
UNIVERSITY OF CALIFORNIA, IRVINE

CECS
CENTER FOR EMBEDDED & CYBER-PHYSICAL SYSTEMS

WebRTCBench: A Benchmark for Performance Assessment of WebRTC

Implementations

Sajjad Taheri, Laleh Aghababaie Beni, Alexander V. Veidenbaum, Alexandru Nicolau,

Rosario Cammarota, Jianlin Qiu, Qiang Lu, Mohammad R. Haghighat

Center for Embedded and Cyber-Physical Systems

University of California, Irvine

Irvine, CA 92697-2620, USA

{sajjadt,laghabab,alexv,nicolau}@uci.edu, rosarioc@qti.qualcomm.com,

{jianlin.qiu,qiang.lu,mohammad.r.haghighat}@intel.com

CECS Technical Report CECS-15-01

April 20, 2015

WebRTCBench: A Benchmark for Performance
Assessment of WebRTC Implementations

Sajjad Taheri, Laleh Aghababaie Beni, Alexander V. Veidenbaum, Alexandru Nicolau
Dept. of Computer Science, UC Irvine, Irvine, CA

Email: {sajjadt,laghabab,alexv,nicolau}@uci.edu

Rosario Cammarota
Qualcomm Research

Email: rosarioc@qti.qualcomm.com

Jianlin Qiu, Qiang Lu, Mohammad R. Haghighat
Intel Corporation

Email:{jianlin.qiu,qiang.lu,mohammad.r.haghighat}@intel.com

Abstract—WebRTC is an HTML5 API that allows browsers
to establish a peer-to-peer connection for transferring data and
media content via JavaScript APIs. This functionality enables
broad range of new applications to emerge and is going to
revolutionize Web communication. However, this technology is
still under development and standardization process. Hence,
detecting performance bottlenecks of different implementations
across operating systems and architectures can help improve it
significantly, and a benchmark suite would be a great help to
accomplish this task. In this paper, we present WebRTCBench,
a benchmark which measures WebRTC performance for estab-
lishing peer to peer media streams and data channels and also
WebRTC media and data communication. We present and discuss
performance evaluation of WebRTC implementations across a
range of architectures and operating systems. This benchmark is
publicly available under GPL license.

Keywords: WebRTC, Peer-to-peer Connection, Perfor-
mance Measurement

I. INTRODUCTION

WebRTC is result of a joint effort between the World Wide
Web Consortium (W3C) and Internet Engineering Task Force
(IETF) to provide real-time communication capabilities in
browsers. WebRTC aims to fill a critical gap in web application
design by providing APIs to access native devices, share
streams of audio/video and establishing bi-directional data
channels. It consists of multiple underlying communication
protocols and standardized JavaScript APIs which expose
unique browser capabilities to web developers [8]. It’s also
an industry effort and major browser vendors such as Mozilla
and Google provide WebRTC support in their browsers.

WebRTC API is divided into three main categories:
(1) GetUserMedia: provides access to user media including
cameras, microphones and display.
(2) DataChannel: allows arbitrary data to be transferred
through a peer to peer data channels.
(3) RTCPeerConnection: sets up a direct connection between
two WebRTC enabled end points, allowing media streams and
data channels to be attached to it.

TABLE I: Sample WebRTC applications, considering Ge-
tUserMedia (GM), RTCPeerConnection (PC), DataChan-
nel(DC)

Application GM PC DC
Media Recording, Gesture Recognition, Voice
Translation

7

Voice Call, Video Conferencing, Screen Sharing 7 7
Messaging, File Sharing, Data Transfer 7 7
Streaming Local Media files 7

WebRTC novel capabilities enable browsers to have a
wide range of new applications using web standards. Mul-
tiple web applications have emerged allowing users to host
conversations and share videos and data. Online multi-player
games such as Banabread [1] are now benefiting from peer-
to-peer data transfer provided by data channels. Table I lists
some applications of WebRTC along with the components of
WebRTC that are used by them. Each class of applications
requires certain classes of API functions. An extension to
WebRTC media capture has been proposed which provides
the ability to acquire and transfer depth streams synchronized
with color video from Kinect-like cameras[2]. RGB-D signals
have boosted research in computer vision and allow efficient
and more precise applications such as skeleton tracking and
3d scanning. We believe that with access to depth camera,
perceptual interfaces for web applications will emerge adding
another level of improvement to user experiences.

Direct interaction of WebRTC with users make its response
time and performance critical. WebRTC’s high computational
and bandwidth requirements, especially on mobile devices
with limited resources, calls for improvement. Measurement
of basic and advanced functionalities of current and future
implementations of WebRTC is particularly important at this
stage of standardizatoin and development.

Different aspects of a WebRTC systems can be evaluated.
For instance, Singh, et al., showed how WebRTC congestion
control performs under different topologies and latencies[11].
Another study demonstrated how WebRTC video quality
changes in a realistic setup, as devices are moving around the

network[6]. The main focus of aforementioned works is the
network and its performance.

Main goal of designing WebRTCBench (available at https:
//github.com/INTCUCI/WebRTCBench) is to spot critical per-
formance bottlenecks of WebRTC implementations which is
an important step for guiding optimizations. This benchmark
evaluates performance of WebRTC functionalities considering
different implementations, architecture and platforms as each
of these factors can have big impact on performance. The
other goal of WebRTCBench is to provide a cross-platform
benchmark using only JavaScript API and without any browser
modifications.

Using representative benchmarks for evaluating perfor-
mance of computing devices is a well-known approach. Al-
though there are several benchmarks for evaluating JavaScript
execution performance, such as [3], WebRTCBench is the first
benchmark that evaluates WebRTC functionalities and allows
quantitative comparison between WebRTC implementations
across browsers, devices and operating systems.

II. WEBRTC BENCHMARK

This section describes how WebRTCBench is designed
and implemented. The selection of performance primitives
measured by the benchmark will be justified. We also describe
how performance statistics are collected.

Figure 1 depicts a communication system based on We-
bRTC triangle. It consists of WebRTC enabled peers and
a web/signaling server. Web server is hosting the WebRTC
application while signaling server is used by peers to negotiate
on content and settings, and coordinate the connection. In case
of a multi party WebRTC session, different topologies can be
used. It is possible to establish a connection between each pair
in a full-mesh scenario which offers the lowest latency but
with the cost of high bandwidth usage. Alternatively, media
servers can be placed in middle of connections, making a
star-like topology or use routing technique. This will increase
the latency and needs a more complicated logic in the middle
layers but requires less bandwidth. A WebRTC system regard-
less of topology is a collection of peer-to-peer connections. In
this paper we are interested in measuring the performance of
WebRTC peer-to-peer connections.

WebRTCBench is composed of three components to make
a WebRTC system similar to one depicted in Figure 1: a
web/signaling server application, a WebRTC application(actual
benchmark application) and a database hosted at the server.

A. Performance Measurements

The current version of benchmark measures performance
of two complementary aspects of a data/media peer to peer
communication provided by WebRTC: connection establish-
ment and media engine/data channel performance during video
calls and data transfers. With our benchmark, it is possible
to exercise specific portion of WebRTC API. Since the depth-
related API is not formally implemented yet, we haven’t added
them into the benchmark yet, but they will be considered for
future implementations.

Web Server

Browser 1 Browser 2

Peer Connection

Browser 3

sig
nall

ing

signalling

signalling

Peer Connection Peer Connection

Fig. 1: A Typical WebRTC system

Web ServerBrowser 1 Browser 2

Offer

Offer

ICE
Answer

Answer

ICE Connected

Data or Media Stream

In
iti

al
iz

e
C

al
l

O
ff

er In
iti

al
iz

e
M

ak
e

A
ns

w
er

IC
E

H
ol

e
Pu

nc
hi

ng

Data channel ro remote stream

Fig. 2: WebRTC peer connection flow between two peers

1) Connection Establishment: This section describes nec-
essary steps for establishing a WebRTC peer connection be-
tween two peers and highlights basic functionalities involved.
WebRTC connection establishment flow between two peers
is shown in figure 2. By identifying and minimizing time
consuming steps, peer connection can be established faster.

For peer-to-peer connectivity, peers need to know each
other’s address. However, it’s very likely that peers are behind
NATs and network firewalls blocking access from outside.
A technique called ICE hole punching [9] is used during
which peers gather their public address candidates using STUN
servers and exchange them through the signaling server. Dif-
ferent NAT types make specific constraints on reachability
from outside [10]. Hole punching is effective method for
connectivity for all cases of NAT types except for Symmetric
NATs.

WebRTC doesn’t mandate a specific messaging mecha-
nism for signaling and a wide variety of options, including
Websockets[5] and XmlHTTPRequest[14], can be used for this
purpose.

As depicted in Figure 2, first, each peer instantiates an
RTCPeerConnection object. Optionally, they can acquire
local media streams which can be used by a media element
for local display or be attached to RTCPeerConnection
object for transmission to the other peer. Peers also need
to establish a connection with the signaling server which
they use to communicate messages. At this point, one of
the peers (the caller) makes an offer indicating the content
and settings of the communication and sends it to the other
peer using the signaling server and starts the hole punching
sequence. On the other side, when the callee receives the
offer through the signaling channel, it prepares an answer
and sends it back, and will start the ICE hole punching. ICE
hole punching is a technique in which two peers exchange
the IP addresses gathered from STUN and TURN servers and
check it for connectivity constantly until they find a way to
connect. We consider a variant of this technique in which
both peers look for finding ways to connect incrementally
[7], which is implemented in all browsers. After successful
connection, a data channel can be opened or a remote media
can be played. A portion of connection setup time is spent on
the server, but our experiments show that the corresponding
time is negligible. Depending on the required functionality of
WebRTC, a subset of these parameters contribute to total time
of establishing a WebRTC connection. WebRTCBench records
the time different events occur and uses them to calculate the
delay for each step. We have categorized and listed all the
steps in Table II.

TABLE II: Connection flow measured primitives

Parameter Definition

In
iti

al
iz

at
io

n

New Peer Connection Time for instantiating a new
RTCPeerConnection object.

Get User Media Time spent capturing user media excluding
time waiting for user permission.

Can Play Local Media Time spent after media request until local
media becomes available.

Setup Signaling Channel Time to setup signaling channel using Web-
Sockets.

C
om

m
un

ic
at

io
n

Make Call Time for setting session descriptions and cre-
ating offer.

ICE Hole Punching Time spent for ICE hole punching process.
Make Answer Time for setting session descriptions and cre-

ating answer.
Signaling Time spent propagation of answer/offer mes-

sages and signals across the network.
Open Data Channel Time for opening data channel.
Play Remote Stream Time for play remote media stream to be

available.

2) WebRTC Media Engine: Figure 3 shows the media en-
gine block diagram used in current WebRTC implementations.
After RTCPeerConnetion setup and call establishment, a
complete media pipeline is in place with peers performing
capturing/decoding/ or/and encoding/rendering at the same
time.

WebRTC Stats API is leveraged to obtain performance pa-
rameters associated with different components of media engine
including encoder, decoder, jitter buffer and network. Renderer
performance on the other hand, is evaluated by recording the
number of frames that are dropped/painted by HTML video
element and their resolution. Table III lists parameters from
each module that are recorded by WebRTCBench.

Benchmark input media can come from two sources: 1) in-
put devices 2) fake devices. With WebRTCBench it’s possible

TABLE III: Media engine performance statistics

Module Measured Statistics
Video Capture Captured video resolution; And number of frames captured

per second.
Video Encoding Encoded stream bitrate, frame rate and resoloution;also

encoder ramp-up speed
Video Decoding/
Rendering

Frame numbers decoded/rendered per second; resolution of
rendered stream .

Networking Bytes/packets sent, received and dropped, RTT.
Jitter Buffer Jitter, A/V Sync.

to get stream from a specific media device (for example front
or rear camera of a smart phone) which satisfies user provided
constraints. Constraints that are currently supported are video
resolution and frame rate. Most browsers can generate fake
audio/video streams for testing purposes. Additionally, uncom-
pressed video files can be used as fake devices. Using fake
devices however may require starting a browser with proper
command line switches.

Since most WebRTC implementations start up streaming
with low encoding/sending bitrate and ramp up to meet the
preset bandwidth constraint, WebRTCBench monitors the ac-
tual encoding bitrate, and starts recording the performance data
when the encoding bitrate has been stabilized. Figure 12 shows
typical ramp up curves for send bitrate.

The first WebRTC proposal mentioned VP8 as the only
mandatory codec for WebRTC endpoints to implement. How-
ever due to industry support and release of OpenH264 im-
plementation, H264 also become a mandatory codec to imple-
ment. At the time of writing this paper H264 WebRTC support
is added to the latest Firefox release for both Desktop and
Mobile platform. On the other hand, VPx family of codecs
are under development with rapid pace and latest Chromium
Canary is shipped with VP9 communication capabilities. We-
bRTCBench can select the video/audio codec used in the
experiments among VP8, H264 and VP9 codecs if supported
by implementation.

3) WebRTC Datachannel: WebRTCBench can be used
to evaluate the performance of data channels. Two metrics
measured by benchmark are transfer bandwidth and latency.
Applications such as peer-to-peer multiplayer games require
low latency whereas data transfer requires high throughput.
Table IV lists performance stats collected by WebRTCBench.
Measurements are done at two levels: Application level in
which measurements are only with consideration of user
messages and Network level in which statistics are collected
based on actual network performance. Performance of different
configurations of Data channels such as reliable or unreliable
modes with out of order transmission is supported with help
of data channel constraints.

TABLE IV: Datachannel measured statistics

Category Measured Statistics
Network Bytes sent/received/RTT
Application Bessages sent/received /RTT

B. Benchmark Challenges

This section lists some of the challenges that we faced
during benchmark development and workarounds that we used.

Video Capture

Preview

Video Encode

Image Processing

RTP Payloader Network Sink

Jitter BufferNetwork Input RTP Depayloader Video Decoder Video Render

Fig. 3: WebRTC media engine

1. GetUserMedia returns the stream after receiving user
permission. Hence the reported time will include the time spent
waiting for user permission. We bypassed Google Chrome
user permission by accessing the server through a HTTPS
connection and then adding our server as a media exception for
which browser can remember the permission. Mozilla Firefox
on the other hand has a flag for disabling user permission
dialog.

2. WebRTC specification is still in flux and changes over
time. Many functions are prefixed and some functionalities
have to be implemented differently on each implementation
i.e. collecting statistics or file transfer.

3. Benchmarking is performed on two nodes with poten-
tially unsynchronized clocks. Some measurements such as data
transfer time should be done on both peers. We used data
channels to synchronize the clock. The following procedure
is repeated for a large enough number of iterations. At ith
step, one of the clients sends a ping message and records the
current timestamp at ts1i. The other client will send the pong
message with its current timestamp tri as soon as it receives a
ping message. Originating client will again record its current
timestatmp as ts2i when it receives the pong message. The
minimum value of ts2i− ts1i over all iterations is considered
to be the round trip time rtt. Consequently, the clock difference
between two peers is trj − ts1j − rtt/2 where j points to the
iteration with the lowest round trip delay.

4. Our benchmark measures statistics about media engine
performance. However, for a true comparison same video
sequences should be used. Live videos from GetUserMedia
have variations and it is impossible to have a unique input for
each tests. Luckily, browsers support synthetic streams or raw
uncompressed video files as fake devices that were used in our
experiments.

III. IMPELEMENTATION

WebRTCBench has three main components to make a
typical WebRTC system: a unified web and signaling server,
a benchmark application written in HTML5 and an optimal
database.

A. Web/Signaling Server

We implemented a server which acts as both a web
server and a signaling server using Node.js [12] platform.
Once running, peers navigate to the server URL with their
browsers to download the benchmark application and exchange
necessary signaling messages to establish the connection. After
completion of experiments, server collects results from peers

and stores them in text format and in a database for further
analysis.

B. WebRTC Benchmark Application

A fully functional WebRTC application using HTML5
components encompassing main functionalities of WebRTC,
such as audio/video call, file sharing and messaging is imple-
mented. It currently supports Google Chrome, Mozilla Firefox
and Opera for Desktop and Android platforms which is almost
65% of installed browsers on the market[4]. Interoperability
between all browsers is also provided.

To use the benchmark, users navigate to the benchmark
URL address with their WebRTC enabled browser and down-
load the WebRTC benchmark application. The application
lets users decide on settings for their experiments. They
can select any combination of text conversation, audio/video
conferencing or file sharing along with the constraints for
connections such as preferred video codec, captured video
resolution, and data channel constraints. Users provide their
own machine description including: device, processor and
connection type. Performance evaluation is done at both sides
of the conversation in parallel and users are informed through
a provided console. WebRTCBench has an automated mecha-
nism to collect experiments information from peers’ browsers.
This information is stored in database along with performance
results for future analysis.

WebRTC Javascript APIs has made it possible to col-
lect performance statistics without any modification to the
existing browsers. In order to measure the performance of
functionalities listed in Tables II, III and IV the source code
is instrumented and multiple callback functions for capturing
events are placed. Application at each peer uses these events
to generate and report performance statistics to the server
after establishment of connection. WebRTC media engine
exposes a series of statistics through its JavaScript object
attached to RTCPeerConnection instance. Our benchmark
suite utilizes these statistics interface to gather media engine
performance data.

C. Database

WebRTCBench provides necessary modules and scripts to
build and access a MySQL database. Storing all performance
information along with corresponding experiment configura-
tion in a database allows further analyzing of WebRTC perfor-
mance. It also makes it possible to have a comparison between
different versions of WebRTC. The database is designed to be
extensible in order to cope with future WebRTC features.

IV. EVALUATION

This section presents performance results obtained using
the WebRTCBench to demonstrate its capabilities. Experi-
ments are conducted to provide insights for understanding of
the WebRTC behavior and to demonstrate that WebRTCBench
is a useful tool for developers and researchers. Experiments
cover most of the capabilities provided by benchmark, i.e.
peer to peer connection establishment and datachannel/video
call performance. Experiments were conducted on two major
WebRTC enabled browsers (Google Chrome, Mozilla Firefox)
running on four different configurations shown in Table V.
In order to have a rough estimate of JavaScript execution
and network performance of our configurations, scores of
Octane JavaScript benchmark suite [3] is collected. Higher
Octane score means better average JavaScript performance.
Each reported experiment was repeated ten times and the
average performance are reported. To avoid any influence from
previous runs, browsers are completely restarted with a clean
profile before each experiment. Throughout the rest of paper,
letters ’C’ and ’F’ in figures represents Google Chrome and
Mozilla Firefox respectively. We also considered two different
networks in our experiments listed in Table VI .

TABLE V: Specifications of test devices

Name Processor O.S. Browser Octane
Score

Razr i Atom,
2 GHz

Android
4.1.2

Chrome
41

3085

Firefox
36

2852

Xperia Z3 Qualcomm
2.5 GHz,

Quad Core

Android
4.4.4

Chrome
41

4436

Firefox
36

4194

PC 1 X86 Core i7
2.4GHz

Windows
8.1

Chrome
41

22520

Firefox
36

20010

PC 2 X86 Core i7
1GHz

Windows
8.1

Chrome
41

5131

Firefox
36

4839

A. Initialization and Peer Connection Establishment Perfor-
mance

Figure 4 shows initialization performance for different
configurations of browsers and devices. This figure only
represents the time that is needed for instantiation of a
RTCPeerConnection object as setting up signaling, and
creating a RTCDataChannelis negligible on all platforms
(atmost a few milliseconds). This time depends on a number
of factors but mainly the operating system and available re-
sources. Generally, it is considerably faster on Google Chrome
implementations compared to Mozilla Firefox.

Figure 5 shows the time spent for capturing user media
stream consisting of both audio and video with a fixed resolu-
tion of 640 × 480 pixels. Captured stream can be attached

TABLE VI: Networks used in experiments

Network name NAT Type
UCINet Full Cone

TMobile US Restrict

Razr Z3 PC-1 PC-2

0

200

400

600

800

Device

Ti
m

e
(m

s)

Chrome
Firefox

Fig. 4: Peer connection initialization performance

FRONT REAR FRONT RICOH SENZ3D
RAZR I Z3 PC-1

C F C F C F C F C F

0

1,000

2,000

Browser/Camera/Device Setting

Ti
m

e
(m

s)

GUM
Can Play

Fig. 5: Get user media delay

to a RTCPeerConnection object before making a We-
bRTC media call. We also report additional time to display
local streams on the browsers. This time corresponds to first
firing of canplaythrough event from html video player.
Experiments show that performance of capturing video streams
depends highly on the camera in use and its driver implemen-
tations. Chrome can capture streams almost instantly, but the
time it takes to present the streams locally is comparable to
Firefox.

In WebRTC peer connection establishment, peers prepare
call offers and answers with a description of call contents.
Additionally, peers perform ICE hole punching for finding
each other. As can be seen in Figure 2, ICE hole punching
and preparing call/answer offers are overlapped. Connection
establishment depends on network quality, but analyzing net-
work performance is not the goal of this benchmark. However,
two different network configurations were considered in this
set of experiments. This allows us to (1) obtain a relative
WebRTC performance on a given fixed network and (2)
compare connection establishment to the rest of the setup time.
We measure the time taken from starting ICE hole punching by
the first peer until ICE agents of both peers get connected. For
this experiment, default STUN servers provided by browser
vendors were used to gather browser public addresses.

Figure 6 depicts the time required for making of-
fers/answers for both data and media contents. Figure 7 shows
the average value over 10 experiments for a variety of devices
and networks. Worst case observed for a local connection
between two browser tabs for Google Chrome on a Desktop
platform.

RAZR I Z3 PC 1) PC 2
C F C F C F C F

0

100

200

300

400
Ti

m
e

(m
s)

Data Offer
Data Answer
Media Offer
Media Answer

Fig. 6: Preparing call offer/answer delay overlapped with ICE
hole punching

UCINet(PC1-PC1) UCINet (Z3-Razri) T-Mobile (Z3-Razri)

500

1,000

Network/Device Configuration

Ti
m

e
(m

s)

Chrome
Firefox

Fig. 7: ICE hole punching delay on different networks

B. Data Channel Performance

We conducted two experiments on datachannels in order to
measure latency and throughput of data channels. Experiments
are performed using two devices (Razr i and Z3) and are
repeated on two different networks.

First experiment measures latency for delivering one SCTP
user message[13]. Latency is especially crucial for having a
responsive real time experience such as in multi player gaming.
We measured it as the half of round trip time for one user
message. This value reflects network latency and also data
buffering policy used by implementations.

Local UCINet T-Mobile

0

200

400

Network

Ti
m

e
(m

s)

Firefox
Chrome

Fig. 8: RTT for Datachannel user messages

Next experiment measures transfer time for sending files
over the networks using Datachannels. Figure 9 shows the
transfer delay for files with different sizes sent from Device
”Z3” to ”Razr i”. Note that Firefox browsers can send files
with any size using DataChannel APIs, but if Chrome is used,
files must be split into small chunks (64KB) first and sent
separately. This procedure is done at the application level.

(a) Soccer

(b) Life

Fig. 11: Reference video inputs

TABLE VII: Reference video inputs specifications

Name Resolution(s) Frame rate Duration
Soccer 640 × 480 60 20s(loop)
Sintel 1280 × 720 24 60s(loop)

10−1 100 101

100

101

File size (MB)

Ti
m

e
(s

)

C-TMobile
FF-TMobile
C-UCINet
FF-UCINet

Fig. 9: Transfer time for files with different size

C. Media Engine Performance

Two experiments were conducted to evaluate media engine
performance. Experiments are based on live videos captured
by cameras as well as two video sequences in uncompressed
Y420 format obtained from xiph.org archive (available at http:
//media.xiph.org/video/derf/) and shown in Figure 11.

The first experiment measures video encoder bitrate ramp
up over time. Encoders increase output video bitrate grad-
ually to avoid network congestion based on feedback from
other peer until reaching the maximum pre-set value. Ramp-
up rate in general depends on how well the other peer is

RAZR I Z3 PC 1
C F C F C F

100

200

300
Pi

xe
ls

(k
)

(a) Decoded video resolution (Soccer)

RAZR I Z3 PC 1
C F C F C F

20

40

60

FP
S

Decode
Render

(b) Decode/Render frame rate (Soccer)

RAZR I Z3 PC 1
C F C F C F

600

800

Pi
xe

ls
(k

)

(c) Decoded video resolution (Life)

RAZR I Z3 PC 1
C F C F C F

15

20

FP
S

Decode
Render

(d) Decode/Render frame rate (Life)

Fig. 10: VP8 decoder statistics

0 50 100

500

1,000

1,500

2,000

K
bi

ts

C (VGA)
C (HD)

FF (VGA)
FF (HD)

Fig. 12: Encoder bitrate over time

receiving/decoding frames. Since lower encoder bitrate will
result in lower video quality, user experience may suffer during
this period. Encoder performance is evaluated by recording the
actual bitrate of encoded stream (a.k.a. sending bandwidth), en-
coding frame rate, and encoding resolution. On platforms with
weaker CPU or hardware encoder, encoding bitrate, frame rate
and resolution will drop below the pre-set value. Running this
test requires a remote peer with enough decoding capability
to rule out encoding quality drop due to decoding capability
limitation. Figure 12 shows the encoder bitrate values for
videos by different resolution captured by cameras attached
PC1 to Z3 devices over the UCINet network. As shown,
encoder ramp-up is not fast enough for Firefox implementation
and it can hurt user experience.

Next experiment measures decoding performance of VP8
coded videos for different platforms and implementations.
Running decoder performance test requires a remote peer with
enough encoding capability so that input stream with given
constraints can be guaranteed. Google chrome on Desktop is
used to encode two reference videos from table VII. Addi-
tionally, RTCPeerConnection is established with a fixed
video bandwidth constraint (2000Kbps) when creating an offer
to remote peer. This constraint makes sure the average video
bitrate transferred between peers does not exceed this value.
In our experiments, we found 120 seconds to be enough for

encoder to reach its peek bitrate. Hence, measurements start
after two minutes and continue for one minute during which
performance statistics are measured. Figure 10 depicts average
decoded video resolutions along with decoding and render
rates measured in the one minute interval for both reference
videos. It shows that processing high definition videos is a
challenging task for mobile phone devices. This condition
can become even worse for multi point conversation where
video are encoded/decoded concurrently per each participant.
We see two different policies used by browsers to cope with
limited resources: Google Chrome tends to keep the resolution
suffering from lower frame rate, Mozilla Firefox scales down
the video in order to keep the frame rate steady.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a benchmark for performance evalu-
ation of WebRTC implementations across different platforms
and architectures. Quick establishment of a RTC peer connec-
tion is an important requirement for future web applications.
Also, good performance of media and data transfers espe-
cially on mobile devices, is extremely important for having
a better user experience. These factors make a benchmark
such as WebRTCBench for performance evaluation as well as
for guiding performance optimizations. It is helpful for both
industrial and end users. To demonstrate capabilities of our
benchmark, initialization and peer connection establishment
and data/media encoding/decoding measurements for variety
of browsers and devices is presented. We plan to extend
WebRTCBench by adding future WebRTC functionalities as
they emerge in WebRTC implementations.

VI. ACKNOWLEDGMENTS

This work was supported by the Intel Corporation. The au-
thors would like to thank Mozilla engineers for their comments
and the anonymous reviewers for their helpful suggestions. We
also thank Vivek Krishnan for working on the initial version
of benchmark.

REFERENCES

[1] Banabread, https://developer.mozilla.org/en-
us/demos/detail/bananabread/, accessed: 10-10-2014.

[2] Media stream depth stream extension,
https://www.w3.org/wiki/media capture depth stream

extension, accessed: 4-14-2015.
[3] Octane javascript benchmark,

https://developers.google.com/octane/. accessed: 4-
14-2015.

[4] Statcounter, http://gs.statcounter.com/, accessed: 10-10-
2014.

[5] I. Fette and A. Melnikov. The websocket protocol. 2011.
[6] F. Fund, C. Wang, Y. Liu, T. Korakis, M. Zink, and S. S.

Panwar. Performance of dash and webrtc video services
for mobile users. In Proceedings of the 20th International
Packet Video Workshop, pages 1–8, 2013.

[7] E. Ivov, E. Rescorla, and J. Uberti. Trickle ice: In-
cremental provisioning of candidates for the interactive
connectivity establishment (ice) protocol. 2013.

[8] A. B. Johnston and D. C. Burnett. WebRTC: APIs
and RTCWEB Protocols of the HTML5 Real-Time Web.
Digital Codex LLC, 2012.

[9] J. Rosenberg. Interactive connectivity establishment (ice):
A protocol for network address translator (nat) traversal
for offer/answer protocols. 2010.

[10] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing.
Session traversal utilities for nat (stun). 2008.

[11] V. Singh, A. A. Lozano, and J. Ott. Performance analysis
of receive-side real-time congestion control for webrtc.
In Proceedings of the 20th International Packet Video
Workshop, pages 1–8, 2013.

[12] S. Tilkov and S. Vinoski. Node. js: Using javascript to
build high-performance network programs. IEEE Internet
Computing, 14(6):80–83, 2010.

[13] M. Tuexen, S. Loreto, and R. Jesup. Webrtc data
channels. 2015.

[14] A. Van Kesteren and D. Jackson. The xmlhttprequest
object. World Wide Web Consortium, Working Draft WD-
XMLHttpRequest-20070618, 2007.

