypothesis. Table 10 shows
the heat map table for the user time in OOO



Omicron risc_v0.6.1

Elapsed time SYN NPD 000
tim1_sc_mul 219.86 219.61 219.92
tim1_blk_min |88 22014 218.53
tim1_blk_mul 234.35 219.24 217.33
tim1_nb_max 231.45 226.15 217.14
tim2_nil_mul 223.63

tim2_db_mul 223.81 225.52 [NIT78138
Omicron HT risc_v0.6.1

Elapsed time SYN NPD 000
tim1_sc_mul 213.09 212.43 212.81
tim1_blk_min  [ESEEE 21218 211.9
tim1_blk_mul 230.06 212.43 210.49
tim1_nb_max 231.37 220.9 211.02
tim2_nil_mul 215.28

tim2_db_mul 217.06 217.3 8
Phi risc_v0.6.1

Elapsed time SYN NPD 000
tim1_sc_mul 197.02 197.93 194.9
tim1_blk_min  [JIS66IE  194.77 193.94
tim1_blk_mul 229.04 193.63 193.08
tim1_nb_max 231.79 220.32 200.29
tim2_nil_mul 198.31

tim2_db_mul 198.66 199.31 [NE70%4
Phi HT risc_v0.6.1

Elapsed time SYN NPD 000
tim1_sc_mul 213.09 212.43 212.81
tim1_blk_min [ GCI04 198.4 197.17
tim1_blk_mul 237.69 196.73 197.47
tim1_nb_max 235.12 224.39 202.9
tim2_nil_mul 203.29

tim2_db_mul 203.17 204.89 NIT7068

Table 7: Measurement results for validating hypothesis H3

simulation mode. Again, TLM-2.0 models have higher workload compared to TLM-1.0
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Table 8: Data conflicts and event notifications in TLM-1.0 models

Model Data | Event

(sc, mul) 1948 | 0

(blk, min) | 9202 | 1403

(blk, mul) | 9202 | 1403

(nb, max) | 4145 | 423

Omicron Omicron HT Phi Phi HT

Elapsed time SEQ SEQ SEQ SEQ
tim1l_sc_mul 622.2 622.02 945.24 943.98
tim1_blk_min 622.39 622.5 949.02 949.56
tim1_blk_mul
tim1l_nb_max 623.04 622.93
tim2_nil_mul
tim2_db_mul

Table 9: Measurement results for validating hypothesis H4 (SEQ)

models for 4-core (omicron) and 16-core (phi)
machines while hyper-threading technology
brings some irregularities to our observation in
8-core and 32-core machines.

In summary, Figure 10 shows a 3D dia-
gram of elapsed time for all six TLM mod-
els in OOO simulation mode on a 4-core ma-
chine. As illustrated, RISC releases gener-
ally keep improving the simulation speedup
for each model. For example, the earlier RISC
versions aren’t able to exploit the parallelism
available in in t1lml_nb_max but the later
RISC versions exploit the parallelism and re-
duce the elapsed time drastically. Of all the
models using the latest RISC version (front
row), the t 1m2_db_mul model has the high-
est level of parallelism and reports the shortest
simulation elapsed time.

5 Conclusion

In this report, we described six untimed
TLM-1.0 and TLM-2.0 SystemC models of
GooglLeNet using OpenCV 3.4.1 library. We
also developed a tool to automatically gener-
ate SystemC codes for all the TLM models
from Caffe model files. We successfully sim-
ulated the generated TLM models using Ac-
cellera SystemC 2.3.1 and the five latest RISC
versions.

Our extensive experimental results con-
firmed four hypotheses as follows: (1) more
aggressive simulation modes exploited more
parallelism, (2) newer RISC versions showed
higher simulation speedup, (3) less restrictive
transaction types enabled higher parallelism
and (4) abstract TLM-1.0 models carried less
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User time (0]0]0) 0]0]0)
tim1_sc_mul 662.16 NN0A0E
tim1_blk_min 659.50 1,043.16 927.68

tim1_blk_mul
tim1_nb_max

Omicron Omicron HT

659.37 926.36
1,029.79

tim2_nil_mul

tm2_db_mul |GG 0050 SR Se 005105

700.00

600.00

500.00

400.00

300.00

200.00

100.00

0.00

Table 10: Measurement results for validating hypothesis H4 (OOO)

Omicron Elapsed Time

risc_v0.5.1
risc_v0.5.2
risc_v0.5.3
risc_v0.6.0
risc_v0.6.1

tim1_blk_min  tim1_blk_mul timl_sc_mul timl_nb_max tim2_nil_mul tim2_db_mul

Figure 10: Elapsed time for OOO simulation on 4-core machine

1,250.82

1,185.25

M risc_v0.6.1
M risc_v0.6.0

risc_v0.5.3
W risc_v0.5.2
M risc_v0.5.1

workload than memory accurate TLM-2.0 are generated by each module. In our fu-

models.

5.1 Future work

ture work, we plan to investigate memory ac-

cess patterns in GoogLeNet and examine the
famous memory bottleneck problem, better

Memory accurate TLM-2.0 models enable de-

tailed

inspection of memory accesses which
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known as the von Neumann bottleneck [2].
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A  Measurements

Tables 11 to 14 shows detailed measurements of user time, system time, elapsed time and CPU
usage for all TLM models across four hardware platforms. Table 15 summarizes the elapsed time
part and illustrates the values in a heat map table.
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0¢

risc_v0.5.1 risc_v0.5.2 risc_v0.5.3
omicron_tim1_blk_min SEQ SYN NPD 000 SEQ SYN NPD 000 SEQ SYN NPD 000
Usr 620.56 660.94 650.73 666.70 621.17 692.02 704.69 707.60 621.23 711.89 701.44 703.50
Sys 131 0.99 0.88 0.99 1.40 1.16 113 1.16 134 117 1.03 1.09
Elapsed 621.74 29350 252.83 291.65 62242 255.08 213.34 213.10 622.44 256.73 211.37 229.22
CPU 100%  225%  257%  228% 100% 271%  330% 332% 100% 277% 332% 307%
Speedup 100 212 246 213 | 100 244 292 292
omicron_tim1_blk_mul SEQ SYN NPD 000 SEQ SYN NPD 000 SEQ SYN NPD 000
Usr 617.60 652.49 646.26 656.03 617.07 667.85 678.88 680.35 617.01 681.47 677.02 678.91
Sys 0.79 0.72 0.55 0.72 0.76 0.80 0.75 0.73 0.78 0.81 0.72 0.66
Elapsed 618.35 282.02 242.98 27254  617.77 25211 198.52 195.62 617.74 241.27 208.74 205.75
CPU 100% 231% 266% 240% 100%  265%  342%  348% 100% 282%  324%  330%
Speedup 100 219 254 227 | 100 245 311 316
omicron_timl_sc_mul SEQ SYN NPD 000 SEQ SYN NPD 000 SEQ SYN NPD 000
Usr 620.41 652.65 652.68 652.91 62095 665.06 665.00 665.17 621.00 660.74 660.01 660.92
Sys 1.32 0.85 0.85 0.84 134 0.84 0.89 0.83 1.35 0.93 0.97 0.91
Elapsed 621.60 216.92 217.18 215.92  622.16 180.03 181.27 180.80 622.22 239.29 238.70 244.04
CPU 100% 301% 300%  302% 100% 369% 367%  368% 100% 276% 276% 271%
Speedup 100 287 286 28 | 100 346 343 344
omicron_timl_nb_max SEQ SYN NPD 000 SEQ SYN NPD 000 SEQ SYN NPD 000
Usr 620.88 623.84 623.93 634.44 620.76 644.34 676.13 686.24 620.79 664.40 666.34 668.87
Sys 2.07 1.50 1.59 1.65 2.03 217 2.20 217 1.98 1.42 1.32 1.34
Elapsed 622.82 624.39 624.43 634.99 622.67 64461 676.32 686.41 622.64 259.93 218.67 21151
CPU 100% 100%  100%  100% 100% 100%  100%  100% 256% 305%  316%
Speedup 100 100 100 098 | 100 097 092 091
omicron_tlm2_nil_mul SYN
Usr 626.80 743.88
Sys 1.62 1.38
Elapsed 628.21 249.92
CPU 100%  298%
omicron_tim2_db_mul SEQ SYN
Usr 626.87 783.36
Sys 1.50 1.56

Elapsed
CPU

628.21 250.61
100%  313%

risc_v0.6.0
SEQ  SYN NPD 00O
620.82 702.35 697.30 697.50
1.37 118 1.10 111
622.05 260.88 210.47 211.17
100% 269% 331% 330%

SEQ SYN NPD 000
617.67 675.63 674.99 676.23
0.76 0.81 0.72 0.74
618.37 257.07 198.02 195.55
100% 263% 341%  346%

SEQ SYN NPD 000
620.65 661.63 661.39 662.67
1.28 0.92 1.03 0.92
621.81 209.76 213.27 197.24
100% 315% 310%  336%

SYN NPD
665.95 662.19
1.42 1.32
263.09 221.89
253%  299%

000
665.75
1.30
209.65
318%

NPD

SEQ
627.26 762.91 723.94 791.96

SYN 000
1.60 152 1.36 164
628.69 282.91 263.46 229.37
100%  270%  275%  345%

Table 11: Measurement results on 4-core host (‘omicron’, HT off)

risc_v0.6.1
SEQ  SYN NPD 00O
621.19 657.74 664.03 662.16
1.33 0.72 0.77 0.70
622.39 254.92 220.14 218.53
100% 258% 301%  303%

SEQ SYN NPD 000
617.46 655.94 661.49 659.50
0.70 0.53 0.57 0.64
618.11 23435 219.24 217.33
100% 280% 301%  303%

SEQ SYN NPD 000
620.96 658.96 659.09 659.37
137 0.73 0.66 0.71
622.20 219.86 219.61 219.92
100% 300%  300%  300%

SEQ SYN NPD
621.22 655.42 656.92
1.95 1.30 1.24
623.04 23145 226.15
100%  283%  291%

SYN NPD 000
626.69 671.50 685.86 684.32
1.63 0.79 0.93 1.10
628.15 223.81 225.52 178.33
100% 300%  304%  384%
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omicron_ht_tim1_blk_min
Usr

Sys

Elapsed

CPU

omicron_ht_tim1_blk_mul
Usr

Sys

Elapsed

CPU

omicron_ht_tim1_sc_mul
Usr

Sys

Elapsed

CPU

omicron_ht_tim1_nb_max
Usr

Sys

Elapsed

CPU

omicron_ht_tim2_nil_mul
Usr

Sys

Elapsed

CPU

omicron_ht_tim2_db_mul
Usr

Sys

Elapsed

CPU

SEQ
621.93
1.27
622.99
100%

SEQ
618.14
0.74
618.75
100%

SEQ

risc_v0.5.1
SYN
942.77
1.44
298.75
316%

SYN
925.08
1.01
291.86
317%

SYN

NPD
964.95
1.05
253.89
380%

NPD
960.56
0.74
242.36
396%

NPD

000
963.94
153
291.46
331%

000
939.24
0.93
284.67
330%

000

621.33 1,018.03 1,011.27 1,016.78

131
622.45
100%

SEQ
621.31
2,04
623.16
100%

1.01
204.63
497%

SYN
624.63
1.61
625.19
100%

0.99
205.66
492%

NPD
624.85
1.72
625.38
100%

1.05
208.08
489%

000
635.53
1.60
635.97
100%

risc_v0.5.2 risc_v0.5.3
SEQ SYN NPD 000 SEQ SYN NPD 000
621.73 999.94 1,058.72 1,050.32 621.78 1,021.09 1,063.58 1,073.60
1.30 1.49 1.65 161 131 i35 141 1.56
622.83 247.55 214.49 222.64 622.89 253.79 212.13 206.27
100% 404% 494% 472% 100% 402% 502% 521%
[ 100 252 290 280 | 100 245 294 302
SEQ SYN NPD 000 SEQ SYN NPD 000
618.49 979.55 1,038.15 1,041.82 617.60 1,002.62 1,043.16 1,054.66
0.72 1.03 0.92 1.04 0.71 0.97 0.93 1.01
619.08 243.30 21223 212.78 618.19 246.45 21191 205.71
100% 403% 489% 490% 100% 407% 492% 513%
SEQ SYN NPD 000 SEQ SYN NPD 000
621.53 1,066.66 1,065.72 1,066.94 621.46 1,065.49 1,062.53 1,065.16
1.24 111 1.15 1.09 1.24 1.08 1.14 1.10
622.57 187.23 186.69 187.68 622.51 187.30 186.47 187.20
100% 570% 571% 569% 100% 569% 570% 569%
SEQ SYN NPD 000 SEQ SYN NPD 000
621.35 644.87 67431 685.36 621.52 954.05 1,009.74 1,036.59
1.93 212 212 2.7 1.97 171 1.79 1.67
623.09 645.09 67441 685.51 623.30 266.84 226.43 212.93
100% 100% 100% 100% 100% 358% 446%

SEQ  SYN
626.96 1,097.06
147 195
628.25 220.29
100%  498%

SEQ  SYN
627.22 1,092.44
146 255
628.53 240.68
100%  454%

risc_v0.6.0

SEQ SYN NPD

000

622.08 1,014.96 1,048.22 1,041.64

.22
623.09
100%

1.56
252.19
403%

1.47
214.11

490%
SEQ

SYN NPD

1.51
215.72
483%

000

617.66 991.52 1,034.14 1,034.64

072 110  0.99
618.25 24673 212.84

100%  402%  486%
SEQ

SYN NPD

0.96
210.48
492%

000

621.58 1,052.32 1,026.09 1,025.00

alle) 122 1.10
622,57 186.82 202.18
100%  563%  508%

SYN NPD

SEQ
621.26
2.06
623.12
100%

1.72
230.27
429%

SEQ
626.74
151
628.07
100%
SEQ

SYN NPD

1.14
207.74
493%

000

986.26 1,030.52

1.69
209.96
491%

000

626.75 1,018.24 1,033.62 1,136.69

1.44 2.55
628.03 276.56
100%  369%

212
250.40
413%

Table 12: Measurement results on 8-core host (‘omicron’, HT on)

247
218.64
521%

risc_v0.6.1
SYN
983.85
111
255.23
385%

SEQ
621.37
1.26
622.5
100%

NPD 000
1050.81 1049.94
123 1.07
212.18
495%
SEQ SYN NPD 000
617.66 1007.26 1046.1 1043.16
0.76 0.93 0.79 0.76
618.36 230.06 212.43
100%  438%  492%

SEQ SYN NPD
620.97 1047.39 1046.86
al.aly/ 0.98 1.03
622.02 213.09 212.43
100%  491%  493%

SYN NPD 000
999.04 1015.64 1029.79
1.93 1.78
231.37  220.9
460%

SEQ
621
2.04
622.93
100%

627.22
1.48

1078.07
1.57
628.55 217.3 178.14
100% 496%  564%

1003.92
1.63
217.06
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phi_tim1_blk_min
Usr

Sys

Elapsed

CPU

phi_tim1_blk_mul
Usr

Sys

Elapsed

CPU

phi_tim1_sc_mul
Usr

Sys

Elapsed

CPU

phi_tim1_nb_max
Usr

Sys

Elapsed

CPU

phi_tlm2_nil_mul
Usr

phi_tim2_db_mul
Usr

Sys

Elapsed

CPU

SEQ
913.81
35.61
949.83
99%

SEQ
909.88
30.06
940.49
99%

SEQ
914.03
30.91
945.36
99%

SEQ
914.97
26.75
942.20
99%

risc_v0.5.1
SYN
990.71
42.69
365.08
283%

SYN

963.94
35.20

345.62
289%

SYN

923.94
36.58

190.69
503%

SYN

922.75
25.39

947.62
100%

NPD

000

922.07 1,006.85

42.29
274.79
350%

NPD

918.38
34.90

269.68
353%

NPD

921.60
33.09

189.44
503%

NPD

922.09
26.22

947.55
100%

42.50
334.44
313%

000

982.29
35.76

327.27
311%

000

924.86
36.37

191.53
501%

000

937.92
25.68

963.10
100%

SEQ
913.42
35.63
949.48
99%

SEQ

risc_v0.5.2
SYN
975.12
39.83
265.87
381%

SYN

NPD

(e]e]e}

995.18 1,001.43

41.10
210.10
493%

NPD

910.04 947.57 954.58

29.95

35.86

35.74

940.55 253.31 198.67

99%

SEQ
913.94
31.20

388%

SYN
934.61
36.54

498%

NPD
932.36
37.55

94556 178.83 178.86

99%

SEQ
914.79
26.67
941.96
99%

543%

SYN

542%

NPD

43.19
210.56
496%

000

959.41
36.15

196.37
506%

(e]e]e}

934.25
37.73

178.63
544%

(e]e]e}

949.77 991.12 1,006.49

26.84

27.42

27.22

974.97 1,016.86 1,032.04

100%

100%

100%

risc_v0.5.3 risc_v0.6.0
SEQ SYN NPD 000 SEQ SYN NPD 000 SEQ
912.87 1,010.71 999.08 1,009.74 913.35 1,000.79 989.01 990.46 912.58
35.63 4156 40.32 4253 35.69 40.03 40.76  41.69 35.93
948.99 280.89 209.14 201.75 949.43 27042 207.24 207.98 949.02
99%  374%  496%  521% 99%  384%  496%  496% 99%

SEQ SYN NPD 000 SEQ SYN NPD 000 SEQ

risc_v0.6.1
SYN
926.94
42.24
266.66
363%

SYN

NPD 000

932.96 931.58
40.54  38.59

194.77 193.94
499%  500%

NPD 000

910.13 967.67 956.76 962.93 909.69 960.18 952.36 952.88 909.30 923.00 929.81 927.68

29.67 36.25 3339 33.23 30.07 36.16 3554  33.65 30.19

34.97

34.79  32.90

940.33 255.86 196.66 193.62 940.39 248.06 19532 194.74 940.12 229.04 193.63 193.08

99%  392%  503%  514% 99%  401%  505%  506% 99%

SEQ SYN NPD 000 SEQ SYN NPD 000 SEQ

418%

SYN

498%  497%

NPD 000

913.77 937.37 936.55 938.14 914.30 934.04 93475 936.03 913.64 926.92 927.29 926.36

31.32 3832 3898 3944 3094 3657 3817 3935 31.16
94554 179.33 179.37 179.64 945.65 203.81 18345 201.74 945.24
99%  544%  543%  544% 99%  476%  530%  483% 99%

SEQ SYN NPD 000 SEQ SYN NPD (e]e]e} SEQ

91541 946.37 94340 951.34 915.08 945.07 940.29 943.26 914.65
26.64 2751 28.05 24.67 26.82 2850 27.82 29.65 26.80

942,55 289.54 231.26 207.42 94239 276.22 22526 202.45 941.93

99%  336%  420% 352%  429% 99%

SEQ SEQ SYN NPD SEQ
923.25 1,069.39 923.43 1,061.29 923.17
3285  38.77 3246  37.98 32.74
956.45 234.60 956.24 293.31 956.28
99%  472% 99%  374% 99%

SEQ SYN SEQ SYN NPD (e]e]e} SEQ

36.12
197.02
488%

SYN

38.78  38.20
197.93 194.90
488%  494%

NPD 000

926.81 923.79
28.04 26.33

220.32 200.29
433%

NPD 000

922.84 1,127.78 923.41 1,114.25 1,095.29 1,156.67 92313 942.78 950.11 957.86
3274 37.30 3248 3560 4090 39.68 3281 3874 3856 37.46
955.90 305.70 95625 34183 317.93 23076 95628 198.66 199.31 170.44
99%  381% 99%  336% 357% 518%  99%  494%  500%  583%
{100 280 301 414 | 100 481 480 561

Table 13: Measurement results on 16-core host (‘phi’, HT off)
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phi_ht_tim1_blk_min
Usr

Sys

Elapsed

CPU

phi_ht_tim1_blk_mul
Usr

Sys

Elapsed

CPU

phi_ht_tim1_sc_mul
Usr

Sys

Elapsed

CPU

phi_ht_tim1_nb_max
Usr

Sys

Elapsed

CPU

phi_ht_tim2_nil_mul
Usr

Sys

Elapsed

CPU

phi_ht_tim2_db_mul
Usr

Sys

Elapsed

CPU

risc_v0.5.1
SEQ SYN NPD e]e]e}
911.53 1,219.94 1,182.63 1,266.90

3580 5093 52.84  50.02
947.80 35327 275.53 359.65
99%  359%  448%  366%

SEQ SYN NPD (e]e]e}
909.22 1,157.43 1,179.46 1,172.94

29.85 4190 4242  41.05
939.65 334.12 27351 336.35
99%  358%  446%  360%

SEQ SYN NPD e]e]e}

912.14 1,267.97 1,261.70 1,262.00
31.48 46.58 46.55  46.99

944.04 197.64 196.87 197.40
99%  665%  664%  663%

SEQ SYN NPD e]e]e}
91352 92268 921.54 937.69
2735 25.68 2629 2542
941.43 948.41 947.93 963.17
99% 99% 99% 99%

risc_v0.5.2
SEQ SYN NPD (e]e]e}
911.55 1,168.40 1,172.84 1,160.68

3556 4841  47.56  47.37
947.50 275.81 214.72 219.24
99%  441%  568%  551%

SEQ SYN NPD 000
909.03 1,168.54 1,206.42 1,193.06

30.03 4188 4230 41.98
939.60 252.04 205.71 204.96
99%  480%  607%  602%

SEQ SYN NPD e]e]e}
912.57 1,289.98 1,292.03 1,292.56

31.09 4969 4936  49.62
94415 19355 195.01 193.07
99%  692%  687%  695%

SEQ SYN NPD e]e]e}

914.01 948.89 990.62 1,004.41
27.09 2715 2756  27.64

941.58 975.46 1,017.61 1,031.39
99%  100%  100%  100%

risc_v0.5.3
SEQ SYN NPD 000
911.94 1,188.08 1,193.80 1,212.90

35.77 49.04 4775  47.61
948.18 285.54 220.52 210.01
99%  433%  562%  600%

SEQ SYN NPD 000
909.23 1,161.98 1,225.45 1,240.29

29.81 4215 4258 4264
939.56 257.85 206.72 201.77
99%  466%  613%  635%

SEQ SYN NPD 000
912.37 1,265.77 1,262.97 1,287.68

30.75  49.31 4982  49.76
943.52 19474 19415 194.19
99%  675%  676%  688%

SEQ SYN NPD 000

913.95 1,134.40 1,174.70 1,166.17
35.46
236.79
511%

27.11
941.56

35.04
284.35

33.96
223.02
538%

risc_v0.6.0
SEQ SYN NPD 00O
911.33 1,171.70 1,167.93 1,161.55

35.86 46.02 46.12  44.92
947.59 276.92 216.94 215.02
99%  439%  559%  561%

SEQ SYN NPD (e]o]e}
908.85 1,166.31 1,214.16 1,210.00

29.98 41.03 4253 4145
939.38 25251 204.93 203.63
99%  478%  613%  614%

SEQ SYN NPD 000
913.01 1,278.21 1,301.01 1,278.01

30.80 47.88 4833  48.29
94431 197.73 20420 19257
99%  670%  660%  688%

SEQ SYN NPD (e]e]e}

913.51 1,135.21 1,173.54 1,180.90
27.44 3469 3466 34.17

941.47 261.19 225.66 206.30
99% 535%  588%

NPD (e]o]e}
921.89 1,181.62 1,183.58 1,264.67

33.88
956.19
99%  361%

4240 4261
323.45 238.25
379%  548%

Table 14: Measurement results on 32-core host (‘phi’, HT on)

risc_v0.6.1
SEQ SYN NPD (e]e]e}
912.78 1,174.97 1,264.60 1,259.13

36.33 5370 50.38 50.82
949.56 276.04 198.40 197.17
99%  445%  662%  664%

SEQ SYN NPD e]e]e}
909.23 1,181.75 1,262.49 1,250.82

29.86 4294 4352 42.28
939.61 237.69 196.73 197.47
99%  515%  663%  654%

SEQ SYN NPD 000
912.26 1,251.91 1,245.82 1,254.42

31.18 50.10 4865  49.30
943.98 201.13 19535 195.40
99%  647%  662%  667%

SEQ SYN NPD 000

913.59 1,196.01 1,167.82 1,185.25
26.83 40.03 3483 33.73

940.93 23512 224.39 202.90
99%  525%  535%  600%

NPD (e]e]e}
921.66 1,249.43 1,268.47 1,003.05
33.95 4442 40.75
956.01 203.17 204.89 170.68
99%  638%  640%  611%
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Omicron
Elapsed time
tim1_blk_min
tim1_blk_mul
tim1_sc_mul
tim1_nb_max
tim2_nil_mul
tim2_db_mul

Omicron HT
Elapsed time
tim1_blk_min
tim1_blk_mul
tim1_sc_mul
tim1_nb_max
tim2_nil_mul
tim2_db_mul

Phi

Elapsed time
tim1_blk_min
tim1_blk_mul
tim1_sc_mul

tim1_nb_max
tim2_nil_mul

tim2_db_mul

Phi HT
Elapsed time
tim1_blk_min
tim1_blk_mul
tim1_sc_mul
tim1_nb_max
tim2_nil_mul
tim2_db_mul

risc_v0.5.1 risc_v0.5.2 risc_v0.5.3 risc_v0.6.0
SEQ SYN NPD 000 SEQ SYN NPD 000 SEQ SYN NPD 000
29350 252.83 291.65 255.08 256.73 229.22

282.02 242.98 252.11 241.27
2. 8 239.29 238.70 244.04
259.93 21867 211.51 263.09
249.92 272.38
250.61 28291 263.46 229.37
risc_v0.5.1 risc_v0.5.2 risc_v0.5.3 risc_v0.6.0
SEQ SYN NPD 000 SEQ SYN NPD 000 SYN

252.19
246.73

298.75 253.89 24755 214.49
291.86 242.36

266.84
220.29
240.68

255.32
253.78
276.56  250.40

risc_v0.5.1 risc_v0.5.2 risc_v0.5.3 risc_v0.6.0

SEQ SYN NPD 000 SYN NPD NPD SYN
365.08 274.79 265.87 270.42

345.62 269.68 253.31 248.06

289.54 276.22

234.60 293.31
305.70 341.83 317.93
SEQ SYN NPD 000 SYN

285.54
257.85

353.27
334.12

261.19
290.94
337.94 32345 238.25

284.35
246.41
312.41

Table 15: Summary of elapsed time on 4, 8, 16, 32 core hosts

risc_v0.6.1
SYN NPD 000
254.92
234.35
219.86
231.45
223.63
223.81

risc_v0.6.1

231.37
215.28

217.06 217.30d78:34

risc_v0.6.1

231.79

235.12



B Visualization

Figure 11 shows a visualization of the TLM-1.0 SystemC model of Googl.eNet using visual tool,
a graphical SystemC module visualizer using RISC [11]. As shown in the Figure 11, the stimulus
module is placed at bottom left corner and the monitor is placed at top left corner. The majority of
Figure 11 is DUT which is enclosed in the light blue rectangle. DUT comprises of 142 modules
which are drawn in colored rectangles on the right side of the figure. Modules are connected to
their neighboring modules by channels that are drawn in line segments.

Figure 12 shows a visualization of TLM-2.0 SystemC model of GoogleNet using also visual
tool. Memory is drawn as green box at the bottom part of DUT and each arc shows a socket
connection between the memory and a module.
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Figure 11: Visualized SystemC TLM-1.0 model of Googl.eNet generated by visual [11]






