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Abstract—A novel design methodology, associated algorithms,
and tools for the design of complex automotive cyber-physical
systems are presented. Rather than supporting the critical path
where most resources are spent, we preemptively target the
concept design phase that determines 75% of a vehicle’s cost. In
our methodology, the marriage of systems engineering principles
with high-level synthesis techniques results in a Functional
Modeling Compiler capable of generating high-fidelity simulation
models for the design space exploration and validation of multiple
cyber-physical (ECUs+Physics) vehicle architectures. Using real-
world automotive use-cases, we demonstrate how functional
models capturing cyber-physical aspects are synthesized into
high-fidelity simulation models.

I. INTRODUCTION

Automotive cyber-physical systems (CPS) are some of the
most technologically advanced and complex systems currently
being produced. Modern cars are no longer mechanically-
dominated systems; their physical behavior is greatly influ-
enced by computers (electronic control units or ECUs) and
network systems [1] – cyber components. For example, the
remarkable advances in fuel economy, safety, performance,
etc. have been possible due to the dense array of cooperating
cyber components that interact with the physical processes in a
car. Designing a modern car with 100 ECUs [2, 3] controlling
dozens of complex physical processes is a daunting task that
requires the collaboration of hundreds of domain experts from
various organizations. Creating design automation tools that
improve the automotive design process and allow companies
to rapidly add new features, manage the heterogeneity of
components, and maintaining the development time and cost
targets is an equally challenging task.

State-of-the-art automotive model-based design (MBD)
tools have been developed on the principle of reducing the
critical path with the objective of making the design process
shorter, cheaper, and more efficient. The critical path in
complex CPS design is the detailed design phase [4, 5, 6]
where precise engineering specifications are created by the
domain experts. Thus, mechanical engineering is supported
by computer-aided design (CAD) and engineering (CAE)
tools; electrical engineering by electronic design automation
(EDA) and wire harness design tools; control engineering by
Matlab/Simulink, LabView, LMS, and Modelica; and software
engineering by UML and in-house software development
environments [7]. Unfortunately, these models cannot be
easily – due to model, domain, and tool incompatibility –
and effectively – due to performance reasons – combined
to perform system-level analyses and simulations [8]. This

situation has led to a serious problem because the vehicles’
complexity keeps increasing but the design tools cannot
answer simple but important questions such as estimating the
impact of a change in the transmission ECU in the overall
fuel economy of a vehicle. Tools and methodologies that
allow ECUs to be developed and tested against system-level
and high-fidelity multi-physics systems in model-, software-,
and hardware-in-the-loop simulations are needed.

In this paper, we take a novel approach for the creation
of automotive design tools. Rather than targeting the critical
path, we preemptively support the concept design phase. The
concept design phase precedes the detailed design phase;
despite its short duration, it is where most of the creativity
and innovation occurs. A key observation is that about 75%
of the cost of a product is dictated by the decisions taken
at the concept design phase [9]. Let the requirement for
a new car be “the vehicle shall detect and avoid collision
with pedestrians”. During concept design, this requirement
is formalized in a functional model that defines what the
system does in terms of energy, material, and signal flows.
Functional models provide a high-level abstraction that is used
by practitioners to perform a broad design space exploration
of various concepts and narrow the design space to the few
designs that do satisfy the requirements. For example, the
designer may quickly analyze the tradeoffs between various
architectures for detecting humans using cameras, sonar, and
LIDAR through simulation. Functional models are intimately
related to architecture, defined as the allocation of physical
structures to functionality [10, 11, 12]. From a design automa-
tion perspective, the high abstraction level in functional models
makes them a suitable formalism for CPS design. Functional
models naturally express cyber-physical processes by hiding
details of the continuous and discrete dynamics, and naturally
allow cross-domain collaboration [5, 6].

This paper provides a novel high-level synthesis methodol-
ogy that fills the gap between “cyber” (ECUs) and “physical”
design that currently exists in the siloed MBD tools. Our
methodology enables the high-level synthesis of multi-physics,
multi-domain simulation models from functional model speci-
fications. This allows the testing and validation of automotive
embedded systems early in the design. Using realistic automo-
tive architectures, we demonstrate that our methodology can be
used to synthesize high-fidelity CPS models where complex
discrete interactions of ECUs with continuous physical pro-
cesses may be analyzed in detail. This paper’s contributions
are:



• A high-level synthesis algorithm that translates
architecture-mapped functional models to high-fidelity
simulation models of automotive CPS.

• A decision support system that uses a functional model
refinement process to back-propagate the results of the
high-level synthesis as concept design suggestions.

• The automatic extraction of functional information
from commercial and academic simulation component
libraries.

• An implementation of a Functional Modeling Compiler
(FMC) capable of mapping automotive functional models
to simulation models using realistic architectures.

II. BACKGROUND AND RELATED WORK

Architecture-based design, also referred to as platform-
based design [13] in the EDA community, allows automotive
companies to streamline the development process of complex
products across different organizations [11]. Automotive ar-
chitectures (or platforms) are estimated to save billions of
dollars annually to companies because they allow reusability
of components across different models and brands [14]. As
it is discussed in [12], current CPS architecture modeling
capabilities have the fundamental shortcoming of not being
able to represent physical components and their interactions
with cyber components. The authors in [12] propose a CPS
architectural style that supports a unified representation of both
the physical and cyber components and their interactions.

The key difference between our work and [12] lies in
the level of abstraction; while architectures provide a high-
level of abstraction, they lock the design to a particular
implementation because an architecture is the allocation of
specific components to functions of a system. Our novel
methodology, on the other hand, uses an even higher level of
abstraction provided by functional models that not only allows
a unified representation for CPS, but also enables a unified
representation for multiple architectures. This characteristic is
beneficial during concept design where the design space is
broadened in order to analyze and select the solution, and
therefore the architecture, that better fulfills the requirements.
For this reason, we argue that the methodology presented
in [12] is better suited for the detailed design phase when de-
sign decisions have already been made, and our methodology
is better suited for the concept design phase when multiple
designs are being analyzed in order to take the best design
decision.

III. FUNCTIONAL MODELING COMPILER (FMC)

The objective of the concept design phase is to identify all
potential engineering solutions for an automotive CPS concept,
and downselect the ones that fulfill both the requirements (e.g.
regulatory) and the constraints (e.g. weight). Our functional
modeling-based methodology, as shown in Figure 1, supports
the concept design phase by both allowing the requirements
to be formalized in a functional model, and by synthesizing
system-level simulation models for all potential architectural
solutions that satisfy the design intent sketched by the designer
in the functional model.

To the best of our knowledge, we are the first to capitalize
on the Functional Basis’s ability to express multiple domains

and disciplines that exist in a CPS, to be meaningful to
humans for inter-disciplinary communication, to be a formal
abstraction that allows high-level synthesis, to be higher level
and therefore more flexible than architecture models during
concept design, and to formalize the so far informal functional
modeling practice in the automotive industry.

Fig. 1: Overview of our high-level synthesis methodology.

Definition 1. A functional model is a labeled directed
multigraph F = (V,E, s, t, LV , LE), where each node vi is
a function in this model, each edge e(i,j) represents the flow
from vi to vj , s : E → V and t : E → V are two mapping
indicating the source and target v ∈ V of an e ∈ E. Each
function v ∈ V and each flow e ∈ E have uniquely assigned
labels l(v) ∈ LV and l(e) ∈ LE using the vocabulary from
the Functional Basis language.

For example, a function w with l(w) = transmit
and an inbound flow f with l(f) = thermal energy
represents a transmit thermal energy function sig-
nature. The Functions Library consists of the vocabulary,
syntax, and semantics defined by the Functional Basis lan-
guage. Functional requirements are explicitly encoded in the
V,E. For example, the functional requirement for an electric
car is explicit in a “convert electrical energy to
rotational mechanical energy” function. Figure 2
shows an exemplary functional model of the cold loop in an
automotive HVAC system.

Fig. 2: Functional model of an automotive HVAC system.

Definition 2. An architecture component is a pair A =
(Fsub, Clist), where Fsub is a functional model, and Clist
is a list of constraints that specify relevant architectural
parameters and properties such as the number of cylinders
in an engine, data path width in an ECU, etc.



Definition 3. An architecture template is a multigraph
ArchT = {A,C, s, t, Cons}, where ai ∈ A is an architecture
component, c(ai,aj) ∈ C is the the connector connecting
component ai and aj , s : C → A and t : C → A are two
mappings indicating the source and target a ∈ A of an
individual c ∈ C, and Cons = {cons1, cons2, ...} is a list of
constraints that this architecture must meet.

Definition 4. An architecture library Alib =
(Aset, ArchTset) consists of two sub-libraries Aset
and ArchTset, where Aset = (A1, A2, ..., An) is
a collection of architecture components Ai, and
ArchTset = (ArchT1, ArchT2, ..., ArchTm) is a collection
of architecture templates. The architecture components in
Ai ∈ Aset may be reused in the architecture templates
ArchTset thanks to their object oriented properties.

Definition 5. User given requirements R = {req1, req2, ...}
is a set of requirements expressed in temporal logic that deter-
mine the expected system’s characteristics. This representation
is flexible to express different aspects of various cyber-physical
domains and it admits a variety of efficient algorithms for
translating a formula into verification code.

Our FMC uses the Architecture Library (composed by
architecture components and templates) to allocate functions
to candidate architectures [15]. Architecture libraries similar
to ours are used in automotive design to document successful,
unsuccessful, and reference designs. They also serve two addi-
tional purposes: describe the structure and interfaces between
reusable physical components, and describe what functions are
fulfilled by these. Figure 3 shows four architecture components
in a library for automotive HVAC systems. Notice that the
TXV and Condenser components are defined in terms of the
Functional Basis to specify which functionality is fulfilled and
what flows (connecting strongly typed ports) are necessary.
Our architecture components are object-oriented to facilitate
reusability. The HVAC architecture is the typical configuration
for controlling the air conditioning in the entire cabin [16].
It reuses TXV, Condenser, Blower, and Evaporator
components (the last two not shown in the figure) and also
uses two functions “Increase Pressure” and “Export
Thermal Energy”. The Dual-zone HVAC, for exam-
ple, is an alternative architecture to control the air con-
ditioning in the front row seats as well as the back row
seats independently [17]; therefore, it requires two TXV, two
Evaporators, and two Condenser components instead
of one of each.

An important observation is that while the HVAC and
Dual-zone HVAC are structurally different, they are both
embodiments of the the same functional model shown in
Figure 2 because they fulfill the intended overall functionality
of the system. Therefore, during concept design, these two
architectures are candidates for the “Control Climate”
function of a vehicle. In a latter stage, the selection of
architectures will be subject to the design constraints and
requirements. In this example, the Dual-zone HVAC is
more expensive as it requires more components but it provides
more comfort to the passengers.

Fig. 3: An exemplary Architecture Library for automotive HVAC systems with
components (top row) and templates (bottom row)

Fig. 4: Trade-off simulation analysis for HVAC and Dual-zone HVAC.

Notice that an architecture defined in terms of the Functional
Modeling basis allows the synthesizer to validate the design
contracts [18] because the interfaces are strongly typed and can
be mapped to CPS variables (i.e. electrical, mechanical, sig-
nals, etc.) [19]. This is beneficial for both mapping functional
models to candidate architectures, as well as for mapping
simulation components to each candidate architecture.

Definition 6. The level of fidelity is the amount of qualitative
and quantitative information that can be obtained from a
model.

Definition 7. Incompleteness of a model is the lack of fidelity
necessary to answer a specific engineering question.

Definition 8. Refinement is the process by which the level of
fidelity of a model is increased to make it less incomplete, and
thus the ability to answer more detailed engineering questions.

Automotive CPS design is a complex iterative process;
one design is passed hundreds of times through hundreds of
personnel in various organizations. Our algorithm observes this
aspect and embraces the fact that functional, architecture, and
simulation models are inherently incomplete and a continuous
refinement is necessary to be able to realize a “napkin concept”
into a real vehicle. Automotive design best practices are the
key drivers behind the FMC and our ultimate goal is its
integration to Product Lifecycle Managment (PLM) systems.

In most cases, the first functional model is a low fidelity
model that captures the essence of the design and defines only



the basic set of functions FA to fulfill the high-level require-
ments. Our synthesis algorithm supports the refinement of such
low fidelity functional models by leveraging the company’s
know-how that exists in the architecture library. For example,
after the initial candidate architectures have been identified,
the architecture models may contain a set of functions FB
that are not modeled in the original functional model. Thus,
this information can be propagated back to create a refined
functional model FC = FA∪FB . We refer to this refinement as
bottom-up refinement because information is being propagated
from a lower level of abstraction (architecture) to a higher-
level of abstraction (functions) to make it less incomplete.

A top-down refinement propagates information from a
higher level of abstraction (functions) to a lower level of
abstraction (architecture) to increase the level of fidelity.
For example, when a functional model F contains a set of
functions that are not fulfilled by any of the components
in the architecture library Alib, then a new architecture
component Anew with the relative complement of the
functions in the architecture library in the functions in the
functional model is created by Anew = F\Alib. The new
architecture component Anew is then subject to having a
design contract signed-off by an engineer to describe how it
relates vertically to other levels of abstraction, horizontally
to other architecture components, parameterized according to
architectural parameters of interest, and uniquely named and
described. Although these suggestions are provided to the
designers, our algorithm only uses architecture components
that have been signed-off by an engineer and have a design
contract in place. This guarantees that the high-level synthesis
is performed with the validated models.

A. High-Level Synthesis Technique for Transforming Func-
tional Models to Architecture Models

The high-level synthesis problem for CPS can be formulated
as follows: given a functional model F and the user defined
requirements R as inputs, the objective is to find the set
of architecture templates ArchTmapped ∈ Alib that fully or
partially map to F .

Definition 9. A mapping from a functional model F to
an architecture template ArchT is a set of pairs m = {<
vi, Aj >}, where vi ∈ V (F ) and Aj ∈ ArchT . To represent
all combinations, we define the mapping from F to ArchT as
MAP = {m1,m2, ...}. For convenience, we define Aj = ∅ if
vi does not exist. Furthermore, we define the mapping from F
to all ArchT ∈ Alib as a MAPset = {MAP1,MAP2, ...}.

Algorithm 1 generates both full and partial mappings
MAPset from a functional model F into a set of architecture
templates ArchTmapped based on the knowledge contained
in the architecture library Alib. Our synthesis algorithm also
provides top-down ArchTrefined and bottom-up Frefined
refinements as design suggestions for F and ArchTmapped.
Algorithm 1 performs a branch and bound synthesis [20] as
follows. First, Lines 2-4 prune the selection of architecture
templates whose constraints Clist do not meet the require-
ments R. Based on the selected architecture templates, Lines
5-12 aggregate the maximum possible mapping MAPset from
F to ArchTmapped based on functions only. In other words,

if a function f ∈ F exists in Ak ∈ Amapped, then the
architecture template becomes a candidate solution.

After the architecture template design space has been
expanded, our algorithm performs a multi-step pruning process
on each architecture template in ArchTmapped: (initial steps)
Lines 13-17 eliminate from MAPset the architecture templates
whose architecture component constraints Clist ∈ Al violate
any of the requirements R; (final steps) Lines 18-26 eliminate
from MAPset the architectures whose connectivity do not
match the functional connectivity (flows) in F ; and eliminates
the architecture templates whose architecture components
were eliminated entirely by the multi-step pruning process.

Lines 27-30 generate a top-down refinement Arefined for
all partial mappings; and Lines 31-34 generate the bottom-
up refinement Frefined based on the functions Fsub that exist
on the selected ArchTmapped but not in F . Notice that the
algorithm aggregates all functions in the bottom-up refinement
and gives the user the option to filter the refined functionality
according to a particular domain. In practice, as the design
becomes more detailed, the analysis tends to become more
discipline-specific.

Let the total architecture components in the architecture
library Ai ∈ Alib be N , total architecture templates in the
architecture library ArchTi ∈ Alib be M , and the number of
functions in F to be K. The aggregation step in Lines 5-12 has
a complexity of O(N∗M∗K). The multi-step pruning process
in Lines 13-26 is a search of all the possible mappings and
each step has a complexity of O(N∗M∗K). Thus, Algorithm
1 has a complexity of O(N∗M∗K).

B. High-Level Synthesis Technique for Transforming
Architecture-mapped Functional Models to Simulation
Models

The next step is to generate the corresponding simulation
model for each of the candidate architectures identified by
Algorithm 1 in order to analyze the actual performance against
the expected performance of the system, and to conduct trade-
off analyses between the different candidate architectures.

Definition 10. A simulation model S is a strongly typed
component with well defined CPS ports pi ∈ P and connectors
c(pi,pj) ∈ C that obey the energy conservation principles in
various domains and allow components to exchange physical
energy and data. Ports can be either physical or signal ports.
Physical ports have an associated effort variable e – voltage,
torque, pressure, temperature – and a flow variable f –
current, angular velocity, volumetric flow, heat flow –, such
that the product e · f represents physical power1. Signal ports
are represented with numeric variables. Connectors enforce
that only compatible port types are connected to each other.
S encapsulates a description of hybrid behavior – continu-

ous and discrete. Discrete behavior is defined by a 5-tuple:

FSM = {Φ, I,O,U ,Ψ} (1)

where Φ is a finite set of states that may encapsulate
continuous behavior, I is a set of input valuations, O is a set

1The Bond Graph foundations [21] allow the FMC to generate simulation
models in various languages such as AMESim [22], Modelica [23], and
Simscape [24].



Algorithm 1: Functions to Architecture Templates
Input: F : A functional model
Input: R: User defined requirements
Input: Alib: An architecture library
Output: MAPset: A set of mappings from F to ArchTset ∈ Alib

Output: ArchTmapped: A set of mapped architecture templates
Output: ArchTrefined: A set of refined architecture templates
Output: Frefined: A set of refined functional models

1 ArchTmapped = ArchTset ∈ Alib; MAPset = ∅;
ArchTrefined = ∅; Frefined = ∅

2 foreach ArchTi ∈ ArchTmapped do
3 if ∃Consj(ArchTi) contradicts with any reqk ∈ R then
4 ArchTmapped = ArchTmapped \ ArchTi

5 foreach ArchTi ∈ ArchTmapped do
6 MAPi = ∅
7 foreach vj ∈ F do
8 MAPi = MAPi × {< vj ,∅ >}
9 foreach Ak ∈ ArchTi do

10 if ∃{fl ∈ Fsub(Ak)} = {l(vj) ∈ F} then
11 MAPi = MAPi × {< vj , Ak >}

12 MAPset = MAPset ∪MAPi

13 foreach MAPi ∈MAPset do
14 foreach mj ∈MAPi do
15 foreach < vk, Al >∈ mj do
16 if ∃Clist(Al) contradicts with any reqm ∈ R then
17 MAPi = MAPi \mj

18 foreach mj ∈MAPi do
19 foreach ek ∈ E(F ) do
20 vs = s(ek) ∈ V (F );vt = t(ek) ∈ V (F )
21 Find At in < vt, At >∈ mj and As in < vs, As >∈ mj

22 if As 6= At and @c(s,t) ∈ C(ArchTi) then
23 MAPi = MAPi \mj

24 if All mappings in MAPi =< vk,∅ > then
25 ArchTmapped = ArchTmapped \ ArchTi

26 MAPset = MAPset \MAPi

27 foreach mj ∈MAPi do
28 foreach < vk, Al >∈ mj do
29 if Al = ∅ then
30 ArchTrefined = ArchTrefined ∪ {ArchTi ∪ vk}

31 foreach ArchTi ∈ ArchTmapped do
32 foreach ∃fsubj ∈ Fsub(A ∈ ArchTi) do
33 if ∃fsubj /∈ F then
34 Frefined = Frefined ∪ {F ∪ fsubj}

35 return MAPset, ArchTmapped, ArchTrefined and Frefined

of output valuations, U is an update function that indicates a
transition from a state and an input valuation to the next state
and an output valuation, and Ψ is the initial state.

Continuous behavior is represented by a differential alge-
braic equation in the form of:

G(ẋ(t), x(t), z(t), u(t)) = 0 (2)

where x(t) is a vector of the time varying states variables
of the system (e.g. velocity, temperature), ẋ(t) the time varying
state derivatives, z(t) the algebraic variables, and u(t) the
inputs to the system.

Simulation parameters parami(S) represent structural
(i.e. component-dependent) and environmental (e.g. gravity)
parameters. A simulation library Slib = (S1, S2, S3, ...) is a
collection of simulation components Si.

Although several commercial and academic simulation com-
ponent libraries exist [22, 24, 25, 23], as of today, none
is ready for high-level synthesis; they describe behavior
explicitly in terms of a mathematical model, but do not
explicitly describe the functionality the component fulfills.

Therefore, any top-down approach that attempts to allocate
simulation components to architectures and functions faces the
same challenge of lack of functional information. There are
two ways to overcome this problem.

The first and most straightforward approach is to manu-
ally annotate components with a list of functions it fulfills.
These semantic annotations regarding individual simulation
components σ(Si) are useful because the engineers know best
what functionality is achievable with a particular component.
The drawback of this approach is the extensive amount of
time it takes to manually annotate models, especially in
simulation component libraries with thousands of components.
Furthermore, the manual approach is not systematic and this
leads to few functional annotations per component.

Therefore, we use a novel automated approach for extracting
functionality from simulation components. We perform an
automatic interface analysis on port types, a structural (i.e.
equational and algorithmic) analysis on the mathematical
model, and a parameter analysis on the component’s param-
eters to determine what functionalities it fulfills. Note that
the functional extraction is performed once per library and
the identified functions are automatically annotated in the
library as additional semantic information for future reuse.
Although we performed functional extraction on the AMESim
library [22], this technique is applicable to any other physical
modeling language that uses effort-flow variables and differ-
ential equations such as Modelica [23] and Simscape [24].

Definition 11. A mapping from an architecture-mapped
functional model to simulation components is a set of 3-
tuples t = {< vi, Aj , Sk >}, where vi ∈ V (F ), Aj ∈ Arch,
and Sk ∈ Slib.

Algorithm 2 generates simulation models for all the
architecture-mapped functional models identified by
Algorithm 1 in three steps. Step 1, Lines 2-15, broadens the
simulation design space Ssolution for each of the architecture
templates Al ∈MAPset. The temporary variable Smatches is
a pruned set of simulation components from Slib that fulfills
the functionality specified in < vk, Al >. Lines 6-10 perform
a search on the simulation library Slib to identify the most
appropriate components that match the interface Sinterface,
energy transformations Sequations, parameters Sparameter, and
the manually annotated functional information Sfunctional.
Notice that port matching is possible because the physical
domains in the Functional Basis language can be mapped to
the port types in the simulation components (e.g. rotational
mechanical energy → torque/angular velocity. The matched
simulation components Smatches are then used to create the
3-tuples that define the mappings of architecture-mapped
functional models to simulation components, and are added
to the simulation design space Ssolution. Whenever an
architecture-mapped function cannot be mapped to any
simulation component, we construct a top-down refinement
of simulation models Srefined. Step 2, Lines 16-17, expands
the simulation design space Sset by creating individual
simulation models for all possible combinations of simulation
components that match an architecture-mapped functional
model. Step 3, Lines 18-25, adds connections to every model
in Sset according to the topology in their corresponding



architecture component. Ports P (Si) without connections are
connected to the appropriate sources and sinks simulation
components (e.g. constants, terminals, grounds, etc.); these
ports and their new connections to sources and sinks are used
to generate the bottom-up refinement in ArchTrefined and
Frefined.

Let the candidate architecture templates ArchTset ∈
MAPset be N , and the number of simulation components
in Slib be M. Finding matches from architecture components
Al ∈ ArchTset to simulation components Smatches – Lines
4-15 – has a linearithmic time complexity O(NlogM)
because the simulation library has been pre-processed and
the functional information has been already extracted and
organized for efficient search; pre-processing has a linear time
complexity O(M). The topology construction in Lines 18-25
has a time complexity proportional to O(C(ArchTset)∗Sset).
In practice, C(ArchTset) ≈ N and M >> Sset; therefore,
the time complexity of Algorithm 2 is O(NlogM). The
simulation design space Sset created by Lines 16-17 has a
space complexity of O(N∗NAl

∗MSmatches
).

Algorithm 2: Architecture-mapped Functions to Simula-
tion

Input: F : A functional model
Input: R: User defined requirements
Input: Slib: A pre-computed simulation library with semantic annotations
Input: Alib: An architecture library
Input: MAPset: A set of mappings from F to ArchTset ∈ Alib

Output: Frefined: A set of refined functional models
Output: ArchTrefined: A set of refined architecture templates
Output: Srefined: A set of refined simulation components
Output: Sset: A set of simulation models

1 Sset = Srefined = ArchTrefined = Frefined = ∅
2 foreach MAPi ∈MAPset do
3 Ssolution = ∅
4 foreach mj ∈MAPi do
5 foreach < vk, Al >∈ mj do
6 Sinterface = find P (Al) in P (Slib)
7 Sequations = find P (vk) in P (Slib)
8 Sparameter = find Clist(Al) in param(Slib)
9 Sfunctional = find l(vk), l(s(vk)), l(t(vk)) in σ(Slib)

10 Smatches =
Sinterface ∩ Sequations ∩ Sparameter ∩ Sfunctional

11 if Smatches = ∅ then
12 Srefined = Srefined∪ < vk, Al,∅ >
13 else
14 foreach Sm ∈ Smatches do
15 Ssolution = Ssolution∪ < vk, Al, Sm >

16 foreach sk ∈ Ssolution do
17 Sset = Sset × sk
18 foreach Si ∈ Sset do
19 ∀c(i, j) ∈ C(Arch(Si))→ c(i, j) ∈ C(Si)
20 foreach P (Si) = ∅ do
21 Ssources = find P (Si) in P (Slib)
22 Ssinks = find P (Si) in P (Slib)
23 P (Si) = P (Si) ∪ Ssources ∪ Ssinks

24 P (Si)→ P (ArchTrefined(Si))
25 P (Si)→ P (Frefined(Si))

26 return Sset, Srefined, ArchTrefined and Frefined

C. Automatic Extraction of Functions from Simulation Li-
braries

Our automatic approach for determining the set of functions
achieved by a simulation component is realized by analyzing
its ports and interface, as well as determining the flow
(energy, material, signals) transformations that occur within
the component’s internal structure. This bottom-up step clas-
sifies components in a library of simulation components Slib

according to the functions they perform. This classification
information is important in order to achieve a correlation
between functions, architectures, and simulation components
that design tools can use to synthesize simulation models for
candidate product architectures.

Fig. 5: Extraction of functions from simulation components.

Analyzing the components’ interface determines what type
of energy, material, or signals can be exchanged with other
components through its ports. Figure 5 shows how the in-
terface analysis infers the functions achieved by a given
simulation component. For example, the Electric Motor
component has three ports: thermal, electrical, and rota-
tional mechanical energy. Typically, simulation components
exchange energy through a pair of physical variables known
as conjugate variables that represent effort/flow. The con-
jugate variables voltage/current represent electrical energy,
torque/angular velocity represent rotational mechanical energy,
and temperature/heat flow represent thermal energy. Because
the relationship between energy at the functional level, and
energy at the simulation component level is known and
well defined, our algorithm determines that the Electric
Motor is able to perform the function of “Convert” energy
from any port to the other ports. Thus, a total of six functions
are inferred.

In some cases, simulation components are modeled with
additional domains that are not visible through their interface
and therefore our algorithm performs a structural analysis
– a hierarchical traversal and flattening – of the internal
simulation component structure to expose all the domains
(e.g. electrical, mechanical, thermal, signals, etc.). Figure 6
shows the interface of the DCMotor1 component of the
Modelica Standard Library with a single port (Rotational
Mechanical Energy or RME). The interface analysis infers
a single function “Supply RME”. However, the structural
analysis exposes the internal composition of the DCMotor1
component in terms of two domains: RME and EE. Notice that
although electrical components exist, they are not exposed in
the component interface and performing an interface analysis
would only lead to a correct, but not very detailed functionality
of the simulation component. Therefore, using the structural
analysis our algorithm identifies two additional functions
“Convert EE to RME” and “Convert RME to EE”.

A further level of structural analysis, referred to as hierar-
chical structural analysis, is shown in Figure 6. By apply-
ing the same principle to the electrical components in the
DCMotor1, a graph of functions can be inferred by the
algorithm. For example, the signalVoltage1 is connected
to Resistor1, and this is connected to EMF1 simulation
components. Using the same structural and interface analysis
on the individual components, our algorithm determines the
flow of electrical energy as a graph of functions where
“Supply EE”, “Regulate EE”, and “Convert EE to



RME” functions are connected. This provides a more detailed
functional understanding of a component that can be used to
drive the synthesis of architecture-mapped functional models
according to different levels of fidelity.

Fig. 6: Structural analysis on simulation components reveals additional
domains and the energy, material, signal transformations between them.

IV. CASE STUDY

An exemplary functional model of a car is shown in
Figure 7. It inputs three material flows (bold arrows for Air,
People, and Fuel) and outputs two material flows (People and
Hot Gas) and one energy flow (arrow representing translational
mechanical energy or TME). Notice that the functions (blocks)
and flows (arrows) can be naturally mapped to the main
subsystems of a car represented by architectural templates
shown in Figure 8. For example, the function “convert
chem. energy to rot. mech. energy” function
can be mapped to an Engine ICE, Series Hybrid, and
Parallel Hybrid architectures. Similarly, the function
“transmit rot. mech. energy” is mapped to a
“Manual Transmission” and not to an “Automatic
Transmission” because there is a “Gear Selection”
control flow flowing from “convert human energy”
function to “convert chem. energy to rot.
mech. energy” function.

In this case study, the user defined requirements R are
given in Table I, and the constraints Clist for five vehicle
architecture templates are given in Table II. Notice that
although < c1, c2 > of all architectures in Table II comply
with < r1, r2 >, the c3(Electric Fuel Cell) violates
r3 and therefore this is eliminated from the architectural
design space by Algorithm 1. The mapping of functions
in the functional model in Figure 7 to the remaining four
architecture templates in Figure 8 eliminates the Electric
architecture template from the candidate list because neither
“Store EE” nor “Convert EE to RME” functions exist
in the functional model. Notice that while the ICE architecture
template fully matches the functional model, the Series
Hybrid and Parallel Hybrid templates partially match
the functional model. The functions inherited from the ICE
template exist in the functional model, the additional functions
inherited from the Electric architecture do not exist in the
functional model and therefore partially match to F .

Using functional models, the design intent remains
technology-independent and the FMC allows non-experts
to automatically generate simulation models for various
architectures that satisfy the design requirements. For
example, the functional model in Figure 7 is created by a
software engineer with marginal understanding of mechanical
engineering principles who wanted to design the engine
control system (ECU and its control software) represented
by the “Sense” and the “Control” functions. Figure 9
shows the AMESim simulation model for the Series
Hybrid architecture synthesized by the FMC. Notice that
our high-level synthesis algorithm appropriately downselects
the VCU-SH ECU simulation component to control both
the ICE Engine and the Electric motor as per the
topology and port structure defined in the Series Hybrid
architecture template in Figure 8.

Fig. 8: Architecture templates for the Engine Block

The synthesized CPS simulation models enable domain en-
gineers to validate their subsystems in software- and hardware-
in-the-loop simulations, and to perform performance compar-
isons across various architectures. For example, Figure 10
uses the synthesized models for the Series Hybrid and
the Parallel Hybrid to compare the state of charge
of the batteries during the first 600 seconds of the New
European Driving Cycle (NEDC). Notice that the “Convert
RME to EE” function in the Series Hybrid architecture
in Figure 8 is mapped to the Electric Generator
simulation component in Figure 10. This component allows the
Series Hybrid architecture to increase the state of charge
of the battery from 90% to 96%. In contrast, the Parallel
Hybrid architecture does not specify the functionality for
recharging the battery and therefore the state of charge is
reduced from 90% to 62%.

The partial mapping of the Series Hybrid architecture
also helps to illustrate the bottom-up refinement capabili-
ties of our methodology. The functions “Convert RME to
EE”, “Convert EE to RME”, and “Store EE” in the
Series Hybrid architecture do not exist in the functional
model in Figure 7. As shown in Figure 11, Algorithm 1
propagates this information to the functional abstraction and
creates a refined functional model with a flow from the
“RME” output of the ICE-mapped “Convert CE to RME”
function to a newly created functions “Convert RME to
EE” and “Store EE” that do not exist in the original F .
Notice that thanks to Algorithm 1, this connection also exists
in the simulation model in Figure 9. We introduced the



Fig. 7: An exemplary functional model of a car, associated requirements, and architectural constraints.

Fig. 9: Series Hybrid architecture synthesized simulation model.

concept of top-down and bottom-up refinement of functional,
architecture, and simulation models based on the premise that
these models will be always incomplete, and each design
iteration refines them into higher-fidelity models capable of
answering more detailed questions. Therefore, our approach
is complementary to platform-based design [13] and the meet-
in-the-middle principle is satisfied.

Fig. 10: Battery’s state of charge comparison between the Series Hybrid,
and Parallel Hybrid architectures on the New European Driving Cycle.

Fig. 11: Bottom-up refinement of a functional model

V. CONCLUSION

This paper uses the Functional Basis language to model
the functionality and the requirements of automotive CPS
for increased performance and efficiency. High-level synthesis

techniques are used to develop alternative architecture-specific
simulation models for such complex automotive CPS and
facilitate the early design space exploration during the con-
cept design phase. Moreover, during the synthesis process, a
decision support system including functional model refinement
to back-propagate the results as concept design suggestions is
demonstrated. A real-world use case using various automotive
platforms on a commercial simulation platform AMEsim is
shown.
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