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Abstract
Soft error rates in processors have been increasing with decreasing
feature size and larger chips. Both hardware or software based so-
lutions have been proposed to address this problem. However, this
leads to significant overheads in chip area, performance, and/or en-
ergy. This paper proposes a novel, software-only, solution to the
problem. It uses instruction duplication to detect and eventually
correct transient faults with lower overhead than prior solutions.
This is achieved by exploiting redundancy within SIMD instruc-
tions. The solution is implemented in the LLVM compiler. Exe-
cution of a set of compiled benchmarks shows that SIMD based
instruction duplication introduces 12% and 9% performance and
energy overheads, respectively, over the baseline. The same over-
heads become 21% and 14% when error checking and branching
code is added.

Keywords Soft errors, fault tolerance, SIMD, vectorization

1. Introduction
Soft errors (SE) are transient errors in computer hardware caused
by cosmic radiation, e.g. alpha particles and high-energy neutrinos.
The impact of such a particle is of a very short duration, is very
localized and happens in isolation, i.e. multiple simultaneous soft
errors are very unlikely. Thus another term for such errors is Single
Event Upsets. These errors can cause bits of storage elements to flip
or disrupt the operation of a combinational logic circuit [29]. This
may corrupt the output of an application or even crash a computer
system. SRAM cells are very prone to such errors and have been
enhanced via circuit design and error checking codes (ECC) to
improve resilience. Latches and combinational logic have so far not
been a problem, but their transient errors are also increasing [27].
Many-core chips1 and large systems built from them will need to
be protected from such errors.

Technology scaling with its reduced feature size and lower sup-
ply voltage provides processors better performance and energy ef-
ficiency. It also leads to variation in process, voltage, and tempera-
ture. The variation in turn makes computer systems more suscepti-
ble to soft errors, posing significant reliability challenges [17].

Previous work has proposed both hardware and software solu-
tions to soft errors. Large SRAM arrays, e.g. caches, have high
soft error rates (SER). This has been addressed via circuit tech-
niques and through the use of error detection/correction codes.
It was estimated in prior research that SERs for SRAM will re-
main roughly constant over several technology generations, at 10−4

FIT/bit [29, 34]. Combinational logic is more resistant to transient
faults due to error masking, e.g. the fact that the output value of a
logic circuit may not change even if there was a soft error. A cir-
cuit may also “recover” from an error before the result is latched.
SERs for latches and combinational logic range from 10−5 to 10−3

1 This work concentrates on soft error detection/correction within a single
core and leaves multicores for future work.

FIT/bit or roughly 0.5 upsets per year per chip [28, 29]. These er-
rors are thus hard to detect and, if detected, correct in hardware
although future processors may have parity on all latches. Further-
more, the wide use of aggressive dynamic voltage scaling will fur-
ther worsen the SER since it increases exponentially as voltage de-
creases [7].

The only hardware techniques that can detect and correct soft
errors are based on hardware redundancy, e.g. Dual modular re-
dundancy(DMR) and triple modular redundancy (TMR). However,
DMR and TMR have significant chip area, performance and en-
ergy overheads. These costly approaches are only used for mission-
critical applications, they are impractical for commodity processors
where occasional errors are not a concern [12].

Software implemented fault tolerance is the only alternative
for processors without full hardware fault tolerance. One such
software solution is instruction duplication. Each instruction in a
program is executed twice and the two results are compared. The
probability that both have been affected by the same soft error is
negligible and thus the comparison will detect a soft error. The
duplication of instructions and addition of comparisons to check the
outputs of the two instructions can be implemented in a compiler
and thus fully automated. Instruction duplication schemes, such as
EDDI [18] and SWIFT [23] , were developed utilizing instruction
level parallelism (ILP) to overlap execution of original instructions
and their duplicates. However, instruction duplication has a high
performance overhead. EDDI reduced overhead of duplication by
performing checks less frequently (i.e. not for every duplicated
instruction). Still, the overhead remained significant.

Chen et al. [6] presented a feasibility study of a software solu-
tion to instruction duplication using vectorization. Instead of repli-
cating an original instruction they replicated its operands using
SIMD registers and performed an SIMD operation for duplicated
execution. Their study focused on floating point computations in
application kernels and manually inserted SSE/AVX intrinsics at
the source level for duplication. It assumed that memory hierarchy
was protected by ECC and did not duplicate memory accesses. In-
teger instructions were not considered. The results of the study indi-
cated that the overhead of full duplication using SIMD instructions
was quite low but checking every instruction was still expensive.

The goal of the work presented here is to automatically generate
instruction duplication in a compiler. It focuses on soft error detec-
tion. Soft errors are infrequent enough to allow correction to be rel-
atively slow. Detection, on the other hand, has to be continuous and
thus fast. The duplication is accomplished by using SIMD vector
instructions. SIMD instructions are available today in most com-
mercial processors for both integer and floating point data types.
They operate on separate, wider registers that fit multiple operands.
This allows operands of the original instruction and its duplicate
to be packed in the same SIMD register and instruction ”duplica-
tion” is replaced by execution of a single SIMD instruction. Error
checking consists of comparing the low and high words of the re-
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sult register. This work also assumes that caches and memory are
protected by the ECC.

Compiler instruction duplication has to address several issues.
First, one needs to decide at what point in the compilation pro-
cess to perform the duplication. If performed before optimizations
are applied, the duplicated instructions will be dead code elimi-
nated. It also cannot be performed after register allocation. The
right place depends on a compiler infrastructure used. Additional
registers needed for duplicated instructions increase register pres-
sure which is another issue to be solved. This paper presents com-
pilation for SIMD-based instruction duplication using the LLVM
compiler infrastructure [13]. Duplication is performed at the in-
termediate representation (IR) level, after standard transformations
and optimizations have been performed but before register alloca-
tion. This allows the register allocator to deal with original and
duplicated instructions simultaneously. In fact, using SIMD regis-
ters allows us to duplicate operands without allocating additional
registers. All integer and floating point instructions, except for
branches/jumps, loads and stores are duplicated. In addition, check-
ing code is added to compare results of a duplicated execution.
Two versions of checking were implemented and compared in this
work. Execution of compiled benchmarks, including some of the
SPEC2000 and SPEC2006 codes, shows that SIMD-based duplica-
tion has a significantly lower overhead than prior approaches.

The contributions of this work are as follows:

• A compiler approach using SIMD vector units for instruction
duplication and error checking is presented.
• A compiler implementation of the proposed approach is pre-

sented and discussed.
• Evaluation of benchmarks using full instruction duplication,

including the library calls that can be supported by LLVM with
vector compatible prototypes, was performed and showed that
the approach has a relatively low overhead in performance,
energy, and code size compared to prior work.

The remainder of this paper is organized as follows. Section 2
details the framework and the implementation of the proposed fault
tolerance approach. Section 3 presents the experimental results of
the performance, energy, and code size overheads caused by our
technique. Section 4 gives an overview of the related work. Finally,
we conclude the work and describe some future work in Section 5.

2. Compilation
This section describes our SIMD-based compilation approach to
instruction duplication using the LLVM compiler infrastructure. To
be specific, it assumes Intel SIMD instructions and uses both SSE
and AVX2 instructions. Of course, the approach can be applied to
other SIMD instruction sets. Examples below use floating point
operations.

Figure 1 illustrates the basic idea of scalar and SIMD-based
instruction duplication. The figure uses a source-level “instruction”
for simplicity: A[i] = B[i] + C[i]. Figure 1(a) shows the scalar
instruction duplication. It assumes that arrays A,B, and C are
in memory. Two independent instructions are generated, A[i] =
B[i]+C[i] and A′[i] = B[i]+C[i] using the same input operands
loaded from memory. A comparison is inserted to check that A[i]
and A′[i] are equal. A branch is also required to deal with an error.
A recovery can be performed by re-executing the same instruction
a third time and performing majority voting, or by using software
checkpoints.

Figure 1(b) and Figure 1(c) demonstrate SIMD-based instruc-
tion duplication and error checking. Two possible cases are illus-
trated: code in Figure 1(b) has no SIMD instructions and code in
Figure 1(c) has SSE instructions. In the former case, the operands
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Figure 2: Compilation flow for our fault tolerant code generation
approach.

B[i] and C[i] are loaded into the low quadword of two XMM regis-
ters. A broadcast instruction duplicates the value in low quadword
to the high quadword (the dark grey boxes). An SSE addition is
performed using the SIMD registers with duplicated operands. The
results, A[i] and A′[i], are in the same XMM register after the com-
putation. One only needs to check the equality of the words in the
same register for error detection. However, the SSE (and AVX) in-
struction set does not contain an instruction for such a comparison.
The result register thus needs to be copied with a shuffle to another
register before the comparison.

Figure 1(c) shows the duplication in a code with SSE instruc-
tions (vector length=2). Duplication in this case requires a wider
register, e.g. a YMM register (vector length=4). Otherwise the code
is the same as the one shown in Figure 1(b).

Finally, a code containing SIMD instructions using the widest
SIMD registers available on the target processor, e.g., a YMM
register for AVX instructions in our case, cannot be duplicated in
this manner. The scalar duplication approach in Figure 1(a) can be
used for such instructions.

EDDI [18] duplicated data in memory for additional resilience
and loaded input operands twice in the scalar duplication case. This
work does not duplicate data in memory as this is too expensive
and the memory hierarchy is protected by ECC. A register operand
is also not duplicated, instead the same register is read by an
instruction and its duplicate, assuming the register file is protected
by hardware.

Overall, it is more appropriate to think of SIMD-based instruc-
tion duplication as data/operation duplication since only one SIMD
instruction is sufficient for duplicated execution. This provides sev-
eral advantages compared to the scalar version instruction duplica-
tion: reduced code size and register pressure, better performance,
and easier compilation. However, additional instructions are needed
to replicate the data in a vector register and to deal with the idiosyn-
crasies of SIMD instruction sets.

Next, an overview of the compilation framework is given in Sec-
tion 2.1. Then, the use of conventional and our SIMD-based tech-
niques to replicate instructions is presented in Section 2.2. Finally,
different ways of inserting error checking code are discussed in
Section 2.3.

2.1 Overall Compilation Process
Figure 2 shows the framework of the proposed solution using the
LLVM compiler infrastructure [13]. The input to the framework is
application source code in C/C++ 2. The LLVM front-end com-
piles the source code and converts it into the LLVM intermediate
representation (IR). A large set of standard transformations and op-
timizations are applied to the IR, producing an optimized LLVM IR
form.

Our module, the grey box in Figure 2, starts with the optimized
IR as the input and performs duplication in the IR code in a new

2 or any other language that is supported by LLVM. For example, Drag-
onegg plugin is available for Fortran and Ada.
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B[i]C[i]
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B[0..n] C[0..n]

B[i] B [i] C[i] C [i]

A[i] = B[i] + C[i] A [i] = B [i] + C [i]

A [i] = B [i] + C [i] A[i] = B[i] + C[i]

+

=
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instruction
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(b)

B[i] B[i+1] B [i] B [i+1] C[i] C[i+1] C [i] C [i+1]

B[0..n] C[0..n]

Ai = Bi + Ci Ai+1 = Bi+1 + Ci+1 A i = B i + C i A i+1 = B i+1 + C i+1

A i = B i + C i A i+1 = B i+1 + C i+1 Ai = Bi + Ci Ai+1 = Bi+1 + Ci+1

+

= Exit or 
recovery

Next 
instruction

(c)

Figure 1: Scalar (a) and SIMD-based (b,c) source code duplication and error checking. (b): codes without SIMD instructions and (c): codes
with SSE instructions.

LLVM pass. The LLVM IR uses a language-independent instruction
set represented in a static single assignment (SSA) form. The new
instruction duplication pass visits each individual IR instruction
and analyzes it to determine if it is necessary to duplicate and
vectorize this instruction. For instance, memory instructions and
branches/jumps are not duplicated. The output of the pass is a
modified IR form where an original instruction and its replica are
“packed” in the same SIMD instruction. More details about the
transformation will be given in the next section. A second new pass
then is used to remove unnecessary instructions. Finally, another
pass adds checking code for all duplicated instructions.

The transformed IR is the input to the (unmodified) LLVM
backend which performs register allocation, additional optimiza-
tions, and code generation. The code generated in this work is
for Intel processors with the AVX2 instruction set and can thus
deal with both integer and floating point instructions. The proposed
technique is implemented in the single threaded context, but we
believe it can be easily extended to multithreaded codes.

2.2 Instruction Duplication
Let us first describe how different instruction classes are dealt with
for soft error detection.

ALU instructions. These instructions are duplicated. The orig-
inal instruction and its replica are “packed” in an equivalent SIMD
instruction and their data is placed into SIMD registers.

Memory instructions. Stores are not duplicated.
Loads are also not duplicated, but a value is loaded into an

SIMD register and then the value is broadcast to the rest of the
lanes in the SIMD register.

Branches. Condition computation for a branch instruction is
duplicated and checked. The PC update is not visible to user code
and thus cannot be protected by instruction duplication. Existing
software solutions based on run-time signature or assertions [4, 9,
19, 23, 31] or hardware solutions [5, 26] can be utilized, these
are orthogonal to our work. Also note that branch target address
computation is frequently not required when a BTB is used.

Function Calls. Library functions can be protected by duplica-
tion as computations. For instance, MKL and SVML support the
vectorized forms of many library calls. One can vectorize these
functions according to the input requirement of the LLVM front-
end and leave the selection of SIMD intrinsic function calls to the
back-end.

Function calls are viewed as synchronization points where the
input parameters are checked before being passed to the callee.
Note that only the parameters that are passed by value are protected.
Parameters that are passed by reference are not duplicated because
memory accesses are assumed to be reliable. This approach was
also used in prior research, e.g. EDDI and SWIFT.

The scalar and the SIMD-based instruction duplication at the
IR level are discussed next. An example, shown in Figure 3(a), will
be used to illustrate the ideas. Figure 3(a) shows a code snippet
from the smvp function of 183.equake benchmark. Figure 3(b)
shows (partial) IR code produced by the LLVM front-end. The IR
code contains both scalar and vector operations. The latter can be
distinguished by “〈2× double〉” type.

2.2.1 Standard Instruction Duplication
Standard instruction duplication accesses each IR instruction and
generates a duplicate instruction for each instruction class, as dis-
cussed above. This is the approach used in EDDI and SWIFT, ex-
cept that a) in our case both scalar and vector instructions are du-
plicated and b) EDDI and SWIFT duplicated loads. The duplicate
instruction is assigned a new (virtual) output register.

Figure 3(c) shows the IR code after the standard duplication
is applied. The highlighted instructions (with underscore added to
their output register) in the figure are the duplicates followed by
the original instructions. For example, the multiplication and addi-
tion instructions, i.e., %mul69, %add70, %Anext.1, are duplicated
as %mul69 , %add70 , %Anext.1 , respectively. The vector instruc-
tions, such as %17, %23, and %24, are handled the same way as the
scalar instructions. Only instruction duplication is performed, the
error checking code will be inserted in another pass.

2.2.2 SIMD-based Duplication
For SIMD-based duplication each instruction in the IR code is
examined and duplication is based on the instruction’s class and
data type. In all cases, the original instruction is retained for the
duration of this pass to simplify compilation. It will be removed in
a separate pass.

(i) Scalar integer instructions use scalar registers. For example,
instruction %Anext.1 in Figure 3(b) will be allocated to a 32-bit
scalar register. A scalar integer instruction will be changed to an
SIMD instruction. For instance, Figure 4 shows that %Anext.1
is replaced by its vector counterpart, %Anext.1 .

(ii) Scalar floating point instructions. Intel processors use SIMD
registers for floating point operations by default, thus duplica-
tion of a scalar floating point instruction only requires value
duplication. For example, %mul69 and %add70 in Figure 4
will use the same registers as used by %mul69 and %add70 in
Figure 3(b), respectively. The technique used for these instruc-
tions corresponds to Figure 1(b). The solution for scalar integer
instructions discussed above can be applied if the floating point
operations do not use SIMD registers by default.

(iii) SSE instructions. Duplicating SSE instructions, such as %17,
%23, and %24 in Figure 3(b) requires wider registers, e.g. AVX2
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for (i = 0; i < nodes; i++) {
Anext = Aindex[i];
Alast = Aindex[i + 1];

sum0 = A[Anext][0][0]∗v[i][0] + A[Anext][0][1]∗v[i][1] + \
A[Anext][0][2]∗v[i][2];

sum1 = A[Anext][1][0]∗v[i][0] + A[Anext][1][1]∗v[i][1] + \
A[Anext][1][2]∗v[i][2];

sum2 = A[Anext][2][0]∗v[i][0] + A[Anext][2][1]∗v[i][1] + \
A[Anext][2][2]∗v[i][2];

Anext++;
...
}

(a)

1 for.body: ; preds = %while.e, %ent
2 %iv1 = phi i64 [%iv.nxt2, %while.e], [0, %ent]
3 ...
4 %4 = load double∗ %3, align 8
5 ...
6 %13 = insertelement <2xdouble> undef, double %4, i32 0
7 ...
8 %17 = fmul <2 x double> %14, %16
9 ...

10 %23 = fmul <2 x double> %20, %22
11 %24 = fadd <2 x double> %17, %23
12 ...
13 %arridx65 = getelementptr double∗ %32, i64 1
14 %34 = load double∗ %arridx65, align 8
15 %mul69 = fmul double %8, %34
16 %add70 = fadd double %mul61, %mul69
17 ...
18 %Anext.1 = add i32 %0, 1
19 %cmp1 = icmp slt i32 %Anext.1, %1
20 br i1 %cmp1, label %while.b, label %while.e

(b)

for.body: ; preds = %while.e, %ent

%iv1 = phi i64 [%iv2 , %while.e], [0, %ent]

%iv1 = phi i64 [%iv.nxt2, %while.e], [0, %ent]
...
%4 = load double∗ %3, align 8
...

%13 = insertelement <2xdouble> undef, double %4, i32 0

%13 = insertelement <2xdouble> undef, double %4, i32 0
...

%17 = fmul <2 x double> %16 , %14

%17 = fmul <2 x double> %16, %14
...

%23 = fmul <2 x double> %22 , %20

%23 = fmul <2 x double> %22, %20

%24 = fadd <2 x double> %17 , %23

%24 = fadd <2 x double> %17, %23
...
%arridx65 = getelementptr double∗ %32, i64 1
%34 = load double∗ %arridx65, align 8

%mul69 = fmul double %8, %34

%mul69 = fmul double %8, %34

%add70 = fadd double %mul61 , %mul69

%add70 = fadd double %mul61, %mul69
...

%Anext.1 = add i32 %0, 1

%Anext.1 = add i32 %0, 1

%cmp1 = icmp slt i32 %Anext.1 , %1

%cmp1 = icmp slt i32 %Anext.1, %1
br i1 %cmp1, label %while.b, label %while.e

(c)

Figure 3: Instruction duplication example. (a) Source code, (b) Partial LLVM bitcode, (c) Transformed LLVM bitcode. A highlighted IR
instruction is a duplicate, followed by the original instruction.

registers. For example, instructions %17 , %23 , and %24 in
Figure 4 correspond to the case in Figure 3(c).

(iv) AVX instructions. There are two viable solutions for this case:
a) perform instruction duplication as in traditional approaches
(shown in Figure 1(a), and b) half the loop unrolling factor so
that SSE instructions will be generated. We mainly focus on
the later solution because it doesn’t need to interfere the
compiler optimizations for the fault tolerant code genera-
tion.

A value is loaded once and broadcast to the unused lane,
e.g. %4 in Figure 4. LLVM back-end generates MOVDDUP or
VMOVDDUP for a floating point instruction depending on the type
of the original instruction.

A 〈2× 1b〉 result of a vector comparison needs to be converted
to an SSE form. Otherwise, LLVM has to perform unpacking and
packing for this comparison as the way it handles the instructions
that cannot run in the SIMD manner, e.g. integer division (we will
describe it in the next paragraph). This is done by sign extending
the result to a 〈2 × 64b〉 vector instruction first. Then, a bitcast
IR instruction is used to make the value compatible to an SIMD
register (e.g. 128 bits for SSE). The comparison instruction, such
as %cmp1 in Figure 4 is an example of this case. This forces LLVM
to select vector comparison and branch instructions, e.g. vpcmpeqq
and vptest, at the back-end automatically.

Most of the instructions in the original code become unneces-
sary after instruction duplication is completed. For example, most
ALU instructions in Figure 3(b) can be removed when our SIMD-
based instruction duplication successfully run on the code because
each of them has a SIMD counterpart in the new generated IR code.
However, some operations don’t actually run in SIMD mode, e.g.
integer division and int32 to double conversion, etc. LLVM will
first unpack the two values from an SIMD register and then perform
two scalar instructions sequentially on each value for these opera-
tions. Finally, the values produced by these two scalar instructions
are packed into a vector register. More discussion about this case
will be provided in the experimental section.

2.3 Checking Code Insertion
Error checking is implemented in a separate pass, (checker inser-
tion pass), after instructions are duplicated and the unneeded in-
structions are removed. Checking can be performed in two different
ways.

• Check after each duplicated instruction. The advantage of
checking at this granularity is that error correction can be initi-
ated immediately. The disadvantage is that it incurs a very high
overhead.
• Check at certain program points such as before stores, func-

tion calls, conditional branches, etc. Overheads are thus signif-

4 2015/11/18



for.body: ; preds = %while.e, %ent
%Phi = phi <2 x i64> [%iv.nxt1 , %while.e], [zeroinitializer, %

ent]
...
%4 = load double∗ %3, align 8, !tbaa !16
%ld4 = insertelement <2 x double> undef, double %4, i32 0
%ld4 . = shufflevector <2 x double> %ld4, <2 x double> undef,

<2 x i32> zeroinitializer
...
%13 = insertelement <2 x double> undef, double %4, i32 0
%13 = shufflevector <2 x double> %ld4 , <2 x double> %ld4 ,

<4 x i32> <i32 0, i32 2, i32 1, i32 3>
...
%17 = fmul <4 x double> %14 , %16
...
%23 = fmul <4 x double> %20 , %22
%24 = fadd <4 x double> %17 , %23
...
%arridx65 = getelementptr double∗ %32, i64 1
%34 = load double∗ %arridx65, align 8
%ld34 = insertelement <2 x double> undef, double %34, i32 0
%ld34 = shufflevector <2 x double> %ld34, <2 x double>

undef, <2 x i32> zeroinitializer
%mul69 = fmul <2 x double> %8 , %ld34
%add70 = fadd <2 x double> %mul61 , %mul69
...
%Anext.1 = add <2 x i32> %0 , <i32 1, i32 1>
%cmp1 = icmp slt <2 x i32> %Anext.1 , %1 .
%zext1 = sext <2 x i1> %cmp1 to <2 x i64>
%bc1 = bitcast <2 x i64> %zext1 to i128
%msk 1 = icmp ne i128 %bc , 0
br i1 %msk1 , label %while.b, label %while.e

Figure 4: LLVM IR after SIMD-based instruction duplication.

icantly reduced. However, recovery becomes harder as instruc-
tions may be committed and register state may be lost by the
time the error is detected. This probably works best with check-
pointing.

The way checking is performed in the second case depends
on a program point it is inserted at. But the main idea is to only
check store values before they can change program state. All other
operations just propagate values to the stores.

• Stores. The duplicated store operand is checked.
• Conditional Branches. The condition evaluation result is checked.
• Calls. It is assumed that parameters are pushed onto the stack

before the call. Thus they are stored to memory and will be
checked. A parameter passed in a register needs to be checked
separately.

For example, Figure 5 shows an example for different error
checking techniques. Figure 5(a) represents a basic block contain-
ing 4 instructions. Assume instruction 4 is a store instruction for
demonstration purpose ( Generally, the last instruction in a LLVM
IR basic block is a terminator instruction like return and branch,
etc). Figure 5(b) is the basic block instrumented using our SIMD-
based fault tolerant pass. The insertion of a checker has to divide
a basic block into two smaller basic blocks as a branch instruc-
tion is inevitably introduced. Depending on the instruction mix of
an application, a prohibitively large number of checkers might be
required, as shown in Figure 5(c). Each checker needs at least 3
instructions, namely shuffle, comparison, and branch, therefore re-
sulting in much more instructions.

Figure 5(d) shows the idea of the second solution to error check-
ing where the operand of instruction 4 is validated before it is writ-
ten to memory. Only one checker is needed for this case. The orig-
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Figure 5: (a) A basic block consists of 4 instructions. (b) Trans-
formed basic block using SIMD-based instruction duplication.
Checkers are inserted: (c) after each duplicated instruction, (d) at
the synchronization point.

inal basic block is only divided into 2 blocks when the checker is
inserted before the store instruction. Therefore, much less instruc-
tions are introduced. The register pressure is also significantly re-
duced. The only disadvantage is that the immediate error correction
is harder. For example, one might not be able to correct the fault
happened in computing instruction 1 because instruction 3 might
overwrite the registers used by instruction 1.

3. Evaluation
This section provides experimental evaluation of the proposed er-
ror detection technique and compares its performance, energy, and
code size with the baseline and prior duplication techniques. The
next subsection describes our experimental setup and the charac-
terization of benchmarks.

3.1 Experimental Setup
Compiled becnhmarks were executed on a system with an Intel
Core i7-4770 processor and 8GB memory, running Linux 3.13.0
kernel. LLVM 3.4.2 was used (with -O3 flag enabled) to compile
the original code and to add SIMD-based detection pass.

Benchmarks. Seven smaller benchmarks (IRSmk, Aobench,
FFT, SpectralNorm, Blackscholes, Seidel-2D, and Linkpack),
two benchmarks from SPECCFP2000 (179.art and 183.equake),

5 2015/11/18



IRSmk
Aobench FFT

SpectralNorm

Blackscholes
Seidel-2d

Linpack

183.equake
179.art

433.milc
444.namd

450.soplex
470.lbm mean

0

1

2

3

4

Bechmarks

Sl
ow

do
w

n
scalar+dup vector+dup

Figure 6: Performance slowdown of scalar and vector instruction duplication (no error checking).
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Figure 7: Energy overhead of scalar and vector instruction duplication (no error checking).

and four benchmarks from SPECCFP2006 (433.milc, 444.namd,
450.soplex, and 470.lbm) were used. The benchmarks were se-
lected mainly because they are written in C/C++ and used both
integer and f.p. instructions. All the SPEC benchmarks were run
with reference data sets.

Hardware performance counters were used to measure the im-
pact of the implemented approach on benchmark execution. The
energy consumption results were collected using Likwid 3.1 [30].
The PKG counter was used to obtain energy consumed by the
socket where the application was executed.

Multiple versions of each benchmark were compiled in: the
original code (base), the code with SIMD-based instruction dupli-
cation only (vector+dup), SIMD-based instruction duplication with
checkers inserted only at synchronization points (vector+dup+CS),
and SIMD-based instruction duplication with vector error checking
for each instruction (vector+dup+CE). The versions compiled us-
ing scalar instruction duplication and error checking were: pure
scalar mode instruction duplication (scalar+dup), scalar mode
instruction duplication with checking at synchronization points
(scalar+dup+CS), and scalar mode instruction duplication and
checking for each instruction (scalar+dup+CE). All results are nor-
malized to the original program (base). “scalar+dup+CS” is similar
to the approach implemented in SWIFT, except that the correct-
ness was checked by duplicating comparison instead of using the
signature-based technique.

3.2 Instruction Duplication Only
This section presents comparison of performance and energy con-
sumption for pure instruction duplication (without error checking)
for different versions of benchmarks.

Performance impact of pure instruction duplication. The
performance slowdown of pure instruction duplication in scalar
mode and vector mode is measured relative to the baseline. A pro-
gram with vector mode instruction duplication is similar to the
baseline program if the baseline program was not vectorized us-
ing the widest registers (YMM registers on the processor used for
experiments). This is because only half of the lanes of an SIMD
register are used for computation, the other half is used for duplica-
tion. Therefore, one can expect a minor performance slowdown by
replacing scalar instructions with their vector equivalents. Figure 6
shows that the average slowdown for pure SIMD-based instruction
duplication and scalar instruction duplication schemes are 1.12x
and 1.82x, respectively. vector+dup technique is 37.9% faster, on
average, than scalar+dup technique.

There are three major reasons for performance slowdown of
vector mode instruction duplication.

First, a vector load needs to be ”duplicated” by adding a broad-
cast of the low word to the high word. For example, we add in-
sertelement and shufflevector instructions after each load in the IR
code. The back-end generates a vpbroadcastq instruction after the
vmovd instruction in assembly whenever we load an integer value
from memory.

Second, although there are intrinsic functions provided in the
front-end to support some vector library functions, the back-end
doesn’t generate vectorized library calls for some functions such
as sin and cos, etc. Therefore, LLVM back-end has to unpack the
values in a SIMD register and then perform two scalar library calls
sequentially. Finally, these two results are packed back into a new
SIMD register.

Finally, while AVX-2 supports integers, integer division and
32-bit integer to double precision floating point conversion are
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Figure 8: Performance slowdown for instruction duplication with selective and full error checking.

IRSmk
Aobench FFT

SpectralNorm

Blackscholes
Seidel-2d

Linpack

183.equake
179.art

433.milc
444.namd

450.soplex
470.lbm mean

0

1

2

3

4

5

6

7

8

Bechmarks

E
ne

rg
y

ov
er

he
ad

scalar+dup+CS scalar+dup+CE vector+dup+CS vector+dup+CE

Figure 9: Energy overhead of instruction duplication with selective and full error checking.

currently not provided. These instructions require the unpacking
and packing operations (as for library calls discussed above).

The impact of these depends on speficic benchmark.

• Memory intensive benchmarks, such as FFT and 183.equake,
require many broadcast instructions to duplicate the load value
which partially degrades the performance. There are also library
calls (sin and cos) in the main function of these two bench-
marks. Combining these two reasons, the slowdown for vec-
tor+dup of FFT and 183.equake is 1.17x and 1.16x, respec-
tively.
• Aobench not only contains unvectorized intrinsic library calls,

sin, cos, and rand, in one of the hot loops in the ambi-
ent occlusion function but also has many integer to double
precision floating point conversions, resulting in a 1.26x per-
formance slowdown.
• Many integer division and type conversion instructions in

444.namd contribute to 1.26x performance slowdown.
• IRSmk, SpectralNorm, Blackscholes, 433.milc, and 470.lbm

have lower performance slowdown because they don’t require
many additional vectorization instructions.

Figure 6 shows that pure scalar instruction duplication effec-
tively reduces the performance by approximately a factor 2x for
most benchmarks. Blackscholes surprisingly slows down by 3.5x
for two reasons. First, around 2x instructions are executed com-
pared to the baseline. Second, the register pressure increases dra-
matically since general registers are also used for instruction dupli-
cation. Therefore, much more spills are caused by scalar instruction

duplication. However, the performance overhead for IRSmk and
seidel-2d due to scalar instruction duplication is low because out-
of-order instruction issue and ILP features of the processor overlap
the execution of original instructions and their duplicates perfectly.

Energy consumption of pure instruction duplication. The en-
ergy consumption of scalar and vector mode instruction duplica-
tion is shown in Figure 7, normalized to energy consumed by the
baseline. On average, pure scalar instruction and vector instruction
duplication consumes up to 1.86x and 1.09x more energy, respec-
tively. The energy consumption caused by vector mode instruction
duplication is quite insignificant.

3.3 Instruction Duplication with Error Checking
This section presents results of duplication with error checking
code insert in two different ways. Figures 8 and 9 show normalized
execution time and energy consumption for different compiled
versions of benchmarks with the error checkers inserted after each
instruction (CE) or only at synchronization points (CS). It shows
that scalar duplication+checking runs 1.99x slower and consumes
2.02x more energy, compared to the baseline, even when only
checking for errors at synchronization points. Error checking after
each duplicated instruction increases the performance and energy
overheads sharply, to 4.34x and 4.58x on average, respectively.

The vector mode instruction duplication with error checking at
synchronization points (vector+dup+CS) increases execution time
by 21% and energy by 14%, on average, over the baseline. Com-
pared to scalar+dup+CS, its performance and energy overheads
are, on average, 39.2% and 43.6% lower, respectively, compared to
scalar mode. The SIMD-based solution offers much better perfor-
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Table 1: Standard deviation of performance and energy overheads.

Configuration Performance Energy
scalar+dup+CS 0.76 0.79
vector+dup+CS 0.21 0.16
scalar+dup+CE 1.85 1.97
vector+dup+CE 1.65 1.40

mance and energy efficiency compared to the scalar instruction du-
plication when checking all instructions. The average performance
slowdown is 3.34x and the average energy consumption is 3.05x
for vector+dup+CE.

One more observable benefit of our technique is that it deliv-
ers more stable performance and energy consumption across all
benchmarks. Table 1 shows that standard deviation of performance
slowdown for vector mode error detection is 0.21 and 1.65 for vec-
tor+dup+CS and vector+dup+CE, respectively. The standard devi-
ations for the scalar error detection approach are 0.76 and 1.85,
respectively. The standard deviations of energy consumption for
scalar+dup+CS and scalar+dup+CE are 0.79 and 1.97, respecitvely.
They are 0.16 and 1.40 for vector+dup+CS and vector+dup+CE
schemes, respectively.

There are two reasons behind the above: a) while auto-vectorization
does take place it leaves sufficient vector resources for redundancy,
and b) not all of the benchmarks are able to benefit from the ILP
capabilities of the processor for scalar fault tolerant techniques.

3.4 Code Size Overhead
Figure 10 shows the binary size of different compiled versions, nor-
malized to the baseline with no instruction duplication. scalar+dup+CS
and scalar+dup+CE duplicate all instructions in the IR form ex-
cept stores, branches, function calls, and error checking code.
vector+dup+CS and vector+dup+CE replicate the same type of
instructions including the library calls that support SIMD intrin-
sic instructions in LLVM. scalar+dup+CS is 2.41x larger than the
baseline which is consistent with results reported for SWIFT [23].
However, the proposed vector+dup+CS approach only increase
the code size by an average of 1.90x. The binaries generated by
scalar+dup+CE and vector+dup+CE (checking on every instruc-
tion) are, on average, 5.53x and 4.61x larger, respectively. There-
fore, the vector mode error detection shrinks the binaries by an
average of 20% and 17% compared to the scalar+dup+CS and
scalar+dup+CE techniques, respectively. The major reason is be-
cause the duplicates are packed in the SIMD registers and executed
in one vector instruction.

The proposed technique can further reduce overheads in terms
of performance, energy and code size, if one can 1) vectorize all
the library calls, 2) vectorize integer division and all integer to
double precision floating point conversions, and 3) perform vector
comparison for equality the low half bits and high half bits in a
vector register. If there were SIMD instructions available for the
first two cases, we could eliminate the packing and unpacking
instructions to perform these operations.

4. Related Work
This paper focuses on using software instruction duplication with
vectorization to reduce the soft error detection overheads in terms
of performance, energy, and code sizes. The whole framework is
implemented in the LLVM compiler without additional hardware
modification. Previous work proposed hardware, software, and hy-
brid error detection techniques to address the soft error issue.

Hardware level. Two forms of redundancy are often exploited
for error detection at this level, structural redundancy and temporal
redundancy. DMR (dual-modular redundancy) and TMR (triple-

modular redundancy) are structural redundancy based mechanisms
to achieve virtually 100% error coverage by executing each oper-
ation on two or three exactly the same hardware units. However,
these approaches are often deployed for mission-critical applica-
tions at a considerably high hardware cost. For example, target-
ing seven-nines (99.99999%) reliability, HP Integrity NS16000 and
NS14000 servers provided DMR and TMR to tackle single hard-
ware failures [3]. SIEMENS SIMATIC S7-400H offered redun-
dant CPUs to protect them against failures [1]. DIVA[2] is a het-
erogeneous DMR alternative that uses a simplified core to mon-
itor the operations performed by the more complex core. DIVA
works well on large speculative RISC processors but less efficient
on processors with little speculation. At finer granularity level, such
as circuits, hardened circuits are designed for resiliency in high-
radiation environments with the penalty of longer clock-cycle and
about twice chip areas [15, 20].

AR-SMT [24], Simultaneous Redundant Multi-Threading (SRMT)
[21], SRTR [32], CRT [16], and CRTR [10] are typical papers pro-
posed to use temporal redundancy for transient error detection.
These papers mainly focused on using redundant multithreading
to detect soft errors. Two threads are always spawned to run an
application. A leading thread is used to run the actual program and
a trailing thread is used to check the correctness of the values. AR-
SMT [24] expanded the idea of RMT on SMT processors. SRMT
[21] improved the performance of AR-SMT where checkers were
performed before stores. CRT [16] and CRTR [10] worked at the
chip-level, but CRTR implemented recovery for CRT. These ap-
proaches need extra hardware support to validate the comparisons
between the leading thread and the trailing thread.

Software level. The most attractive feature of software based
error detection approaches is the portability to most systems with-
out modifying the underlying hardware. For example, our pro-
posed technique is applicable to most of the modern processors
integrated with SIMD units. However, software approaches often
come with performance and energy overhead as replication and re-
execution are required. Compilers are often employed to automate
error detection by intelligently inserting duplicates and checkers
[11, 18, 23]. Khudia et al. [11] proposed error detection for soft
computing applications using different protection schemes, e.g.,
traditional scalar instruction duplication, value checks, and no pro-
tection, for different computations.

A few work relied on using symptoms such as fatal traps, cache
miss, branch misprediction, and application aborts to detect errors
[8, 12, 33]. Shoestring [8] performed compiler analysis to iden-
tify the more vulnerable instructions (aka high-value in their pa-
per) and protected them with instruction duplication. [12] improved
Shoestring by using profiling information and they took into ac-
count anomalous microarchitectural behaviors for error detection.
Symptom-based error detection techniques impose very little per-
formance overhead compared to the full duplication techniques, but
it scarifies error coverage. As the number of symptoms increases,
the performance overhead also increases but the fault coverage
starts saturating [11]. Compared to symptom-based techniques, we
consider full instruction duplication for almost full error coverage.

Among all these solutions, EDDI and SWIFT are most closely-
related to our proposed solution in the context of full instruction
duplication. Our technique differs from them in the following as-
pects.

• Both EDDI and SWIFT were developed for ILP-friendly pro-
cessors, e.g., SWIFT was running on Intel Itanium processor, to
take advantage of ILP provided by interleaved instructions. Our
solution targets most modern processors by exploiting the idle
vector resources for redundancy.
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Figure 10: Binary size of scalar and vector instruction duplication with selective and full error checking.

• EDDI duplicated all instructions including stores. SWIFT
avoided duplicating stores, but still needed to duplicate loads.
Our solution eliminates duplication of memory accesses. Also,
this work duplicates most library calls since there are SIMD
intrinsics available for them.
• Our solution incurs much lower performance and energy over-

heads. It also reduces the code size significantly. For example,
in order to achieve high error coverage, EDDI and SWIFT in-
troduced more than 2.8x and 2.4x instructions, respectively. Our
approach only leads to 1.9 times more instructions.

Hybrid approaches. While most of the aforementioned schemes
focus on either hardware or software, some papers proposed to
use hybrid approaches. CRAFT [22] provided reliability using a
software-hardware hybrid approach where duplicated instructions
and error checking codes were inserted with software methods and
additional hardware (similar to RMT) was used to achieve higher
error coverage. CRAFT provided better reliability with less perfor-
mance loss than most software-only techniques but requiring hard-
ware modification. Argus [14] is a hybrid approach to protect four
types of invariants, namely control flow, data flow, computation,
and memory. Hardware units were used to generate invariants on-
line and perform comparisons between the invariants generated at
runtime against the information collected from the compiler to de-
tect faults. mSWAT [25] is also a symptom-based solution with lit-
tle hardware support to detect anomalous software behaviors. How-
ever, compared to these techniques, our SIMD-based fault tolerance
achieves almost full error coverage without the need of any special
hardware support.

5. Conclusions and Future Work
This paper proposed a compiler framework to detect soft errors
through instruction duplication using SIMD features of modern
processors. It was implemented in the LLVM compiler. Perfor-
mance, energy, and code size of compiled benchmarks were mea-
sured and the results show that, if error checking were only inserted
at synchronization points, the SIMD assisted soft error detection
only led to 1.21x performance slowdown and 1.14x energy con-
sumption increase. This is significantly lower compared to prior
scalar instruction duplication techniques. It also reduced the binary
size by upto 20%.

Future work will focus on multicore processors and workloads
written in other languages that are compatible with LLVM.
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