
24

OpenCV.js: Computer Vision Processing for the Web

Sajjad Taheri, Alexander Veidenbaum,
Alexandru Nicolau

Computer Science Department, Univerity of
California, Irvine

sajjadt,alexv,anicolau@uci.edu

Mohammad R. Haghighat
Intel Corp

mohammad.r.haghighat@intel.com

ABSTRACT
The Web is the most ubiquitous computing platform. There
are already billions of devices connected to the web that
have access to a plethora of visual information. Understand-
ing images is a complex and demanding task which requires
sophisticated algorithms and implementations. OpenCV is
the defacto library for general computer vision application
development, with hundreds of algorithms and efficient im-
plementation in C++. However, there is no comparable
computer vision library for the Web offering an equal level
of functionality and performance. This is in large part due
to the fact that most web applications used to adopt a client-
server approach in which the computational part is handled
by the server. However, with HTML5 and new client-side
technologies browsers are capable of handling more complex
tasks. This work brings OpenCV to the Web by making
it available natively in JavaScript, taking advantage of its
efficiency, completeness, API maturity, and its community’s
collective knowledge. We developed an automatic approach
to compile OpenCV source code into JavaScript in a way
that is easier for JavaScript engines to optimize significantly
and provide an API that makes it easier for users to adopt
the library and develop applications. We were able to trans-
late more than 800 OpenCV functions from different vision
categories while achieving near-native performance for most
of them.

Keywords
Computer vision; Web; JavaScript; Performance

1. INTRODUCTION AND MOTIVATION
JavaScript has rapidly evolved from a programming lan-

guage designed to add scripting capabilities to make static
web pages more appealing[1] into the most popular and ubiq-
uitous programming language deployed on billions of devices
[2, 3]. With emergence of new technologies such as WebVR
and WebRTC, the popularity of Internet Of Things(IOT)
platforms, and with the abundance of visual data, computer
vision processing on the web will have numerous applica-
tions.

However, computer vision usually has high computational
cost, due to 1) sheer amount of computation especially on
images with higher resolution and high frame rates, 2) com-
plex algorithms to process and understand the visual data,
3) real time requirements for interactive applications. JavaScript
is a scripting dynamically-typed language, which makes it
performance-wise inferior to languages such as C++. With

the web based application development, the general paradigm
is used to be deploying computationally complex logic on the
server. However, with recent client side technologies, such
as Just in time compilation, web clients are able to handle
more demanding tasks.

There are recent efforts to provide computer vision for
web based platforms. For instance [4] and [5] have pro-
vided lightweight JavaScript libraries that offer selected vi-
sion functions. There is also a JavaScript binding for Node.js,
that provides JavaScript programs with access to OpenCV
libraries. There are requirements for a computer vision li-
brary on the web that are not entirely addressed by the
above mentioned libraries that this work seeks to meet:

1. High performance: Computer vision processing requires
a large amount of complex computation. This substan-
tial computational cost demands efficient implementa-
tion and careful optimization.

2. Comprehensiveness: Complex computer vision appli-
cations often incorporate several algorithms from dif-
ferent domains to such as image processing, machine
learning, and data analysis. Hence, it is amenable to
provide programmers wit a comprehensive list of func-
tionality.

3. Portability: Library must be portable across all diverse
web based platforms including browsers and IOT de-
vices.

4. Adoptability: It should be easy for the community to
adopt the library. This requires documentation, tuto-
rials and online forums.

Towards achieving these goals we decided to port OpenCV
library to JavaScript, so that can be run in different web
clients. We call it OpenCV.js. OpenCV[6] is an open source
computer vision library that offers a large number of low
level kernels and high level applications ranging from im-
age processing, object detection, tracking, and matching.
OpenCV provides efficient implementations of algorithms
optimized for multiple target architectures such as Desk-
top and mobile processors and GPUs[7]. OpenCV has a
mature API which is well documented with a lot of sam-
ples and online tutorials. The source code is also rigorously
tested. Although it is developed in C++, there are bindings
for other languages such as Python and Java that expand
its availability to a broader scope and audience. OpenCV.js
is provided as a JavaScript library that works with different

OS and Hardware

Host
Environment

JS EngineLayout Engine...

User Application
(JavaScript) OpenCV.js

Figure 1: OpenCV.js interaction with user programs and
host environments

web environment. As shown in Figure 1, it utilizes the un-
derlying environment to perform computation and media ac-
cess. Environments rely on JavaScript engines for executing
JavaScript logic and utilize rendering and browser engines
to display graphics. Two such environments that are consid-
ered in this work are: web browsers such as Mozilla Firefox
and Node.js[8]. Table 1 provides a comparison between vi-
sion libraries that are available to JavaScript programs.

2. METHODOLOGY
This section describes the approach taken to compile OpenCV

source code directory into JavaScript equivalent. Modifica-
tions to the source code and techniques to adopt it to the
web model will be discussed. We have used Emscripten[9]
to generate JavaScript code. It is a source to source com-
piler developed by Mozilla to translates LLVM bitcode to
JavaScript. Emscripten targets a subset of JavaScript called
ASM.js that allows engines to perform extra level of opti-
mizations.

2.1 ASM.js
ASM.js[10] is a strict subset of JavaScript that is designed

to allow JavaScript engines to perform additional optimiza-
tions that is not possible with normal JavaScript. Some
JavaScript engines such as SpiderMonkey are even able to
perform Ahead-Of-Time (AOT) compilation.

ASM.js makes several limiations to the normal JavaScript:
1) data is annotated with explicit type information. This in-
formation can be sued to eliminates dynamic type guards.
Code listing 1 demonstrate this technique. without this
assumption, since addition between different types such as
Numbers and Strings leads to different operations, JavaScript
engines need to generate guards that check the data type
dynamically. 2) ASM.js utilizes JavaScript typed arrays
to provide an abstraction for program memory similar to
the C/C++ virtual machine. Typed arrays are raw buffers
available in JavaScript that engines are highly optimized for
working with it. Listing 2 demonstrate how typed arrays
can be used to model program memory. 3) Memory is ex-
pected to be manually managed by the programmer and no
garbage collection is provided.

Listing 1: Type inferrance based optimization

function add (x , y) {
x = x | 0 ; // x is a 32-bit value

y = y | 0 ; // y is also a 32-bit value

// 32-bit addition

return x+y ;
}

Listing 2: Implementation of Strlen function with typed ar-
rays used as program memory

// Memory

var Memory = new Uint8Array (256∗1024) ;

function s t r l e n (ptr) {
ptr = ptr | 0 ;
var curr = ptr ;
while (Memory [curr] | 0 != 0) {

curr = (curr + 1) | 0 ;
}
return (curr−ptr) | 0 ;

}

2.2 WebAssembly
While ASM.js provides opportunity to reach near native

performance, it has limitations that make it a challenge to
use for some targets with low resources such as embedded
devices. One major limitation is that the size of the gen-
erated JavaScript code tend to be large. This makes pars-
ing JavaScript code to hot spot especially on mobile devices.
This motivates WebAssembly[11] to be pushed forward. We-
bAssembly is a portable size and load-time efficient binary
format designed as an alternative target for web compila-
tion.

2.3 Binding Generation and Compilation
Regardless of the target, there is an issue with this ap-

proach: as part of the compilation, compiler removes high
level language information such as class and function iden-
tifiers and assign unique mangled names to them. While
this is fine for compiling a C++ programs to executable
JavaScript programs, when porting libraries, it will be al-
most impossible for developers to develop programs through
mangled names. To address this issue, we have provided an
automatic approach to extract binding information of differ-
ent OpenCV entities such as functions and classes and ex-
pose them to JavaScript properly. This enables the library
to have a similar interface with normal OpenCV that many
programmers are already familiar with. Table 2 shows equiv-
alent JavaScript data types for common C++ data types .
Listing 3 shows how C++ and JavaScript API of OpenCV
can be used to implement a filter.

Although it is possible to convert the majority of OpenCV
library to JavaScript, in order to make it portable, some of
its functionality can be skipped:

1. There are alternative implementations for some OpenCV
functions that are better suited for the web. For in-
stance accessing file system is not trivial in web and
functions to access media devices such as cameras, and
graphical user interfaces have alternatives. We pro-
vide a JavaScript helper module that uses HTML5
primitives to provides users with replacement func-
tions to access to files hosted on the web, media de-
vices through getUserMedia and display graphics us-
ing HTML Canvas.

2. OpenCV is very comprehensive. Some of the provided
functions are not used in certain applications domains.
Including them in the library, will make the library un-
necessary bigger. We allow users to select the functions
that they wish to port.

Library Features Development Language Portability

Node.js OpenCV Binding Image processing, object detection and track-
ing,features framework, machine learning,

C++ No

Tracking.js Object detection and tracking JavaScript Yes
JSFeat Select functions from Image processing, object de-

tection and feature extracting
JavaScript Yes

OpenCV.js Image processing, object detection and track-
ing,features framework, machine learning,

C++ Yes

Table 1: Comparison of JavaScript Computer Vision Libraries

Opencv
source code

Binding Generator

Glue code(C++)

LLVM

LLVM Bitcode

Emscripten

Binaryen asm.js

WASM

highgui.js
GUI Features

media.js
Media Capture

OpenCV.js

Developed code

Auto-generated code

Tools

Figure 2: Generating OpenCV.js

Figure 2 lists the steps involved in the process of convert-
ing OpenCV C++ code to JavaScript. First OpenCV source
code is patched to disable components and implementations
that are platform specific, or are not optimized for the web.
Next, information about classes and functions that should be
exported to JavaScript are extracted. OpenCV source code
is already annotated with directive to guide binding gener-
ators for other languages such as Python. We have used
those directives and utilized Embind(Binding generator for
Emscripten) to generate a glue code that maps JavaScript
symbols to C++ symbols and compile it along with the
OpenCV library to JavaScript. To generate WebAssembly
version of the library, we have used BinaryEn toolkit which
compiles ASM.js code into WebAssembly. Both ASM.js and
WebAssembly targets offer the same functionality and can
be used interchangeably if supported by the JavaScript en-
gine. We have developed several helper JavaScript libraries
to provide access to media devices and files, and GUI fea-
tures.

3. EXPERIMENTAL EVALUATION
This section discusses performance evaluation of JavaScript

version of selected kernels and applications from OpenCV
version 3.1. We used a Desktop computer with Intel Corei7-
3770 processor and 8 GBs of RAM, running Ubuntu 16.04
Linux as our setup. Table 3 lists two different environments
that are used in our evaluation. For each environment, lat-

C++ Type JavaScript Type

Arithmetic types(e.g. int, float) Number
bool Boolean
enumeration Constant
Basic Structures(e.g. cv::Point) Value Objects
std::vector Array
std::string String
C++ objects JavaScript Objects

Table 2: Exported JavaScript types for common C++ types

Host
Environment JavaScript Engine CPU OS

Firefox 55 SpiderMonkey 55
Intel Corei7 Ubuntu 16.04

Node.js 8.1 V8 5.8

Table 3: Evaluation Platforms

est released software version is used. Experiments are per-
formed on long sequences of raw video data (400-600 frames)
collected from Xiph.org archive and average execution time
is reported.

3.1 Selected Vision Functions
We consider two types of benchmarks in our evaluation.

The first category includes primitive kernels that perform
simple operations such as pixel-wise addition or convolu-
tion. They are repeated for different common pixel types
(e.g. unsigned chars, short and floats) for each operation.
The second category includes sophisticated vision functions
that involve a collection of primitive kernels. List of all the
benchmarks with a description of their operations is shown
in table4. Our elected vision functions include implemen-
tation of Canny’s algorithm for finding edges[12], ORB al-
gorithm for finding rotation invariant features within a pic-
ture[13], finding faces and eyes by using Haar cascades[14],
and finding people by analyzing histogram of gradients[15].
Figure 4 depicts response of the mentioned applications to
a sample input frame.

3.2 Optimization Trade-offs
In compiling OpenCV to JavaScript, there are several op-

timization trade-offs that affect the performance the gen-
erated code. Among them, ability to enlarge the program
memory and behavior of floating point arithmetic have the
biggest effect on performance.

3.2.1 Enabling Memory growth
Allowing program memory that are used by ASM.js to en-

void erode () {
Mat image , dst ;
image = imread ("image.jpg") ;

// Create a structuring element

int s i z e = 6 ;
Mat element = getStructuringElement (

MORPH RECT,
Size (2∗ s i z e +1, 2∗ s i z e +1) ,
Point (s i z e , s i z e)) ;

// Apply erosion or dilation on the image

erode (image , dst , e lement) ;

namedWindow("Input") ;
imshow("Input" , image) ;

namedWindow("Result") ;
imshow("Result" , dst) ;

}

function erode () {
var image = cv . imread ("image.jpg") ;

// Create a structuring element

var s i z e = 6 ;
var element = cv . getStructuringElement (

cv .MORPH RECT,
[2∗ s i z e +1, 2∗ s i z e +1] ,
[s i z e , s i z e]) ;

erode (image , dst , e lement) ;

// displaying on canvas with id="Input"

imshow("Input" , image) ;
// displaying on canvas with id="Result"

imshow("Result" , dst) ;
image . delete () ;
dst . delete () ;

}

Figure 3: Erosion implementation using OpenCV C++(left) and JavaScript(right) APIs

People detection using HOG

Image Pyramid

Face/eye detection
using Haar cascades

Canny Edge Detection ORB Features

Figure 4: Demonstration of selected computer vision applications

Name Module Data type Description

add

Core

char - Short - float Pixel-wise addition with saturation
absdiff char - short Pixel wise absolute difference
bitwise char - short Pixel wise bit-wise operations
addweightd float Pixel-wise weighted addition
integral

Image
Processing

char - short Image integral
threshold char - short - float Simple threshold operation
gblur char Gaussian Blur with 3x3, 5x5 and 7x7 kernels
bilat float Bilateral Filter
erode char Erosion operation (morphology)
rgb2gray RGB Converting color (RGB) images to grayscale
canny grayscale Canny edge detection algorithm
Pyramids grayscale Creating image pyramid with 4 layers
ORB Feature2d grayscale ORB feature extraction algorithm
Face detection Object

Detection

grayscale Face detection using Haar cascades
People detection grayscale People detection using Histogram of Oriented Gradients(HOG)

Table 4: Selected Vision Functions

large is very helpful, especially in cases that the peak amount
of memory needed during run-time is not known beforehand.
However, allowing memory size to grow disables several op-
timization by JIT compilers and degrades performance. En-
larging memory also requires copying the entire underlying
array which is also expensive. We have found this feature to
significantly affects performance on some JavaScript engines
and disabled it.

Figures 5 and 6 show performance of different integer op-
erations on both Node.js and Firefox when memory size is
fixed. As shown, performance of integer operations is very
competitive to the native implementation. They tend to be
better in WebAssembly implementation due to better com-
piler optimization. Performance of floating point operations
will be discussed in the following section.

3.2.2 Floating point Arithmetic Performance
JavaScript language uses double precision floating point

to represents every numerical value including integer and
single precision floating point numbers. While double preci-
sion floating point offers higher precision, using it to imple-
menting single precision operations might lead to erroneous
results in some cases. Emscripten supports generating both
precise and imprecise floating point arithmetic. We compile
the library in both modes and report their performance. As
it can be seen in Figure 8, performance is close to the native
as most JavaScript engines including V8 and SpiderMonkey
optimize floating point computations internally. However
there is one exception. Since some of the WebAssembly
floating point operations are not optimized by V8 used by
Node.js, there are major slowdowns. However, we can report
that the latest version of V8 engine (6.1) has fixed those is-
sues and performance is comparable to ASM.js version.

3.3 Overheads
Compiling native code into JavaScript often generates large

files for which downloading, parsing and compiling become a
challenge. We have used Zlib compression to reduce the size
of the library. For evaluation of size and initialization time
of the library, we use a port of OpenCV with 800 functions
from modules such as core, image processing, object detec-
tion, features framework, machine learning, photo. We con-
sider four different versions of the library: 1)ASM.js, 2)We-
bAssembly, 3)compressed ASM.js and 4)compressed WebAssem-
bly. A JavaScript port of Zlib(compiled with Emscripten) is
used to decompress the g-zipped library at run time. Zlib
library overhead is included in our report. Figures 10 re-
ports the total size of the library. WebAssembly target is
2x more compact than the ASM.js target. Compressing the
library further reduces the size by 3-4 times. Library can
become even more compact by removing the unnecessary
modules and components. Figure 11 reports the time spent
on initializing the library on Firefox.

4. CONCLUSIONS
Web is the universal computing platform with abundance

of visual data. Computer vision processing requires sophis-
ticated algorithms and implementations which are computa-
tionally demanding. Due to web limitations, a comprehen-
sive framework for computer vision is not available. With
new client-side technologies, web is capable of taking ad-
vantage of compiled languages. This work brings years of
OpenCV development to the web with near-native perfor-

mance. It also complements it by replacing its platform
dependant components with portable alternatives that are
implemented using native web and HTML5 technologies.

5. AVAILABILITY
Source code including build instructions, tests and exam-

ples is published on GitHub 1. Work is still ongoing to im-
prove the documentation and provide interactive tutorials.

6. ACKNOWLEDGMENTS
This work is supported by the Intel Corporation. The

authors would like to thank OpenCV and Emscripten devel-
oper community for their helpful comments and anonymous
reviewers for their helpful suggestions.

7. REFERENCES
[1] Charles Severance. Javascript: Designing a language

in 10 days. Computer, 45(2):7–8, 2012.

[2] Dominique Guinard and Vlad Trifa. Towards the web
of things: Web mashups for embedded devices. In
Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web (MEM 2009), in
proceedings of WWW (International World Wide Web
Conferences), Madrid, Spain, volume 15, 2009.

[3] Elizabeth Latronico, Edward A Lee, Marten Lohstroh,
Chris Shaver, Armin Wasicek, and Matthew Weber. A
vision of swarmlets. IEEE Internet Computing,
19(2):20–28, 2015.

[4] Foat Akhmadeev. Computer Vision for the Web.
Packt Publishing Ltd, 2015.

[5] Eduardo Lundgren, Thiago Rocha, Zeno Rocha, Pablo
Carvalho, and Maira Bello. tracking. js: A modern
approach for computer vision on the web. Online].
Dosegljivo: https://trackingjs. com/[Dostopano 30. 5.
2016], 2015.

[6] Gary Bradski and Adrian Kaehler. Learning OpenCV:
Computer vision with the OpenCV library. ” O’Reilly
Media, Inc.”, 2008.

[7] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and
Victor Eruhimov. Real-time computer vision with
opencv. Communications of the ACM, 55(6):61–69,
2012.

[8] Stefan Tilkov and Steve Vinoski. Node. js: Using
javascript to build high-performance network
programs. IEEE Internet Computing, 14(6):80–83,
2010.

[9] Alon Zakai. Emscripten: an llvm-to-javascript
compiler. In Proceedings of the ACM international
conference companion on Object oriented programming
systems languages and applications companion, pages
301–312. ACM, 2011.

[10] asm.js. http://asmjs.org, 2017.

[11] Andreas Haas, Andreas Rossberg, Derek L Schuff,
Ben L Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the
web up to speed with webassembly. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 185–200.
ACM, 2017.

1https://www.github.com/ucisysarch/opencvjs

ad
d

rg
b2g

ra
y

ab
sd

iff
gb

lur

bitw
ise

integ
ra

l

th
res

hold
ero

de
0

1

2

3
S
lo

w
d
ow

n
(l

ow
er

is
b

et
te

r)
Uint8 (asmjs) Uint8(wasm) Short(asm) Short(wasm)

Figure 5: Performance comparison of integer arithmetic (Firefox)

ad
d

rg
b2g

ra
y

ab
sd

iff
gb

lur

bitw
ise

integ
ra

l

th
res

hold
ero

de
0

1

2

3

S
lo

w
d
ow

n
(l

ow
er

is
b

et
te

r)

Uint8 (asmjs) Uint8(wasm) Short(asm) Short(wasm)

Figure 6: Performance comparison of integer arithmetic (Node.js)

ad
d

th
re

sh
ol

d

ad
d
w

ei
gh

te
d

b
il
at

gb
lu

r

0

1

2

3

S
lo

w
d
ow

n

Imorcise(ASMJS) Precise(ASMJS)

Prcise(WASM)

Figure 7: Performance comparison of floating point arith-
metic (Firefox)

ad
d

th
re

sh
ol

d

ad
d
w

ei
gh

te
d

b
il
at

gb
lu

r

0

10

20

30

S
lo

w
d
ow

n

Imprcise(ASMJS) Precise(ASMJS)

Prcise(WASM)

Figure 8: Performance comparison of floating point arith-
metic (Node.js)

C
an

ny

F
ac

e
d
et

ec
ti

on
P

eo
p
le

d
et

ec
ti

on

P
yr

am
id

s

O
R

B

0

2

4

S
lo

w
d
ow

n

Firefox(ASM) Nodejs(ASM)

Figure 9: Performance comparison of select vision applica-
tions

ASM.js

Compres
sed

ASM.js

Web
Asse

mbly

Compres
sed

Web
Asse

mbly0
2
4
6
8

10 9.2

2.1

4.4

1.85

M
eg

a
B

y
te

s

OpenCV.js Zlib

Figure 10: Library Size

ASM.js

Compres
sed

ASM.js

Web
Asse

mbly

Compres
sed

Web
Asse

mbly0

1,000

2,000

3,000

4,000 3,467
3,710

2,637
2,915

M
il
li
se

co
n
d
s

Decompressing Parsing Decoding

Compiling Init runtime

Figure 11: Average Start-up Time on Firefox

[12] John Canny. A computational approach to edge
detection. IEEE Transactions on pattern analysis and
machine intelligence, (6):679–698, 1986.

[13] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and
Gary Bradski. Orb: An efficient alternative to sift or
surf. In Computer Vision (ICCV), 2011 IEEE
international conference on, pages 2564–2571. IEEE,
2011.

[14] Rainer Lienhart and Jochen Maydt. An extended set
of haar-like features for rapid object detection. In
Image Processing. 2002. Proceedings. 2002
International Conference on, volume 1, pages I–I.
IEEE, 2002.

[15] Navneet Dalal and Bill Triggs. Histograms of oriented
gradients for human detection. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages
886–893. IEEE, 2005.

