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Strength of Diversity: Exploiting Cheap
Heterogeneous Noisy Sensors for Accurate

Full-Chip Thermal Estimation and Prediction
S.Sarma, N.Dutt, and P.Gupta†

Abstract—Thermal sensor characteristics and placement di-
rectly impacts the effectiveness and accuracy of full-chip thermal
characterization necessary for dynamic thermal management
(DTM) and reliable on-chip operation of multi/many-core chips.
Temperature sensor characteristics widely vary in their area,
power, and accuracy; the number of deployable sensors is
constrained by the on-chip area/power constraints. However,
recent approaches have considered only one type of sensor
without leveraging the diversities among different sensor types.
In this paper, we exploit the flexibility and trade-off in area/power
and error characteristics of varied thermal sensors to perform
a heterogeneous sensor allocation and placement (HSAP) to
precisely recover the full-chip thermal map with high-fidelity. Un-
like traditional sensor allocation and placement techniques that
consider only one sensor type, HSAP finds the best combination of
the heterogeneous sensors along with their placement for a given
sensor area and power budget such that the full-chip thermal
characterization error is minimized. Experimental results with
multicore Alpha processor show significant improvements com-
pared to the state-of-the-art in terms of reconstruction accuracy
for the same sensor area and power budget. In particular, our
HSAP approach achieves superior accuracy (around 10-100x
error reduction with three types of sensors in comparison to
a single type without any additional overhead) and execution
speedup of over 20× for full-chip thermal monitoring over a
state-of-the-art technique.

Index Terms—Thermal variation characterization, Variability,
Thermal Sensors, Sensor allocation, Heterogeneous sensor place-
ment.

I. INTRODUCTION

AS integrated circuit technology continues to scale to the
nanoscale era, power and thermal issues become increasingly

important and major concern for processor design [1], [2], [3]. Earlier
works have shown that elevated temperatures directly impact all key
circuit metrics including: lifetime and reliability, speed, power, and
costs. Thermal hotspots reduce the mean time to failure as most
failure mechanisms (e.g., electromigration, time dependent dielectric
breakdown, and negative bias temperature instability) have strong
temperature dependencies [4]. With more than 50% of all integrated
circuit failures being accounted to thermal issues [4], a mere 10oC
15oC rise in the operating temperature could halve the life span of the
chip [5]. Not only does the fault rate double for every 10oC increase
in temperature [6], but different thermal expansion coefficients of
chip materials also cause mechanical stresses that can eventually
crack the chip/package interface [3], resulting in increased packaging
cost. Additionally, accuracy of thermal measurements directly affects
the efficiency of thermal management as well as the performance
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of the CPU [7], [8]. Inaccuracies in thermal tracking decreases
the processors performance and wastes power. In particular, it was
shown that a 1 oC accuracy translates to 2W power savings while
1.5oC accuracy in temperature measurement is equivalent to 1W of
CPU power in mobile computers [7]. Due to localized heating, the
temperature variation within a single chip can reach up to 10s of
degrees. For instance, within-die temperature variation of up to 50 oC
was reported in [1]. Due to lack of proximity, sensor measurements
and hot spot temperatures could differ by up to 10 0C [7]. Such
inaccuracies in thermal estimates can either trigger early or late
activation of DTM resulting in unwanted performance loss [8] or
severe reliability degradations [4].

As the effectiveness and efficiency of dynamic thermal manage-
ment approaches heavily relies on the accuracy of on-chip temper-
ature measurement and estimation, several types of thermal sensors
varying in accuracy, resolution, area, and power consumption have
been designed and proposed. The specifications and relative area and
power characteristics of some of the recent smart sensors are listed in
Table I and Fig. (1) respectively. For an area limited design, sensor
S1 would be preferred. On the other hand, for a power limited design,
sensor S3 would be preferred over S1 because of its lowest power
characteristics. For design spaces between the two extremes of area
or power limited design, neither S1 nor S3 but a combination of
sensors ( e.g. S1, S2, S3) would potentially provide a better solution
by leveraging the diversity of each sensor type. Additionally, in order
to accurately capture the wide within-die temperature variations, a
large number of them must be deployed throughout the chip to collect
thermal data in real time. For example, Intel’s Dunnington Xeon
processor with 6 cores contains 12 thermal sensors [14], AMD’s
quad-core opteron deploys 38 sensors [15], and IBM’s POWER7
microprocessors includes 40 temperature sensors [16] at different
locations.
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Figure 1. Sensor accuracy, normalized power and area of the digital
temperature sensors of Table (I) scaled to 1.0V, 65 nm technology.

As temperature sensors along with their peripheral circuits intro-
duce substantial overhead in silicon area and power consumption, it
is extremely important to minimize the design overhead associated
with temperature sensors and their placement without surrendering
the accuracy of thermal monitoring. On one-hand large number of
temperature sensors are needed for accurate thermal monitoring, on
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Table I
COMPARISON OF RECENT SMART TEMPERATURE SENSORS

Sensor Resolution(0C) Accuracy(0C) Range(0C) Power Area(mm2) Technology Reference
S1 0.139 -5.1~+3.4 0~60 150µW@1.0V 0.01 65nm Chung et al.[9]
S2 0.16 -0.7~+0.9 0~100 0.49mW@3.3V 0.175 0.35µm Chen et al. [10]
S3 0.0918 -0.25~+0.35 0~90 36.7µW@3.3V 0.6 0.35µm Chen el al. [11]
S4 0.01 ±0.1 -55~125 247µW@3.3V 4.5 0.7µm Pertijs et al. [12]
S5 0.03 ±0.2 -70~125 10µW@1.2V 0.1 65 nm Sebastiano et al. [13]

the other hand they incur substantial die area real estate and power.
To effectively address this inherent trade-off in thermal monitoring,
we propose heterogeneous sensor allocation and placement (HSAP)
using heterogeneous mix of sensors. In this approach, we exploit the
flexibility and trade-off in area, power, and accuracy characteristics of
varied thermal sensors to perform a improved sensor allocation and
placement while precisely recovering the full-chip thermal map for
multicore architectures. Unlike state-of-the-art sensor allocation and
placement techniques that use a single type of homogeneous sensor,
our proposed HSAP approach finds the best combination or the mix
of different sensors for given sensor area and power budget along
with their placement such that the full-chip thermal characterization
error is minimized. Contrary to the existing techniques that minimizes
the number of sensors to reduce the area and power overhead, our
proposed approach maximizes the number of samples used in the
reconstruction without increasing the sensing overhead (considering
the sensor area and power consumption). The contributions of our
work are that we:

• redefine the sensor allocation and placement problem using
combination of heterogeneous sensors,

• present an algorithm to find the best sensor combination and
their location without either surrendering the accuracy of ther-
mal monitoring or exceeding the sensor area power budget,

• show significant improvements in reconstruction error (around
10-100x reduction with three types of sensors) for same over-
heads and execution speedup of over 20× in comparison to a
state-of-the-art technique.

II. MOTIVATION AND RELATED WORK

Full chip thermal monitoring and reconstruction suffers from an
inherent trade-off between accuracy of monitoring and implemen-
tation overhead (in terms of sensor die area and power) incurred in
the monitoring infrastructure. Both the accuracy of the reconstruction
and the overhead incurred in the monitoring infrastructure is directly
impacted by the number of sensors, their locations, and accuracy [17].
Specifically, full chip thermal reconstruction accuracy predominantly
depends on the number on-chip sensors [18], [17], their placement
[18], [17], as well as sensor accuracy and error characteristics
[8]. Although, improvement in reconstruction accuracy was studied
by several computational means like interpolation [19], [20], [21],
correlation of the sensor measurements, and transformed domain
processing (e.g. FFT [22], DCT [18]), a tacit assumption in all these
works [23], [19], [20], [18], [22], [17] is that sensors characteristics
are homogeneous which is no longer valid for nanometer technologies
in presence of variability [8], [1]. These works [23], [19], [20], [18],
[22], [17] have neither considered the sensor error characteristics
nor did they exploit the trade-offs in sensor characteristics to im-
prove reconstruction accuracy. In this paper, we exploit these trade-
off characteristics among different sensor type with regard to the
reconstruction accuracy and show that by using mix of many weak
and inaccurate sensors along with few robust and accurate ones, the
full-chip reconstruction accuracy can be improved by an order of
magnitude.

Our work is motivated by the recent work of Ranieri et al. [17]
which addresses the problem of sensor allocation and placement for
a given set of thermal traces. Ranieri et al. [17] considers the effect
of the sensor accuracy in the thermal profile reconstruction but does
not specifically account for the sensor area and power overheads.

While [17] improves the reconstruction accuracy by exploiting the
correlation among the thermal maps, our work jointly considers the
sensor accuracy, area, and power overhead and exploits the trade-off
in different sensor types along with the correlation information among
the thermal maps. Our work differs from [17] in several ways. First,
our approach is more generic and can be applied for both homogenous
and heterogeneous sensor types where as the approach in [17] is only
applicable for homogeneous sensors. As the thermal sensor accuracy
can substantially vary due to process variations at different location of
the die [8], the methods in [17] fails to account these effects. HSAP
can easily be applied in such scenarios. Second, the reconstruction
approach in [17] is based on ordinary least square (OLS), whereas our
reconstruction approach is based on generalized least square (GLS)
which is more accurate and efficient for general and heteroscedastic
noise distribution. Third, our greedy sensor placement algorithm is
relatively faster than that of [17] as we directly find the best M
locations one after the other in stead of rejecting N−M (where M �
N) futile locations. Fourth, we provide efficient solutions that can
provide improvement of the order of 10×−100× in reconstruction
accuracy for the same sensing area and power overhead and execution
speedup of over 20×.

III. THERMAL PROFILE RECONSTRUCTION AND NOISY
SENSOR PLACEMENT

Let t[i, j] be the two-dimensional thermal map where i and j repre-
sents the coordinate of the location within the two-dimensional floor
plan. The two-dimensional thermal map t[i, j] can be represented
using a one-dimensional vector x[k] where 1 ≤ k ≤ N by stacking
the columns such that x[k] = t

[
kmodH, floor

[
k
W

]]
. Thus,

x = {x1, x2, .., xN} represents the full temperature field at each grid
locations N = WH of the die. Let x̂ be the reconstructed signal of x
in presence of noise and truncation errors and xS be the measurement
with total sensors M � N at locations L = {i1, i2, ..., iM} such
that xS =x(L). In presence of sensor noise and errors ε, the sensor
measurement is:

xS = x(L)+ε (1)

where ε is suitably represented by a probability distribution such
as multivariate Gaussian distribution (ε ∼ NM(µ,Σ) ) with mean
µ and variance Σ. Let x̂S be an estimate of xS which is the
measurement from R heterogeneous sensor types with accuracy σr ,
power pr , area ar for sensor type r. Let m = {m1,m2, ...,mR}
represent combination of the heterogenous sensors, i.e. mr is the
number of sensors of type r that is used in the measurement at
locations Lr (representing the location of the sensors of type r) and
xSr represent the measurement from sensor of type r located at Lr

such that :
xSr =x(Lr) + εr

where εr ∼ Nmr(µr,Σr) is Gaussian noise of dimension mr ,
mean µr , and variance Σr . If we represent the covariance of the
sensor error εs as Σ = σ2V, where V is a matrix and σ is a
positive bounding constant corresponding to max value in Σ, there
are two special cases (a) V = I (b) V =diag(V1, V2, ..., VR). In
the first case, where the variance are same for each component
(sensor), is called homoscedasticity and in the second where variance
of each components are not same is called heteroscedasticity. As
we have different types of sensors with varied error characteristics,
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the sensor error εs has heteroscedastic distribution. Thus, combined
sensor measurements is heteroscedastic and is given by:

xS = xS1

⋃
xS2 ...

⋃
xSR =

{
R⋃

r=1

xSr

}
(2)

in presence of the sensor noise εs =

R⋃
r=1

εr at the locations :

L = L1

⋃
L2....

⋃
LR =

{
R⋃

r=1

Lr

}
| Li

⋂
Lj = ∅,∀i 6= j. (3)

As the number of sensor of a particular type is equal to the size
of the location vectors, i.e. mr = |Lr|, the total number of sensors

is M =

R∑
r=1

mr = |L|. Similarly, the total sensor area and power

consumed by the sensors is given by:∑R
r=1 ar ∗mr ≤ AB∑R
r=1 pr ∗mr ≤ PB

(4)

where AB and PB are the sensor area and power budget respectively.

IV. SIGNAL ESTIMATION AND RECOVERY

The sensor measurement signal in (1) can be represented using a
generalized linear regression model:

xS = Φsαs + εs (5)

where Φs is the basis or kernel matrix, αS are the coefficients of
the expansion over the basis Φs. With the assumption of zero mean
and deterministic basis, following theorems are well known results
in linear regression analysis and estimation theory [24].

Theorem 1. Let x =Φα + ε be the linear regression
model with zero mean homoscedastic noise distribution
(E(ε) = 0, Cov(ε) = σ2I) and deterministic basis Φ such

that rank(Φn×p) = p then rank(Φ
′
Φ) = p and

(
Φ

′
Φ
)−1

exists.
In that case, the ordinary least square (OLS) solution is unique and
is given by:

α̂OLS = Φ†x = (Φ
′
Φ)−1Φ

′
x (6)

with the orthogonal projection as x̂ = Φα̂OLS =

Φ(Φ
′
Φ)−1Φ

′
x = Px where P =Φ(Φ

′
Φ)−1Φ

′
is the projection

matrix and PΦ = Φ. The OLS estimate has the following properties:

• E(α̂OLS ) = α ,
• Cov(α̂OLS ) = σ2(Φ

′
Φ)−1 ,

• α̂OLS is the best linear unbiased estimator (BLUE), i.e. the
minimum variance unbiased estimator.

Theorem 2. Let x = Φα+ ε be the generalized linear regression
model where rank(Φn×p) = p, with zero mean heteroscedastic noise
distribution such that E(ε)=0,Cov(ε) =Σ = σ2V, with known V,
then there exists a transformation of x to a new response vector
which has a covariance matrix σ2I . Ordinarily least square applied
to the transformed x yields a solution:

α̂GLS = (Φ
′
V−1Φ)−1Φ

′
V−1x (7)

with the orthogonal projection as x̂ =
Φα̂GLS = (Φ

′
V−1Φ)−1Φ

′
V−1x = P̃x where

P̃ = (Φ
′
V−1Φ)−1Φ

′
V−1 is the generalized projection

matrix and P̃Φ = Φ. The generalized least square (GLS) estimate
is the best linear unbiased estimator (BLUE) with the following
properties:

• E(α̂GLS ) = α,
• E(α̂GLS) = E(α̂OLS),

• Cov(α̂GLS ) = σ2(Φ
′
V−1Φ)−1,

• Cov(α̂OLS ) = σ2(Φ
′
Φ)(Φ

′
VΦ)(Φ

′
Φ)−1.

From theorems (1) and (2) it can be inferred that OLS is the best
linear unbiased estimator (BLUE) in presence of homoscedasticity
and GLS is the BLUE in presence of heteroscedesticity. Under
heteroscedesticity, OLS is still unbiased linear estimator, but not the
best estimator (i.e. not efficient). In other words, OLS is not the
minimum variance estimate in presence of heteroscedesticity. The
usual variance of the OLS estimator is biased and thus inefficient.
Consequently, we use the GLS estimate in (7) to find the coefficients
from the sensor measurement as

α̂s = (Φ
′
sV

−1Φs)
−1Φ

′
sV

−1xS (8)

where we call Φs as the sensing matrix.

A. Full Signal Reconstruction and Recovery in Presence of
Noise

As the number of sensors are very few compared to the number
of grids / monitoring points in the die (M � N ), the spatial
thermal profile has to be recovered from the few measurements xS.
If we apply the generalized linear regression model for the full
thermal map, we have x = Φα + εp, where Φ is a deterministic
basis of size N × N , and the coefficients α are estimated as α̂
by GLS to get x̂, an estimate of the thermal map due to the
true process noise εp. As thermal maps are often sparse, we can
approximate the thermal map with a linear combination of K columns
of Φ and K elements of α out of N such that x̃ = ΦKαK . Let
K = {j1, j2, ..., jK} be the vector of the locations of the coefficients
in α such that αK = α(K). Note that this approximation makes
ΦK of dimension N × K and αK of dimensions K × 1. This
approximation or truncation introduces an addition error or noise
term εt in the regression models such that x = ΦKαK + εp + εt.
When the number of sensors M is equal to (or greater than) the
number of basis vectors or columns K , αK can be represented by
αs in addition to a sensor noise term εs in the thermal map such that
x = ΦKαs + εp + εt + εs. Representing the total noise as sum
of all the noise components as ε = εp + εt + εs, we can make an
estimate of the thermal map as:

x̂ = ΦKα̂s = ΦK

[
(Φ

′
sV

−1Φs)
−1Φ

′
sV

−1
]
xS. (9)

Note that the sensing matrix Φs is formed from the basis matrix Φ
corresponding to the sensor locations L and coefficient locations K
such that Φs = Φ(L,K). The reconstruction matrix ΦK is formed
from K columns corresponding to the coefficient locations such that
ΦK = Φ(:,K) where the operator ’:’ represents all rows of Φ. For
valid reconstruction in (9) , V−1 and (Φ

′
sV

−1Φs)
−1 must exist

and results in M ≥ K as a requirement.
To evaluate the reconstruction / recovery accuracy over a set of T

thermal traces X = {x1,x2, ..,xT} of size T × N with each row
indicating a trace x, we define the residual vector ε̂i = xi − x̂i

for the thermal trace xi and the residual sum of square RSSi =
ε̂
′
iε̂i = ‖xi − x̂i‖2 such that the mean square error of the trace xi

is MSEi = E(ε̂
′
iε̂i) =

1
N

∑N
j=1 (xi[j]− x̂i[j])

2. The total average
mean square error over all the traces is :

MSE =
1

TN

T∑
i=1

N∑
j=1

(xi[j]− x̂i[j])
2 . (10)

V. NOISY HETEROGENEOUS SENSOR ALLOCATION AND
PLACEMENT (HSAP) PROBLEM

A. Problem Statement
The HSAP problem is defined as an optimization problem which

selects the best combination of heterogeneous sensors, their locations
along with the basis vector combinations (basis selection) such that
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the full chip thermal reconstruction error is minimum subject to the
constraints discussed in section (III). The formal statement of the
problem is as follows:

Given R heterogeneous sensor types with each sensor type r
having power consumption pr , and area ar , accuracy σr , the problem
is to select the combination of sensors m = {m1,m2, ...,mR}
(where mr is the number of sensors of type r with the total number
of sensor M =

∑R
r=1mr), their placement L = {i1, i2, ..., iM}

, and the coefficient locations K = {j1, j2, ..., jK} to select the
basis vectors such that the full-chip reconstructed residual error is
minimized subject to the constraints as in (11).

Minimize
L,m,K,α̂s

‖ x−ΦKα̂s ‖2
2

Subject to :
‖ α̂s ‖0≤ K ≤ M =

∑R
r=1mr∑R

r=1ar ∗mr ≤ AB∑R
r=1pr ∗mr ≤ PB

L =

R⋃
r=1

Lr;Li

⋂
Lj = ∅,∀i 6= j

(11)

VI. GREEDY SOLUTION FOR HSAP PROBLEM

The HSAP problem is a generalization of the sparse regression
problem [25] with additional constraints and variables. The sparse
regression problem [25] is NP-hard and consequently the HSAP prob-
lem is NP-hard. With NP-hardness established, an optimal polynomial
time algorithm is unreachable. Consequently, we propose heuristics
and simplification strategies in developing a greedy solution for the
HSAP problem.

A. Stage-wise Greedy Solution (gHSAP)
The stage-wise greedy solution approach is motivated by the work

by Ranieri et al.[17] and Reda el al.[21]. gHSAP attempts to decouple
the HSAP into heterogeneous sensor selection as the first stage, the
basis vector and coefficient location selection as second, and the
sensor placement and reconstruction as the third stage. By using
the observation in section IV, we decouple the HSAP in to two
optimization problems such that solution to both directly improves the
reconstruction accuracy. By doing so, we can easily deploy effective
existing solutions at much reduced complexity. We discuss all the
stages and the optimization algorithms in the following subsections.

1) Heterogeneous Sensor Selection: It has been shown in [25]
that the probability of reconstructing a signal exponentially increases
with increasing number of samples. If the number of samples is
chosen as MS ≥ cKln

(
N
K

)
, it is possible to reconstruct every

K sparse coefficients with a probability exceeding 1 − e−NMs . As
the number of samples MS exponentially impacts the reconstruction
accuracy, it is logical to maximize them while choosing them from
good sensors. However, as the number of samples Ms is directly
related to the number of sensors M as well as their area, power,
and accuracy trade-offs, we define an optimization to maximize the
number of samples as a weighted sum of the sample obtained from
a sensor of particular type within the area and power budget. The
weights wr can be chosen based on accuracy to give preference to
or penalize one type over the other in selecting the samples. We cast
the problem as an integer linear program (ILP) by defining a vector
m = [m1,m2, ...,mR] such that MS =

∑R
r=1 wrmr = w

′
m. The

ILP thus is stated as follows:

Maximize MS =
∑R

r=1wrmr = w
′
m

m

subject to
∑R

r=1pr ∗mr ≤ PB∑R
r=1ar ∗mr ≤ AB

(12)

The ILP in (12) can easily be solved using any standard solver.
The solution of the ILP in (12) determines the sensor combinations
and total sensor used in the sensor placement and reconstruction.

2) Basis Vector and Coefficient Location Selection: The
purpose of this step is to find the K best basis vectors in Φ and
their locations K = {j1, j2, ..., jK} to form the orthonormal basis
matrix ΦK such that the approximation x̃ = ΦKαK is optimal.
One approach is to use the greedy based orthogonal matching pursuit
(OMP) [25] algorithm to find the best basis vectors. Another approach
is based on the dimensionality reduction technique as in [17] which
states that the approximation error in the reconstruction can be
represented as the sum of the eigen values of Φ, corresponding
eigen vectors of which are not included in ΦK . If we define a
covariance matrix Cx formed from the set of thermal traces X =
{x1,x2, ...,xT} with eigen values {λn}Nn=1 , than the orthonormal
basis ΦK that introduces the least error in the approximation is
formed from the K eigen vectors of Cx with the largest eigen values
{λn}Kn=1 . The minimum approximation error ξ = E

[
|x− x̃|2

]
can

be represented as [17]

ξ =

N∑
n=K

λn. (13)

Note that as the number of basis vectors K increases, approximation
error ξ decreases in (13). In other words, the reconstruction error
can be reduced by forming the basis ΦK with the eigen vectors
corresponding to the dominant eigen values of Cx, as well as by
increasing K ≤ M .

3) Sensor Allocation and Placement : In this stage, sensor
allocation and placement is carried out using total number of sensors
computed in the previous stage. We allocate the best and most
accurate sensors to the most crucial locations. The sensor placement
algorithm provides the sensor location in order of their importance
and we map the sensor types to these location according to their ac-
curacy. The placement algorithm iteratively finds the sensor locations
using a greedy approach [21] in polynomial time. The algorithm picks
the location based on highest temperatures iteratively by computing
the orthogonal components at available location and then picking
the location with highest orthogonal norm. Once the locations are
found, the thermal profile is reconstructed using (9). The algorithm
is summarized in Fig. 2.

Algorithm: Greedy Heterogeneous Sensor Allocation and Placement (gHSAP)

Input: Thermal traces X = {x1,x2, ...,xT}, Sensor types R, Sensor Specifications,
V, Sensor Area Budget AB, Sensor Power Budget PB
Output: Total no of sensors M, Sensor combination m, Sensor location L, Coefficient
Location K,Sensing matrix Φs,x̂

1) Solve the heterogeneous sensor selection ILP in (12) and compute M for the
given sensor area power budget

2) Estimate Cx = E [x[i]x[j]] from the set of thermal traces X. X is normalized
to reflect a zero mean process.

3) Compute the eigen values of Cx and the corresponding eigenvectors to form
the basis Φ

4) Construct ΦK from Φ corresponding to the largest eigen values given by
coefficient location K such that ΦK = Φ(:,K)

5) Greedy Sensor Allocation & Placement

a) Let L = ∅ and S = {1, .., N}
b) s1 = arg max

s1∈S
‖ X{s} ‖2

c) Let L = L ∪ {s1} and S = S − {s1}
d) For k = 2..M do

i) Project XS into the column space of XL : P = XLX
†
LXS

ii) Find the orthogonal components N = XS − P
iii) Let si = arg max

si∈S
‖ N{s} ‖2

iv) Let L = L ∪ {si} and S = S − {si}
end

6) Construct the Sensing Matrix Φs = Φ(L,K) and sensor variance scaling
matrix V

7) Reconstruct the thermal map x̂ = ΦK

[
(Φ

′
sV

−1Φs)
−1Φ

′
sV

−1
]
xS

Figure 2. Heterogeneous Sensor Allocation and Placement for Full-chip
Thermal Reconstruction.
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VII. EXPERIMENTAL SETUP

Simulation Setup: We evaluate the effectiveness of our method-
ology, by setting up a tool chain that simulates the temperatures for
single and multi-core architectures of up to 4 cores at 65nm technol-
ogy node as shown in Fig. 6. We utilize HotSpot [26] for thermal
simulation and McPAT [27] to estimate the power for each block of
the processor. We use the Alpha 21264 processor as our baseline core.
The Alpha 21264 is an out-of-order speculative execution core that is
commonly used as a test-bench core in thermal management research
[26], [28]. HotSpot takes in the floor-plan of the processor and the
workload that will run on each core to produce the steady state and
transient temperatures at each location of the grid. Using workload
instruction traces, dynamic power traces for each micro-architectural
unit are calculated and then fed together with the floor-plan into
the thermal simulator to compute both the transient and the steady-
state temperature. We use total of 25 benchmarks from SPEC 2000
suites to randomly allocate these workloads to a core in the multi-core
architecture. The combination of these workload assigned to different
cores provide a rich set of thermal traces to characterize the thermal
profile of the multi-core processor. We discretize the thermal profile
by using a grid of W = 64 and H = 64 and used 25 benchmarks
and their combinations to generate total of T = 3194 traces in our
analysis.

VIII. EXPERIMENTAL RESULTS

We present and discuss results for the set of thermal maps for sin-
gle and multi-core architectures using the diverse set of heterogeneous
temperature sensors as tabulated in Table I. Although there is no
limitation, we only consider three types of sensors {S1, S2, S3} from
Table I in the following example. Fig. 3 shows the effect of sensor
heterogeneity on the total number of samples that can be collected
for given sensor power and area overhead. The x-axis represents the
product of the area and power. Recall that, sensor S1 is used for an
area limited design and sensor S2 for a power limited design. For
typical case of area and power budgets in between the two extremes of
area or power limited design, neither S1 nor S2 is the optimal sensor
type. In fact, to show the impact of choosing a particular sensor type,
we plot the number of samples that can be collected for each type
and their combination for a given overhead in Fig.3. As more number
of samples directly improves the measurement and reconstruction
accuracy, we observe from Fig.3 that sensor S1 is better than S3

and sensor S2 is better than S1 as well as S3 for this area power
design overhead. However, the combination of three sensors types
{S1, S2, S3} accommodates more samples than any individual sensor
type. Consequently, the heterogeneous combination of the sensors
outperforms any individual sensor type in accommodating more
sensors to improve the thermal monitoring process. Note that sensor
S2 would provide a better reconstruction compared to S1 or S3 if a
single sensor were to be selected and hence HSAP can be used to
select a suitable sensor type for given area power overhead.

The impact of increased number of samples and their combination
for the given area-power overhead is reflected in the MSE and is
shown in Fig. 3. A significant improvement in accuracy is observed
for different combinations of the sensors for a given sensor area
and power budget. The number of samples that can be collected for
different design corners and trade-offs is shown in Fig. 4. As seen
from Fig. 4 the heterogeneous mix of sensors {S1, S2, S3} can collect
more samples by accommodate more number of sensors than the best
area-efficient sensor type S1 at all area power design corners. Fig.
5 shows the saving in overhead for a given accuracy requirement
as well as improvement in accuracy for a given overhead in com-
parison with two state-of-the-art techniques, namely k-LSE[18] and
EigenMaps[17]. As they do not specify the type of the sensor to be
used, we used the best area efficient sensor S1 for the given overhead
for these two methods, and the sensor combination {S1, S2, S3} for
HSAP. It is clear from Fig. 5 that for a specified reconstruction
accuracy, HSAP can save die area or power for the sensors by
appropriately choosing the right mix of sensors. As observed from

Fig. 5, HSAP provides accuracy improvement of around 10-100x for
same overheads compared to the k-LSE and and EigenMaps. This
improvement in turn can provide better detection of hotspots and
worst case temperature gradient. Besides, the total execution time
for HSAP is 358.9 sec and that of EigenMaps is 8099.7 sec, an
improvement of 22.56×, when implemented in Matlab running on
Intel i7, 2.4GHz machine.
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Figure 3. (a) Number of samples that can be used in reconstruction for given
Area Power Budget for various sensor combinations (equal weights for all
types) (b) MSE with different combination of sensors for given area power
overhead.
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Figure 4. Number of samples that can be collected for different design corners
and trade-offs (a) mix of sensors type S1,S2, S3 (b) S1 only. More the number
of samples used in reconstruction, lesser would be the reconstruction error.

IX. CONCLUSIONS

Full chip thermal monitoring and reconstruction suffers from an in-
herent trade-off between accuracy of monitoring and implementation
overhead (in terms of sensor die area and power). Both the accuracy
of the reconstruction and the overhead incurred in the monitoring
infrastructure is directly impacted by the number of samples, sensor
locations, and accuracy of the sensors. To effectively address this
inherent trade-off in thermal monitoring, we propose a new method
called heterogeneous sensor allocation and placement (HSAP) that
exploits the flexibility and trade-off in area and power characteristics
of varied thermal sensors to perform a heterogeneous sensor alloca-
tion and placement for precisely recovering the full-chip thermal map.
Unlike state-of-the-art sensor allocation and placement techniques
that use a single type of homogeneous sensor, our HSAP approach
finds the best combination or the mix of heterogeneous sensors for
given sensor area and power budget along with their placement such
that the full-chip thermal characterization error is minimized. Instead
of quantifying the overheads in terms of total number of sensors,
HSAP directly considers the sensor accuracy, area, power overhead of
each sensor types in its formulation and thus provides a more flexible
and accurate approach. HSAP exploits the trade-off in area and power
of several sensor types to directly improve the accuracy of the full-
chip thermal reconstruction. Simulations and experimental results
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Figure 5. Comparison of reconstruction error with state-of-the-art
methods. Both k-LSE[18] and EigenMaps[17] use sensor type S1
while proposed HSAP uses sensor combination S1,S2, and S3.

shows an improvement of 10-100x in reconstruction accuracy with
three sensor types and execution speedup of over 20× in comparison
to a state-of-the-art technique using the most area efficient sensor
type.

REFERENCES

[1] S. Borkar et al., “Parameter variations and impact on circuits and mi-
croarchitecture,” in Design Auto. Conf., 2003. Proc., 2003, pp. 338–342.

[2] K. Skadron et al., “Temperature-aware microarchitecture,” SIGARCH
Comput. Archit. News, vol. 31, no. 2, pp. 2–13, May 2003.

[3] D. Brooks et al., “Power, thermal, and reliability modeling in nanometer-
scale microprocessors,” Micro, IEEE, vol. 27, no. 3, pp. 49–62, 2007.

[4] M. Pedram et al., “Thermal modeling, analysis, and management in
VLSI circuits: Principles and methods,” Proc. of the IEEE, vol. 94,
no. 8, pp. 1487–1501, 2006.

[5] R. Viswanath et al., “Thermal performance challenges from silicon to
systems,” 2000.

[6] C. J. Lasance, “Thermally driven reliability issues in microelec-
tronic systems: status-quo and challenges,” Microelectronics Reliability,
vol. 43, no. 12, pp. 1969 – 1974, 2003.

[7] E. Rotem et al., “Temperature measurement in the Intel Core Duo
Processor,” in Proc. Intl Workshop Thermal Investigations of ICs, 2006,
pp. 23–27.

[8] Y. Zhang et al., “Accurate temperature estimation using noisy thermal
sensors for gaussian and non-gaussian cases,” Very Large Scale Integra-
tion (VLSI) Systems, IEEE Trans. on, vol. 19, no. 9, pp. 1617–1626,
2011.

[9] C.-C. Chung et al., “An autocalibrated all-digital temperature sensor for
on-chip thermal monitoring,” Circuits and Systems II: Express Briefs,
IEEE Trans. on, vol. 58, no. 2, pp. 105–109, 2011.

[10] P. Chen et al., “A time-to-digital-converter-based cmos smart temper-
ature sensor,” Solid-State Circuits, IEEE Jr. of, vol. 40, no. 8, pp.
1642–1648, 2005.

[11] ——, “A time-domain sar smart temperature sensor with curvature
compensation and a 3 σ inaccuracy of −0.4 oc +0.6 oc over a 0
oc to 90 oc range,” Solid-State Circuits, IEEE Jr. of, vol. 45, no. 3, pp.
600–609, 2010.

[12] M. A. P. Pertijs et al., “A cmos smart temperature sensor with a 3 sigma;
inaccuracy of plusmn;0.1 deg;c from -55 deg;c to 125 deg;c,” Solid-State
Circuits, IEEE Jr. of, vol. 40, no. 12, pp. 2805–2815, 2005.

[13] F. Sebastiano et al., “A 1.2v 10 µw NPN-based temperature sensor in
65nm CMOS with an inaccuracy of 0.2 oc (3σ) from −70oc to 125
oc,” in Solid-State Circuits Conf. Digest of Tech. Papers (ISSCC), 2010
IEEE Int., 2010, pp. 312–313.

[14] R. Kuppuswamy et al., “Over one million tpcc with a 45nm 6-core Xeon
R© CPU,” in Solid-State Circuits Conf. - Digest of Tech. Papers, 2009.

ISSCC 2009. IEEE Int., 2009, pp. 70–71,71a.
[15] J. Dorsey et al., “An integrated quad-core opteron processor,” in Solid-

State Circuits Conf., 2007. ISSCC 2007. Digest of Tech. Papers. IEEE
Int., 2007, pp. 102–103.

[16] M. Ware et al., “Architecting for power management: The IBM R©
POWER7 TM approach,” in High Performance Comp. arch. (HPCA),
2010 IEEE 16th Int. Sym. on, 2010, pp. 1–11.

[17] J. Ranieri et al., “Eigenmaps: Algorithms for optimal thermal maps
extraction and sensor placement on multicore processors,” in Design
Auto. Conf. (DAC), 2012 49th ACM/EDAC/IEEE, 2012, pp. 636–641.

[18] A. Nowroz et al., “Thermal monitoring of real processors: Techniques
for sensor allocation and full characterization,” in Design Auto. Conf.
(DAC), 2010 47th ACM/IEEE, 2010, pp. 56–61.

[19] S. Memik et al., “Optimizing thermal sensor allocation for micropro-
cessors,” Comp.-Aided Design of IC and Sys., IEEE Trans. on, vol. 27,
no. 3, pp. 516–527, 2008.

[20] R. Mukherjee et al., “Systematic temperature sensor allocation and
placement for microprocessors,” in Design Auto. Conf., 2006 43rd
ACM/IEEE, 2006, pp. 542–547.

[21] S. Reda et al., “Improved thermal tracking for processors using hard
and soft sensor allocation techniques,” Comp.s, IEEE Trans. on, vol. 60,
no. 6, pp. 841–851, 2011.

[22] R. Cochran et al., “Spectral techniques for high-resolution thermal
characterization with limited sensor data,” in Design Auto. Conf., 2009.
DAC ’09. 46th ACM/IEEE, 2009, pp. 478–483.

[23] H. Jung et al., “A stochastic local hot spot alerting technique,” in Design
Auto. Conf., 2008. ASPDAC 2008. Asia and South Pacific, 2008, pp.
468–473.

[24] C. R. Rao et al., Linear Models and Generalizations: Least Squares and
Alternatives. Springer, 2008.

[25] J. Tropp et al., “Signal recovery from random measurements via orthog-
onal matching pursuit,” Information Theory, IEEE Trans. on, vol. 53,
no. 12, pp. 4655–4666, 2007.

[26] W. Huang et al., “Hotspot: a compact thermal modeling methodology for
early-stage VLSI design,” Very Large Scale Integration (VLSI) Systems,
IEEE Trans. on, vol. 14, no. 5, pp. 501–513, 2006.

[27] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Microarchitec-
ture, 2009. MICRO-42. 42nd Annual IEEE/ACM Int. Sym. on, 2009, pp.
469–480.

[28] J. Long et al., “Thermal monitoring mechanisms for chip multiproces-
sors,” ACM Trans. Archit. Code Optim., vol. 5, no. 2, pp. 9:1–9:33, Sep.
2008.

[29] D. Donoho, “Compressed sensing,” Information Theory, IEEE Trans.
on, vol. 52, no. 4, pp. 1289–1306, 2006.

[30] A. Çivril and M. Magdon-Ismail, “On selecting a maximum volume
sub-matrix of a matrix and related problems,” Theoretical Computer
Science, vol. 410, no. 47, pp. 4801–4811, 2009.

APPENDIX A
DIRECT GREEDY SOLUTION (GHSAP)

The direct greedy approach in Fig. VI-A consist of three stages that
aims at decoupling the problem into subproblems for easy solution.
We discuss the subproblems and some of the implementation issues
in the following sections.

A. Selection of Weights in Sensor Selection ILP
The first stage of the HSAP performs the sensor selection based

on the area, power and sensor accuracy. An optimization problem
to maximize the number of samples used in the reconstruction is
formulated as ILP. The intuition is based on the results derived in
compressive sensing [29] and dimensionally reduction techniques,
which states that the probability of reconstruction can be exponen-
tially increased with increasing samples for a sparse signal. We estab-
lish a relationship between total samples used in the reconstruction
with that of the sensor accuracy, area, and power overhead so as
to maximize number of samples. The number of samples Ms is
defined as a weighted sum of the samples collected from a particular
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Figure 6. (a) Multicore Alpha processor floorplan (b) original thermal profile with SPEC 2K benchmarks (c) Recovered thermal profile from noisy sensor
measurements.

type of sensor. The weights will decide which sensor type will
have maximum contributions to the reconstruction samples. Thus by
suitably selecting the weights we can either penalize a particular type
or sensor or give preference to another. Selecting the weights can
determine the number of samples collected by a particular sensor
type for given area-power budget of the sensors. In selecting the
sensors, one approach would be to give equal preference to each
sensor types. In such a scenario, irrespective of the accuracy of the
sensor, the number of samples are predominantly determined by the
area and power budget. If the design is area constraint i.e., the area
budget AB is small, the sensors with the least area overhead would
be selected. On the other hand, if the design is power constraint such
that the sensor power budget PB is small, the solution to the ILP
would be guided toward the sensors with least power budgets. As
both the constraints are simultaneously achieved, the solution meets
design corners in between the two extremes.

Furthermore, as the overall reconstruction accuracy is effected by
the sensor accuracy affects, higher the accuracy of the sensors, better
would be the overall reconstruction. To consider the sensor accuracy
in the selection of the sensors, we make the weights proportional
to the accuracy (or inversely proportional to the the sensor noise
variance). This way, we can account for the sensor accuracy in the
sensor selection while fine tuning the results to a better solution.

B. Sensor Allocation and Mapping
Once the sensor combination and total number of sensors are

selected, it is imperative to look for the mapping of the sensor of
various types to the the specified locations. As some sensor location
contribute more information to the reconstruction process than the
others, it is intuitably logical to place the higher accuracy sensors
to more information rich locations. The sensor placement algorithm
returns placement of the sensors in order of their importance. We rank
the sensors according to their accuracy and map the most accurate
sensors to the most dominant locations. Another opportunity (or
concern) that arises because of varied operating range of different
sensors, need to be addressed during the sensor mapping process. A
resoanble approch is to divide the full processor die into regions of
hotter to colder thermal zones. For example, the integer register units
(IRU) region of most processor (specifically Alpha processor) are
having higher temperature than that of the caches memories. Sensor
with high dynamic ranges can be mapped to these elevated regions
while the lower range sensors can be placed in the relatively colder
blocks.

C. Sensor Placement Algorithm
The sensor placement approach in Fig. 2 is inspired by the concept

of volume sampling [30]. The algorithm maintains two set L and S
where L is the set of chosen sensor location and S is the set of
available sensor locations. Initially, the chosen sensor location set
L is empty, and the L is the set to the set of all possible sensor
locations. In the next step, the algorithm picks the location with the
highest temperature based on the Euclidian norm. The location L and
S are updated accordingly. The algorithm then iteratively computes
the orthogonal components of the column vectors at the available
locations and finds the highest Euclidian norm of the orthogonal
components. The location corresponding to the highest Euclidian
norm of the orthogonal components is included to the set of sensor
locations L and removed from S. The process is iterated for M
locations.

D. Effect of Approximation and Sensor Accuracy on MSE
The effect of both approximation and sensor noise on the recon-

struction mean square error is bounded by the condition number κ
of Φs and the noise energy of ‖ ε ‖2 as [17]:

‖ x̂− x ‖2

‖ x ‖2

= O(κ2(Φs)) ‖ ε ‖2 . (14)

If the condition number is close to one, the matrix is well conditioned
which means its inverse can be computed with good accuracy. If the
condition number is large, then the matrix is said to be ill-conditioned.
Practically, such a matrix is almost singular, and the computation of
its inverse, or solution of a linear system of equations in is prone to
large numerical errors. The numerical error that is introduced is often
much larger than that introduced by ill-conditioning of Φs. The error
εt introduced due to either truncation or inadvertent ill-conditioning
in section IV-A is much higher than that of the contribution εs

due to sensor accuracy. Bounding the sensor noise energy in 14
by the weakest sensor accuracy, we can bound the maximum error
contribution due to sensor noise in MSE 14. In other words, the error
contribution due to sensor inaccuracy is not as significant as basis
truncation or ill-conditioning, under certain conditions. Thus we can
effectively gain in accuracy by slightly trading sensor accuracy by
allowing many weak, inaccurate sensors but eventually gaining more
by increasing the number of basis vectors in the reconstruction. More
number of sensors results in inclusion of the dominant eigen vectors
in the reconstruction and remove the repercussions significantly in
lieu of moderate increase in error due to sensor inaccuracy. Exploiting
this tradeoff is cardinal to the accuracy improvement in HSAP. This
trade-off is also depicted in the eigen values of the basis matrix Φ as
shown in Fig. 7a where the magnitude is of the order of 107 within
50 eigen values. If we accommodate 10 accurate sensors in a given
area-power budget, we will be able to use 10 eigen vectors as in Fig.
7b in the reconstruction and thus the approximation error introduced
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would be equal to the sum of rest of the eigen values – roughly > 101

as marked in Fig. 7a. On the other hand, if 41 relatively inaccurate
sensors are used in the same are power budget, they will be able to
cover 41 dominant eigen vectors and thus reduce the error to roughly
> 10−2. So, there is factor of 103 error reduction due to increasing the
dominant basis vectors in the approximation even though the sensor
inaccuracy has increase to say by an order of 101. Overall, there is
a improvement of 102 in the reconstruction with heterogenous mix
of relatively inaccurate sensors.

(a)

(b)

Figure 7. (a)Eigen values and their magnitude (b) Eigen Vectors for first 12
dominant eigen values corresponding to the basis matrix Φ formed from the
covariance matrix Cx of the thermal traces.

APPENDIX B
FUTURE WORKS

The computational complexity of choosing M sensors from N

locations is combinatorial of CN
M and that of choosing K coefficients

(or basis vectors) among N possible combination is CN
K . The com-

bined combinatorial complexity is CN
M*CN

K which is proportional to
(N !)2. This combinatorial complexity makes HSAP a very difficult
problem to solve. We are exploring efficient solution using global
optimization techniques, specifically randomized and pattern search

based optimization approach. A hybrid optimization approach, where
greedy algorithm gHSAP provides the initial solution to a direct
pattern search with mesh adaptive search (MADS) algorithm shows
promising improvements in accuracy and speed.
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