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ABSTRACT
Mobile platforms are increasingly using Heterogeneous

MultiProcessor Systems-on-Chip (HMPSoCs) with differen-
tiated processing cores and GPUs to achieve high perfor-
mance for graphics-intensive applications such as mobile games.
Traditionally, separate CPU and GPU governors are de-
ployed in order to achieve energy efficiency through Dynamic
Voltage Frequency Scaling (DVFS), but miss opportunities
for further energy savings through coordinated system-level
application of DVFS. We present Co-Cap, a cooperative
CPU-GPU DVFS strategy that orchestrates energy-efficient
CPU and GPU DVFS through coordinated CPU and GPU
frequency capping to avoid frequency over-provisioning while
maintaining desired performance. Unlike traditional ap-
proaches that target a narrow set of mobile games, our Co-
Cap approach is applicable across a wide range of mobile
games. Our methodology deploys a training phase followed
by a deployment phase, allowing not only deployment across
a wide range of mobile games with varying graphics work-
loads, but also across new mobile architectural platforms.
Our experimental results across a large set of over 70 mo-
bile games show that Co-Cap improves energy per frame by
10.6% and 10.0% (23.1% and 19.1% in CPU dominant appli-
cations) on average and achieves minimal frames per second
(FPS) loss by 0.5% and 0.7% (1.3% and 1.7% in CPU dom-
inant applications) on average in training- and deployment
sets, respectively, compared to the default CPU and GPU
governors, with negligible overhead in execution time and
power consumption on the ODROID-XU3 platform.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Mobile processors; D.4.7

[Organization and Design]: Real-time systems and em-
bedded systems

Keywords
Power management policies, Dynamic Voltage and Fre-

quency Scaling, Heterogeneous Multi-core platform

1. INTRODUCTION
Mobile platforms are increasingly demanding high per-

formance and longer battery life at the same time resulting
in the move towards Heterogeneous MultiProcessor Systems-
on-Chip (HMPSoC) for high performance, coupled with var-
ious software governors to achieve energy efficiency through
DVFS. For instance, the Exynos 5 (5422) HMPSoC inte-
grates ARM’s big.LITTLE Octa multi-core CPU and ARM’s
Mali-T628 MP6 GPU on the same chip. To achieve energy
efficiency, traditionally independent CPU and GPU DVFS
power management techniques are common for commercial
platforms, and some recent efforts have proposed integrated
CPU-GPU governors [11] [10] [7] for energy efficiency, but
have focused on a small set of mobile games that have spe-
cific workload characteristics. (Figure 1(a)).
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Figure 1: System Comparison

Traditional DVFS approaches suffer from two drawbacks:
1) they are not able to achieve energy efficiency across a wide
range of mobile games that exhibit varying CPU and GPU
workloads, and 2) these approaches are customized for spe-
cific mobile platforms. To address both of these issues, in
this paper we present Co-Cap (Figure 1.(b)), a methodol-
ogy that achieves energy efficient DVFS across a wide range
of mobile games, and that is also easily portable to newer
mobile architectural platforms.
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Figure 2: Mobile Platform Trends.

Mobile platforms face the dual challenges of rapidly chang-
ing (heterogeneous) architectures, and the continuing emer-
gence of a plethora of mobile games. For instance, Figure 2
shows the progression of the Nexus and Samsung Galaxy se-
ries platform architecture, demonstrating the rapid changes
in (heterogeneous) processor, and GPU configurations. New
energy efficient DVFS governors have to be developed rapidly
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for each new architectural family. On the other hand, at
the application level, we are seeing a range of mobile games
that exhibit diverse CPU and GPU workloads, that require
widely different strategies for achieving energy efficiency while
delivering acceptable game performance. For instance, Fig-
ure 3 shows that each game application can be located in a
specific quadrant of a CPU/GPU workload intensity matrix.
Angry Birds has very low CPU and GPU workloads, while
GFX benchmark is GPU-bound and Jetski Race is very
CPU-bound; some applications such as GPUbench are more
balanced in terms of CPU and GPU workloads. For these
four different types of graphics workloads, we define them as
No CPU-GPU dominant, CPU dominant, GPU dominant,
CPU-GPU dominant workloads respectively.Introduction (Contribution1)  
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Figure 3: Different types of CPU/GPU Workload.

The traditional approach of separate DVFS governors
for CPU and GPU are unable to achieve good energy effi-
ciency while delivering acceptable performance across this
wide range of mobile game applications. Even recent ef-
forts [11] [10] [7] using integrated CPU-GPU governors are
only targeted towards specific classes of mobile games. Fur-
thermore, these approaches do not provide a methodology
for easily porting their strategies across newer architectural
platforms that appear in rapid succession (e.g., Nexus and
Galaxy series in Figure 2).

To address these dual issues, this paper presents Co-
Cap, an energy-efficient cooperative CPU-GPU frequency
capping strategy for mobile games. Our paper makes the
following specific contributions:

• We present a methodology for cooperative CPU-GPU
frequency capping to achieve energy efficiency for a
diverse set of mobile games

• Our capping strategy avoids unnecessarily higher fre-
quency of CPU and GPU considering both FPS and
per-frame energy saving on top of the default CPU and
GPU governors

• We present characterization of diverse mobile graphics
gaming workloads to enable efficient dynamic applica-
tion of frequency capping

• We demonstrate efficacy of Co-Cap across 70 real mo-
bile graphics applications, using a representative train-
ing and deployment set achieving over 12% improve-
ment in average energy efficiency with minimal loss in
performance

2. RELATED WORK
DVFS is a traditional energy conservation strategy that

has been applied for both CPUs and GPUs in desktop and
mobile space. For graphics-intensive applications such as

mobile games, typically frames per second (FPS) and en-
ergy per frame (or FPS per watt) are used as performance
and energy consumption metrics, respectively. Some efforts
have begun analyzing graphics-intensive rendering applica-
tions (e.g., 3D games) in mobile devices: Gu et al. [5], [4]
proposed CPU graphics rendering workload characterization
and CPU DVFS for 3D Games, under the assumption that
mobile devices such as PDAs and mobile phones do not have
integrated mobile GPUs. With the emergence of high per-
formance mobile GPUs, Dietrich et al. [2], [3] introduced
CPU DVFS for mobile graphics rendering as an extension
of [5], [4]; however these efforts didn’t focus on GPU or
cooperative CPU-GPU DVFS schemes, but addressed CPU
DVFS for mobile GPU graphics rendering.

Park et al. [9] developed micro-benchmarks for mobile
graphics workload characterization, analyzed the results of
benchmarks, and introduced several opportunities for im-
proved DVFS design of mobile GPU graphics rendering,
but did not present specific DVFS strategies. Pathania et
al. [11] proposed an integrated CPU-GPU DVFS algorithm
for power management for mobile games. However, their
work didn’t consider quantitative evaluation for energy sav-
ing (e.g., per-frame energy or FPS per watt). Pathania et
al. [10] also proposed a power-efficient integrated CPU-GPU
DVFS strategy by developing power-performance models pre-
dicting the impact of DVFS on mobile gaming workloads ,
and Kadjo et al [7] presented a queuing model to represent
the interaction between CPU, GPU, and Display; however,
their work was applied to a specific set of games exhibiting
a narrow range of CPU-GPU workloads and they did not
show applicability across a wide range of games exhibiting
diverse CPU-GPU workloads (Figure 3).

In this work, we complement shortcomings of previous
efforts by proposing Co-Cap. Our work is fundamentally dif-
ferent from previous integrated CPU-GPU DVFS techniques
in that our approach dynamically scales the maximum fre-
quency of CPU and GPU according to the normalized CPU
and GPU cost on top of the default CPU- and GPU gover-
nors. Although frequency capping for energy efficiency was
initially introduced in [8], their approach was restricted to
the CPU governor; in contrast to the best of our knowledge,
our work is the first to introduce a coordinated CPU and
GPU maximum frequency capping technique that achieves
energy efficiency (lower energy per frame) across a diverse
range of mobile games while delivering acceptable perfor-
mance (FPS).

3. CO-CAP OVERVIEW
3.1 Motivation

Mobile platforms pose a challenge for simultaneous re-
duction of energy consumption while delivering acceptable
performance across a wide range of mobile gaming applica-
tions. As motivating examples, Figure 4.(a) and 4.(b) show
the normalized FPS, power consumption (Pwr), and energy
per frame (EpF) on one CPU dominant (Q3Zombie Map4)
and the other GPU dominant (Action Bike) game bench-
marks by changing CPU and GPU maximum frequencies al-
lowing dynamic frequency changes under standard governors
implemented in Linux. Even though FPS declines little until
1900Mhz in Figure 4(a) and until 420Mhz in Figure 4(b), the
power consumption is dramatically reduced compared to the
FPS reduction. This shows that limiting the maximum fre-
quencies that can be reached during dynamic frequency scal-
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ing gives significant opportunity for performance and power
consumption optimizations in modern CPU/GPUs. In other
words, we can exploit this frequency over-provisioning to
achieve energy saving up to 20% in Figure 4.(a) and up to
15% in Figure 4.(b) within little FPS (3%) decline compar-
ing with the default governors by scaling CPU and GPU
maximum frequencies. We call the frequency beyond which
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Figure 4: Motivating Examples

the FPS degrades as ”saturated frequency”(Figure 4(c)). By
identifying these saturated frequencies after characterization
of CPU- and GPU graphics workloads, we can save energy
with minimal performance degradation by eliminating CPU
and GPU frequency over-provisioning.

3.2 Co-Cap Methodology
Co-Cap orchestrates cooperative CPU-GPU dynamic max-

imum frequency capping (scaling) by avoiding frequency over-
provisioning of CPU or GPU considering both performance
(FPS) and per-frame energy saving on top of the default
CPU- and GPU governors. Co-Cap has two phases: a train-
ing phase and a deployment phase as shown in Figure 5.

CoCap overview: Cooperative Capping 

 Composed of Training and Test Phase 

 Training phase: CPU/GPU saturated frequency tables obtained in offline  

 Test phase: Run-time evaluation for any apps (using a 40-test set) 

Any games 

TRAINING  

PHASE 

Game training set  

CPU and GPU  

Sat. Freq. Lookup tables 

DEPLOYMENT  

PHASE 

Energy saving  

w/ acceptable performance 

Figure 5: Co-Cap Overview.

In the training phase, we build CPU and GPU satu-
rated frequency lookup tables offline using a training set.
Then in the deployment phase, Co-Cap uses these saturated
frequency lookup tables at runtime to set the appropriate
CPU and GPU frequency caps based on the characteristics
of the executing mobile game.

3.2.1 Training Phase
As shown in Figure 6, the training phase is composed of

three steps: data capturing step, saturated frequency lookup

table building step, and refinement step. The main objec-
tive of the training phase is to build the saturated frequency
lookup tables where the maximum frequency values for both
CPU and GPU can be obtained by CPU and GPU workload
cost indices.

CoCap: 1. Training Phase  
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Figure 6: Co-Cap Training Phase.

Data Capturing Step: As shown in Table 1, all data in-
cluding frequency and utilization can be captured dynami-
cally from each software component of CPU and GPU gov-
ernors, and power sensor driver (or using power monitor).

Table 1: Captured Data
Category SW component Metrics Data

CPU CPU Governor per-cpu Utilization, Frequency

GPU GPU Governor Utilization, Frequency

Power Power Sensor Driver CPU, GPU, DRAM

Perf. Android and GPU Governor FPS

The sample training set shown in Figure 7 includes mo-
bile games that cover different quadrants of the CPU-GPU
workloads shown in Figure 3. These workload variations
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max min max-1 min+1 … 

Figure 7: A Sample of the Training Set.

are typically quantified using a cost metric that is a product
of the utilization and frequency [1]. Accordingly, we deploy
normalized CPU- and GPU costs as shown in Equation(1),
where the cost is defined as the product of the processor
current average utilization and its current average frequency
divided by the product of the maximum utilization and its
maximum frequency.

Normalized Cost =
Curr Util. × Curr Freq.

Max Util. × Max Freq.
(1)

For CPU utilization, the highest CPU utilization among
CPU cores is used according to the assumption that there is
usually one graphics rendering thread mainly affecting the
graphics performance for most mobile graphics applications,
and the utilization of the thread is mostly highest among
threads.

Frequency Lookup Table Building Step: Using the
normalized CPU and GPU costs, we determine CPU/GPU
cost index, which is used as the indices in the saturated fre-
quency lookup table and the representation of the range of
the normalized cost. For instance, if the number of quad-
rants is NxN as shown in Figure 7, the normalized CPU/GPU
cost from 0 to 100/N is 0. Now, let’s assume that we use
a new game on a new platform. By observing the CPU
and GPU utilization and frequency for a specific amount of

3



2) Estimation of Graphics workloads 
CPU-bc freq GPU freq 

1 

2 

3 

4 

Th1 

Th2 

               
FPS       

 Power 

 

CPU maximum frequency 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(a) NO dominant workload

2) Estimation of Graphics workloads 
CPU-bc freq GPU freq 

1 

2 

3 

4 

Th1 

Th2 

              
FPS                   

EpF 

 

CPU maximum frequency 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(b) NO dominant workload

2) Estimation of Graphics workloads 
CPU-bc freq GPU freq 

1 

2 

3 

4 

Th1 

Th2 

               
FPS       

 Power 

 

CPU maximum frequency 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(c) GPU dominant workload

2) Estimation of Graphics workloads 
CPU-bc freq GPU freq 

1 

2 

3 

4 

Th1 

Th2 

              
FPS                   

EpF 

 

CPU maximum frequency 

min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … 

min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … 

GPU maximum frequency CPU maximum frequency GPU maximum frequency 

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency 

(d) GPU dominant workload

2) Estimation of Graphics workloads 
CPU-bc freq GPU freq 

1 

2 

3 

4 

Th1 

Th2 

              
FPS                   

EpF 

 

CPU maximum frequency 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(e) CPU dominant workload

2) Estimation of Graphics workloads 
CPU-bc freq GPU freq 

1 

2 

3 

4 

Th1 

Th2 

               
FPS       

 Power 

 

CPU maximum frequency 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(f) CPU dominant workload

2) Estimation of Graphics workloads 
CPU-bc freq GPU freq 

1 

2 

3 

4 

Th1 

Th2 

              
FPS                   

EpF 

 

CPU maximum frequency 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1… 

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(g) CGU dominant workload

2) Estimation of Graphics workloads 
CPU-bc freq GPU freq 

1 

2 

3 

4 

Th1 

Th2 

              
FPS                   

EpF 

 

CPU maximum frequency 

min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … 

min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … 

GPU maximum frequency CPU maximum frequency GPU maximum frequency 

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency 

(h) CGU dominant workload

Figure 8: Effects of CPU (or GPU) maximum frequency capping on FPS and Power.

time, the game will be located in a specific quadrant of the
training set and will have the corresponding CPU cost index
and GPU cost index, (and how to select an appropriate set
of training games will be described in the next section).

Before describing how to configure the saturated fre-
quency look-up tables, we need to explain the general trend
of maximum frequency set-up for the four different applica-
tion quadrant categories shown in Figure 3: No CPU-GPU
(No) dominant, CPU dominant, GPU dominant, and CPU-
GPU (CGU) dominant. Figure 8.(a) and (b) show the per-
formance/power consumption graph trends of No-dominant
workloads. FPS remains the same (i.e., the 60 maximum
FPS) for all CPU and GPU frequencies, which means that
the saturated frequencies of CPU and GPU are available
up to the minimum frequency of CPU and GPU for en-
ergy saving without FPS reduction. Figure 8.(c) and (d)
show the performance/power consumption pattern of GPU
dominant workloads. For GPU frequency, FPS is flat until
max-1 frequency and power consumption reduces gradually
until min+1 frequency. Therefore, in order to achieve en-
ergy saving with little FPS degradation, the GPU saturated
frequency can be reduced to max-1 frequency. For CPU
capping frequencies, FPS and power consumption are almost
similar except the minimum capping frequency, which means
that the CPU saturated frequency should be higher than the
minimum frequency in order to prevent FPS reduction. Fig-
ure 8.(e) and (f) show the performance/power consumption
of CPU dominant workloads. Here FPS is almost similar
until max-1 frequency and power consumption gradually de-
creases with CPU capping frequency drop, which means that
the CPU saturated frequency could be available up to the
max-1 frequency. For GPU capping frequencies, FPS and
power consumption are almost similar except the minimum
capping frequency, which means that the GPU saturated
frequency should be higher than the minimum frequency in
order to prevent FPS reduction. Finally in Figure 8.(g) and
(h), CGU-dominant workload is the combination of CPU
dominant workload and GPU dominant workload. There-
fore, in CPU and GPU, max-1 frequency can be configured
to the saturated frequency.

Using this characterization process, the saturated fre-
quency of each application in the training set can be config-

ured appropriately as shown in Equation (2):

Saturated Frequency = max(Ffps, Flp)

where Ffps = lowest maximum frequency

with minimal (< 3%)FPSdegradation

Flp = frequency for lowest power consumption

(2)

In other words, from the captured data of each application,
we choose the higher frequency among the lowest maximum
frequency having little FPS (up to 3%) decline and the low-
est maximum frequency having lowest power consumption.

Frequency Lookup Table Refinement Step: If there
is continuous maximum utilization during a certain amount
of time, the saturated frequency should be scaled up dy-
namically in order to prevent FPS reduction. We deploy
a heuristic where, if there is successive (e.g., 3 epochs) ex-
treme CPU or GPU utilization (e.g., 100%), the saturated
frequency is dynamically scaled up to the one-level higher
CPU or the two-level higher GPU frequency.

In addition, since the games deployed in the training set
(Figure 7) may not fully cover all CPU-GPU cost entries, we
can heuristically speculate missing entries by using interpo-
lated values of adjacent entries in the table. These spec-
ulated entries are then evaluated to ensure that Co-Cap’s
application of these frequency caps does not result in loss of
performance through significant FPS drop.

Finally, CPU and GPU saturated frequency lookup ta-
bles can be obtained through repeated overall Co-Cap eval-
uation for all applications in the training set.

3.2.2 Deployment Phase
In the deployment phase (Figure 9), data capturing, max-

imum frequency setting, and evaluation steps can be exe-
cuted at runtime using the CPU and GPU saturated fre-
quency lookup tables. This ensures evaluation of applica-
tions across a wide range of games exhibiting diverse CPU
and GPU workloads.

Data Capturing Step: This step is exactly the same
as the training phase (all data except power consumption
as shown in Table 1 can be captured dynamically in every
epoch).

4
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Figure 9: Co-Cap Deployment Phase.

Maximum Frequency Setting Step: In this step,
the corresponding CPU and GPU maximum frequencies for
next epoch dynamically chosen from the CPU and GPU
saturated frequency lookup tables (configured offline in the
training phase) after calculation of CPU and GPU cost in-
dex at the end of the current epoch using the results of data
capturing step.

Evaluation Step: We evaluate applications of the de-
ployment set, using the detailed evaluation methods as de-
scribed in the experimental setup of the next section.

4. EVALUATION OF CO-CAP
4.1 Experimental Setup

We evaluate Co-Cap on the ODROID-XU3 development
board installed with Android 4.4.2 and Linux 3.10.9; Table 2
summarizes our platform configurations. The ODROID plat-

Table 2: Platform Configuration
Feature Description

Device ODROID-XU3

SoC Samsung Exynos5422

CPU Cortex-A15 2.0Ghz and Cortex-A7 Octa-core CPUs

GPU Mali-T628 MP6, 543Mhz

System RAM 2Gbyte LPDDR3 RAM at 933MHz

Mem. Bandwidth up to 14.9GB/s

OS(Platform) Android 4.4.2

Linux Kernel 3.10.9

form is equipped with four TI INA231 power sensors mea-
suring the power consumption of big CPU cluster (CPU-bc),
little CPU cluster (CPU-lc), GPU and memory respectively.
The CPU supports cluster-based DVFS at nine frequency
levels (from 1.2Ghz to 2.0Ghz) in CPU-bc and at seven fre-
quency levels (from 1.0Ghz to 1.6Ghz) in CPU-lc, and GPU
supports six frequency levels (from 177Mhz to 543Mhz).

Benchmark Sets: we use 70 gaming applications to
evaluate our Co-Cap manager. In our experiments we used
a 30-app training set shown in Figure 10 and the remaining
40 games as the deployment set shown in Figure 11. The
training set and the deployment set are composed of game
benchmarks derived from: previously published papers, tra-
ditional graphics benchmarks for performance comparison
of commercial products such as GFX bench or 3D mark,
popular Android games like Angry Birds and Call of Duty,
and games of popular game engine companies such as Unity
or Gameloft’s unreal engine.

The 30-app training set (Figure 10) is based on 4 cat-
egories of workloads (No, GPU, CPU, CGU dominant) as
shown in Figure 3. We used cost indices of 2 and 3 to cate-
gorize the four different types of graphics workloads in this
platform. However, each dominance area also could have
different workloads, which will require different CPU and
GPU frequencies. Therefore, additionally we made efforts
to choose nine applications in each dominance area, which
correspond to Low, Medium, and High workloads in terms
of the normalized CPU and GPU cost. This requires 36 ap-
plications (4 categories x 9 applications) for the training set.

1) Data Capturing: the 30-Training set 

 30 apps in different CPU/GPU cost  

 In order to gather various workloads  of graphics apps 
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Figure 10: The 30-app Training Set.

The test set (40 apps) 
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Figure 11: The 40-app Deployment Set.

However, our observations show that games having over 80
normalized CPU and GPU cost rarely exist (these quadrants
are shaded in dark gray in Figure 10 and Figure 11); also it
was very difficult to find games for some specific quadrants
that are vacant. For these vacant quadrants, the saturated
frequencies can be heuristically speculated by using interpo-
lated values of adjacent quadrants. With these observations
in hand, we believe a 30-application training set (covering
the entries shown in Figure 10) are sufficient to configure
successfully the CPU and GPU saturated frequencies using
our heuristic.

For the 40-app deployment set shown in Figure 11, we
use the rest of the 70 games; of course any other games can
be tested additionally. We also note that the No-dominant
area has more games compared to other areas because many
popular games were located in this area on ODROID-XU3
which is deploying high-performance CPUs and GPUs as we
described in the start of this section.

For measurements and comparison: after capturing
all data of Table 1 in every epoch (i.e., 100ms), we compared
power consumption of CPU-bc, CPU-lc, GPU, and memory.
The average power consumption of CPU-lc in the training
set was only 8.6% of the CPU-bc, CPU-lc, and GPU power,
therefore, in this work we only consider CPU-bc cost, and
use the default maximum frequency(i.e., 1600Mhz) as the
saturated frequency for CPU-lc.

In order to achieve a fair comparison with the baseline,
we made efforts to find games that have very similar graphics
workloads in every execution. In particular, the traditional
benchmarks for graphics performance comparison had ex-
actly same workloads in each execution. Because we focus
on FPS, power consumption, and energy consumption dur-
ing graphics rendering, we started all the benchmarks and
games manually, and then began measurements manually
at the start of drawing on the screen with the execution
of a script file, which in turn starts measurement of power
consumption using the power sensor driver and stops the
measurement after a fixed amount of time. Therefore, all
data such as FPS and power consumption can be automat-

5



40 

60 

80 

100 

120 

2000 1800 1600 1400 1200 

N
o

rm
al

iz
e

d
 

CPU maximum frequency 

FPS 

EpF 

Pwr 

(a) NO domi. (Trial Xtreme4)

40 

60 

80 

100 

120 

543 480 420 350 266 177 

N
o

rm
al

iz
e

d
 

GPU maximum frequency 

(b) NO domi. (Trial Xtreme4)

N
o

rm
al

iz
e

d
 

40 

60 

80 

100 

120 

2000 1800 1600 1400 1200 

N
o

rm
al

iz
e

d
 

CPU maximum frequency 

FPS 
EpF 
Pwr 

(c) GPU domi. (Action bike)

N
o

rm
al

iz
e

d

40 

60 

80 

100 

120 

543 480 420 350 266 177 

N
o

rm
al

iz
e

d
 

GPU maximum frequency 

(d) GPU domi. (Action bike)

120 

40 

60 

80 

100 

120 

2000 1900 1800 1600 1400 1200 

N
o

rm
al

iz
e

d
 

CPU maximum frequency 

FPS 
EpF 
Pwr 

(e) CPU domi. (Q3-Zombie)
40.0 

60.0 

80.0 

100.0 

120.0 

140.0 

40 

60 

80 

100 

120 

543 480 420 350 266 177 

N
o

rm
al

iz
e

d
 

GPU maixmum frequency 

(f) CPU domi. (Q3-Zombie)

40 

60 

80 

100 

120 

2000 1800 1700 1600 1400 1200 

N
o

rm
al

iz
e

d
 

CPU maximum frequency 

FPS 
EpF 
Pwr 

(g) CGU domi. (Robocop)

40 

60 

80 

100 

120 

543 480 420 350 266 177 

N
o

rm
al

iz
e

d
 

GPU maximum frequency 

(h) CGU domi. (Robocop)

Figure 12: FPS, Power and EpF Results of Different Types of Graphics Workloads.

ically captured during run-time, allowing us to get the final
average results after a fixed amount of time.

We then compare our proposed Co-Cap manager, which
is implemented within the Linux kernel layer, with the de-
fault CPU and GPU governors (i.e., Interactive CPU gov-
ernor and ARM’s Mali Midgard GPU governor) using FPS,
power (CPU-bc, CPU-lc, and GPU) and EpF. To minimize
variance across measurements, we perform repeated execu-
tions per application to get the average results.

Overhead: In order to evaluate performance and power
consumption overhead, we measured the execution time of
data capturing (3-4us) and Co-Cap management (1-3us) func-
tions. The total overhead (4-7us) time can be totally negli-
gible compared to the epoch (i.e., 100 ms) in terms of perfor-
mance (FPS degradation). Moreover, any noticeable power
increase was not observed in terms of average power con-
sumption when we add the data capturing and the Co-Cap
management functions.

4.2 Experimental Results
4.2.1 Different types of graphics workloads

Figure 12 shows the effects of CPU (or GPU) maximum
frequency capping on FPS, power, and EpF for some exam-
ples of the training set. For illustration, we show a typical
example application from each different graphics workload,
that provides specific examples for the general schemes of
graph pattern analysis shown in Figure 8. (For readability,
average FPS and power of the baseline are like these: Trial
Xtreme4 (FPS: 60, Power: 1790mW), Action Bike (FPS: 56,
Power: 3090mW), Q3-Zombie (FPS: 43, Power: 3100mW),
Robocop (FPS: 56, Power: 3250mW).

4.2.2 CPU/GPU Saturated Frequency Lookup Tables
Figure 13 shows the final saturated frequency lookup ta-

bles configured as output of the training phase. For the No-
dominant workload, available lowest frequencies were config-
ured. For the CPU-dominant workload, CPU saturated fre-
quency is almost near to the maximum CPU frequency (i.e.,
1800 - 1900Mhz), and GPU saturated frequency is higher
than the minimum frequency (i.e., 266 - 325Mhz). For the
GPU-dominant workload, GPU saturated frequency is al-
most near to the maximum frequency (i.e., 420 - 480Mhz),
and CPU saturated frequency is higher than the minimum
frequency (i.e., 1400 - 1600Mhz). Finally, for the CGU-

3) Configuration of the saturated frequency: Result  

 CPU Sat_freq.    GPU  Sat_freq.   

CPU \ GPU  
Cost Index 

0 1 2 3 4 5 

0 1200 1200 1200 1400 1600 1600 

1 1200 1200 1200 1400 1600 1600 

2 1400 1400 1400 1600 1600 1600 

3 1800 1800 1800 1800 1700 1600 

4 1900 1900 1800 1800 1800 1600 

5 1900 1900 1900 1900 1900 1600 

CPU \ GPU  
Cost Index 

0 1 2 3 4 5 

0 177 177 266 420 420 480 

1 177 266 350 420 420 480 

2 266 266 350 420 420 480 

3 266 266 350 350 420 480 

4 266 266 350 350 420 480 

5 266 266 350 350 420 480 

 1) For four vacant windows, heuristically speculated  

 2) 6 CGU windows(not observed) are also speculated 

 Final output in training phase: CPU and GPU sat. freq. tables   

(a) CPU

3) Configuration of the saturated frequency: Result  

 CPU Sat_freq.    GPU  Sat_freq.   

CPU \ GPU  
Cost Index 

0 1 2 3 4 5 

0 1200 1200 1200 1400 1600 1600 

1 1200 1200 1200 1400 1600 1600 

2 1400 1400 1400 1600 1600 1600 

3 1800 1800 1800 1800 1700 1600 

4 1900 1900 1800 1800 1800 1600 

5 1900 1900 1900 1900 1900 1600 

CPU \ GPU  
Cost Index 

0 1 2 3 4 5 

0 177 177 266 420 420 480 

1 177 266 350 420 420 480 

2 266 266 350 420 420 480 

3 266 266 350 350 420 480 

4 266 266 350 350 420 480 

5 266 266 350 350 420 480 

 1) For four vacant windows, heuristically speculated  

 2) 6 CGU windows(not observed) are also speculated 

 Final output in training phase: CPU and GPU sat. freq. tables   

(b) GPU

Figure 13: Saturated Frequency Lookup Tables

dominant workload, lower frequencies than those of CPU-
or GPU-dominant workloads were configured.

4.2.3 From Training Set
Figure 14 shows the average results of each character-

ized graphics workload. Co-Cap achieves EpF improvement
of 8.3%, 5.4%, 23.1%, 12.3%, and 10.6% on average in No-,
GPU-, CPU-, CGU-dominant, and total applications respec-
tively and achieves little FPS decline (0.5% on average) for
total applications, (FPS decline by -0.3%, 1.0%, 1.3%, 0.6%,
and 0.5% on average in No-, GPU-, CPU-, CGU-dominant,
and total applications respectively).
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Figure 14: Avg results of the Training Set

Figure 15 shows that the results of the 30-app training
set. It is observed that the EpF is improved in all bench-
marks except Dhoom3 and the FPS is successfully main-
tained at almost similar to the baseline for all benchmarks.
(workload of Dhoom3 is so lightweight that could not have
additional power reduction in spite of the minimum CPU
and GPU frequency.)

4.2.4 From Deployment Set
Figure 16 shows that the results of each application of the

40-app deployment set. Figure 17 shows the average results
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Figure 15: The results of the Training Set.
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Figure 16: The results of the Deployment Set.

of each characterized graphics workload. Co-Cap achieves
EpF improvement of 9.3%, 4.0%, 19.1%, 17.0%, and 10.0%
on average in No-, GPU-, CPU-, CGU-dominant, and to-
tal applications respectively and achieves negligible FPS de-
cline (0.7% on average) for total applications. These results
clearly show that Co-Cap is able to achieve significant im-
provement in EpF with little FPS decline for all types of
graphics workloads in the training and the deployment sets.

Results: Deployment Set  

0.0 

20.0 

40.0 

60.0 

80.0 

100.0 

120.0 

NO_domi GPU_domi CPU_domi CGU_domi Tot_Avg 

N
o
rm

a
li
ze

d
 

Base_FPS CoCap_FPS 

0 

20 

40 

60 

80 

100 

120 

NO_domi GPU_domi CPU_domi CGU_domi Tot_Avg 

N
o
rm

a
li
ze

d
 

Base_EpF CoCap_EpF 

(a) Average results of FPS

Results: Deployment Set  

0.0 

20.0 

40.0 

60.0 

80.0 

100.0 

120.0 

NO_domi GPU_domi CPU_domi CGU_domi Tot_Avg 

N
o
rm

a
li
ze

d
 

Base_FPS CoCap_FPS 

0 

20 

40 

60 

80 

100 

120 

NO_domi GPU_domi CPU_domi CGU_domi Tot_Avg 

N
o
rm

a
li
ze

d
 

Base_EpF CoCap_EpF 

(b) Average results of EpF

Figure 17: Average Results of the Deployment Set

4.3 Analysis and Discussion
As shown in Figure 17(b), EpF improvement differs based

on the types of graphics workloads for both the training set
and the deployment set. We do observe that CPU domi-
nant workload applications have better EpF improvement
compared to GPU dominant workloads. Note that the de-
fault CPU governor supports cluster-based DVFS. We spec-
ulate that the main rendering process of graphics applica-
tions on Android system is executed on one single core even
though there are four big CPU cores and four little CPU
cores. Therefore, if we use a slightly lower maximum fre-
quency removing frequency over-provisioning compared to

the default maximum frequency, we can easily get signifi-
cant power reduction with little FPS loss for CPU dominant
applications. However, for GPU dominant workloads, GPU
is especially dedicated for rendering tasks, therefore power
reduction rate of GPU dominant workload (Figure 12.(d))
is less than the CPU dominant workload (Figure 12.(e)) for
same FPS degradation. In addition, when we reduce GPU
maximum frequency, total power consumption and EpF do
not decrease gradually as shown in Figure 12.(d). For No-
dominant workloads, the minimum frequency of CPU-bc or
GPU is still quite high for some lightweight No-dominant
graphics applications such as Ninja Fruit, Extreme Bike, and
Battlefield as shown in Figure 16.

Our proposed Co-Cap methodology shows promise for
improving energy efficiency across a wide range of mobile
games, and also in being rapidly applicable for newer plat-
forms as they emerge. However, our initial efforts still need
to address several open issues, such as: How do we estab-
lish completeness using this training set? Can we use more
sophisticated methods (e.g., Neural Networks or Machine
Learning) to augment our existing heuristics for saturated
frequencies? How do we incorporate the effects of mem-
ory frequency capping, given that memory utilization varies
dynamically during game execution? These and other ex-
tensions are currently under active investigation.

5. CONCLUSION
In this paper, we proposed Co-Cap, an energy-efficient

CPU-GPU dynamic maximum frequency capping technique.
In the training phase, we first dynamically captured data
such as utilization and frequency, estimated graphics work-
loads using the normalized CPU and GPU cost, and then
configured the saturated frequency of CPU and GPU in
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each cost window. We then evaluated the efficacy of Co-
Cap using a new set of games. Our experimental results
using 70 real games on the ODROID platform show that Co-
Cap improves energy per frame by 10.6% and 10.0% (23.1%
and 19.1% in CPU dominant applications) on average and
achieves little FPS decline by 0.5% and 0.7% (1.3% and 1.7%
in CPU dominant applications) on average for the training-
and deployment set respectively, compared to the default
CPU- and GPU governors, with negligible overhead in exe-
cution time and power consumption on ODROID-XU3. Our
ongoing and future work include: 1) Proposing a smart
Co-Cap using more sophisticated methodology such as neu-
ral networks machine learning algorithms. 2) Developing a
memory-aware cooperative CPU-GPU DVFS governor. Fi-
nally, while this methodology was targeted mainly for mobile
games, it can also be applicable for various types of CPU-
GPU integrated graphics applications.
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APPENDIX A

Effects of Memory Frequency Capping

We investigate the effects of the memory maximum fre-
quency capping on FPS and the total power (CPU-bc, CPU-
lc, GPU, and DRAM) as shown in Figure 18 and 19. In
this appendix, we describe the general trend of memory fre-

quency capping and the results. (Based on the results, we
did not apply the memory frequency capping into the Co-
Cap manager).

First, we explain the general trend of memory frequency
capping effects for the four different application categories
(No-, CPU-, GPU-, and CGU-dominant quadrants) shown
in Figure 18. Additionally, as shown in Figure 19, we add a
typical example application in each different graphics work-
load for illustration.Characterization of Memory Frequency Capping  
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Figure 18: Effects of Memory maximum frequency
capping on FPS and Power.
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Figure 19: Results of Memory maximum frequency
capping on FPS, Power, and EpF.

Figure 18.(a) and (b) (the illustration in Figure 19.(a)
and (b)) show the performance/power consumption graph
trends of No- and CPU-dominant workloads respectively.
FPS and the total power remain the similar for overall mem-
ory frequencies except the very low frequencies, which means
that configuring the saturated frequencies of memory does
not have opportunities for power saving.

In addition, Figure 8 (c) and (d) (the illustration in Fig-
ure 19.(c) and (d)) show the performance/power consump-

8



Extra Slides  

-200.0 

-150.0 

-100.0 

-50.0 

0.0 

50.0 

100.0 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

5000 

A
n
g
ry

 B
ir
d
s 

 

D
h
o
o
m

3
 

C
a
ll 

o
f 
D

u
ty

 

Tr
ia

l 
X
tr
e
m

e
4
 

D
in

o
 H

u
n
te

r 

D
H

 2
0
1
4
 

D
-D

a
y 

C
u
st

o
m

 R
a
ce

r 

Je
ts

k
i 
Ju

m
p
 

B
ik

e
 R

a
ci

n
g
 

H
e
rc

u
lo

u
s 

C
o
n
t.
 K

ill
e
r 
S
1
 

D
in

o
sa

u
r 

S
h
o
o
t 
E
m

D
o
w

n
 

S
tr
e
e
t 
D

ri
ve

  

Je
ts

k
i 
R
a
ce

 

Q
3
Z
o
m

b
ie

 M
.4

 

Tu
rb

o
-f

a
st

 

G
FX

 D
ri
ve

r 
O

H
 

G
.P
.A

 G
e
o
m

1
 

D
re

a
m

 B
ik

e
 

 B
u
g
g
y 

B
a
n
d
it
 

G
.P
.A

 G
e
o
m

2
 

A
n
o
m

a
ly

2
 

3
D

m
a
rk

-n
o
r 

A
ct

io
n
 B

ik
e
 

3
D

 m
a
rk

 

Fr
o
n
tl
in

e
2
 S

.1
 

R
o
b
o
co

p
 

G
P
U
b
e
n
ch

 

F
P
S
, 
E
p
F
 (

m
J 

p
e
r 

F
ra

m
e
) 

P
o
w

e
r 

B
re

a
k
d
o
w

n
  
(m

W
) 

GPU_P 

CPU-lc_P 

CPU-bc_P 

FPS 

EpF 

No – domi.  CPU – domi.  GPU – domi.  CGU  

Figure 20: FPS, Power breakdown, and EpF of the Training Set.

tion pattern of GPU- and CGU- dominant workloads respec-
tively. For these workloads, the opportunities for FPS and
power saving do not exist. In other words, as the maximum
memory frequency scales down, FPS degrades and the total
power increases (even worse). This makes memory capping
unattractive for performance and power saving. Therefore,
according to the observation on the effects of memory max-
imum capping, we use the default maximum memory fre-
quency (i.e., 825Mhz) as the saturated frequency for mem-
ory.

The similar results on the impacts of memory frequency
scaling are also can be observed in the recent work [11].
However, memory-aware cooperative CPU-GPU DVFS gov-
ernor for energy saving of mobile games can be observed in
our previous related work [6].

APPENDIX B

Characteristics of the Training Set

As described in Section 4.1, we used a 30-app training
set (Figure 10) for the training phase. In order to under-
stand more accurately each application of the training set
and compare comprehensively results of applications, Ta-
ble 3 and Figure 20 show the characteristics of the training
set: 1) CPU/GPU average utilization, frequency, and nor-
malized cost for a certain amount of execution time (the
execution time may be different in each application). 2)
Not normalized FPS, power breakdown (CPU-bc, CPU-lc,
and GPU), and EpF.

In Table 3, applications are separated into four quad-
rants: No-dominant (from Angry Birds to Dinosaur), CPU-
dominant (from Shoot Em Down to GFX Driver OH), GPU-
dominant (from G.P.A Geom1 to Frontline2 S.1) and CGU-
dominant (Robocop and GPUbench). And each column
corresponds to CPU utilization, CPU frequency, normalized
CPU cost, GPU utilization, GPU frequency, and normalized
GPU cost. (For instance, GPUbench (the last application)
has the values of CPU (93% util, 1639Mhz, 76) and GPU
(95% util, 490Mhz, 86) related characteristics.

Additionally, as shown in Figure 20, we show the in-
formation of measured FPS, power (CPU-bc, CPU-lc, and

GPU), and EpF (mJ per frame or Watt per FPS). For in-
stance, Angry Birds have 60 FPS, 800 mW (GPU : CPU-lc
: CPU-lc = 300 : 200 : 300), and 13 EpF (800/60). On the
other hand, GPUbench has 50 FPS, 3500 mW (GPU : CPU-
lc : CPU-bc = 2000 : 200 : 1300), and 70 EpF (3500/50).

Using these information, we can characterize each ap-
plication of the training set, and analyze the results more
accurately.

Table 3: Util, Freq, and Cost of the Training Set
App C util C freq C cost G util G freq G cost

Angry Birds 5 1220 2 32 178 10

Dhoom3 57 1211 34 43 178 13

Call of Duty 59 1794 52 65 177 20

Trial Xtreme4 49 1212 29 74 268 36

Dino Hunter 59 1794 52 65 177 20

DH 2014 66 1277 41 67 261 31

D-Day 85 1349 56 76 353 49

Custom Racer 10 1219 6 86 356 55

Jetski Jump 59 1224 35 82 328 48

Bike Racing 50 1213 29 83 284 42

Herculous 56 1296 36 82 369 54

Cont. Killer S1 79 1221 47 79 341 48

Dinosaur 71 1219 42 79 334 47

Shoot EmDown 78 1737 66 84 382 57

Street Drive 79 1797 92 72 267 34

Jetski Race 92 2033 92 50 180 15

Q3Zombie M.4 95 2010 95 65 265 31

Turbo-fast 99 2004 99 71 177 22

GFX Driver OH 95 2000 95 84 267 41

G.P.A Geom1 0 1200 0 86 420 66

Dream Bike 45 1219 27 86 429 66

Buggy Bandit 66 1451 50 86 409 65

G.P.A Geom2 0 1200 0 98 480 86

Anomaly2 53 1206 32 93 475 81

3Dmark-nor 70 1340 48 85 394 62

Action Bike 34 1216 20 99 520 94

3D mark 58 1206 34 99 540 99

Frontline2 S.1 80 1235 48 99 513 92

Robocop 87 1970 85 85 419 65

GPUbench 93 1639 76 95 490 86

APPENDIX C

Additional Detailed Results and Analysis

In this appendix, we add more detailed results and anal-
ysis: 1) Power breakdown of Figure 12 (FPS, power and
EpF results of different types of graphics workloads) in Fig-
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Figure 21: FPS, Power and EpF Results of Different Types of Graphics Workloads.

ure 21. 2) Energy savings of the training set in Figure 22.(a).
3) FPS degradation and power savings of the training set in
Figure 22.(b).

Using the power breakdown added in Figure 21, we can
analyze that power (energy) savings can be obtained from
which component (CPU or GPU). For example, Figure 21.(d)
(the GPU-dominant example) shows that the main power
contribution results from GPU component. On the other
hand, Figure 21.(e) (the CPU-dominant example) shows
that the main power contribution comes from CPU-bc com-
ponent.

Figure 22.(a) shows the total (CPU-bc and GPU) en-
ergy savings per frame compared to the default policy. Our
Co-Cap technique outperforms the default policies on all
applications (we assume the Dhoom3 is in the margin of er-
ror, -0.9% - 0.9%). The results show a significant combined
CPU-bc+GPU average energy savings of 10.6% across all
the applications. On average, the contribution of CPU-bc
component to the energy savings is 7.4% while the contri-
bution of GPU component is 3.2%. A larger savings re-
sult from the CPU-bc component because the power reduc-
tion rate in the CPU-dominant applications (Figure 21.(e))
is faster than that of the GPU-dominant application (Fig-
ure 21.(d)). The energy savings are more remarkable on the
CPU- and CGU-dominant applications (23.1% and 12.3%
respectively). On the other hand, GPU-dominant applica-
tions have less energy savings (5.4%). In the No-dominant
applications, the average energy savings are 8.3%, but the
energy saving of each application was very various: the high-
est 16.3% for Call of Duty and the lowest -0.5% for Dhoom3.

The average CPU and GPU power savings are shown in
Figure 22(b). The most remarkable CPU power savings are
observed in the CPU-dominant applications; mostly because
the CPU maximum frequency (the saturated frequency) is
set lower than the default policy within minimal FPS degra-
dation for these applications. Additionally, CPU intensive
applications in the No-dominant quadrants such as Call of
Duty and Dino Hunter and CPU intensive application like
Robocop in the CGU-dominant quadrants also show signif-
icant CPU power savings. On the other hand, the GPU
power savings are observed in the GPU-dominant applica-
tions and GPU intensive applications in the No-dominant
quadrants such as Custom Racer, Jetski Jump and Bike Rac-
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(a) Energy Savings of the Training Set.
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(b) Power Savings of the Training Set.

Figure 22: Detailed Results on the Training Set.

ing, but the percentage of GPU power savings are less than
that of CPU power savings. From the observations of the re-
sults, we speculate that relative CPU- or GPU-intensiveness
of workloads in No- and CGU-dominant quadrants are also
important factors.

FPS degradation: the top of Figure 22.(b) shows the
performance degradation of our proposal in each application
of the training set. An insignificant FPS degradation of a
0.5% on average was observed across all applications, but a
few specific applications such as GFX Driver OH, Frontline2,
and Robocop have a FPS degradation of more than 3%.
Our analysis speculates that more completeness using the
training set or more sophisticated methods will minimize
the FPS degradation on specific applications, and those will
be part of our future work.
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