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Abstract

Hybrid on-chip memories that combine Non-Volatile Memories (NVMs)
with SRAMs promise to mitigate the increasing leakage power of traditional
on-chip SRAMs. We present HaVOC: a run-time memory manager that vir-
tualizes the hybrid on-chip memory space and supports efficient sharing of
distributed ScratchPad Memories (SPMs) and NVMs. HaVOC allows pro-
grammers and the compiler to partition the application’s address space and
generate data/code layouts considering virtualized hybrid-address spaces.
We define a data volatility metric used by our hybrid-memory-aware com-
pilation flow to generate memory allocation policies that are enforced at
run-time by a filter-inspired dynamic memory algorithm. Our experimental
results with a set of embedded benchmarks executing simultaneously on a
Chip-Multiprocessor with hybrid NVM/SPMs show that HaVOC is able to
reduce execution time and energy by 60.8% and 74.7% respectively with
respect to traditional multi-tasking-based SPM allocation policies.

Categories and Subject Descriptors C.3 [Special-purpose and
Application-based systems]: Real-time and embedded systems;
B.3 [Design Styles]: Virtual Memory; D.4 [Storage Management]:
Distributed memories

General Terms  Algorithms, Design, Management, Performance

1. Introduction

The ever increasing complexity of embedded software and adop-
tion of open-environments (e.g., Android OS) is exacerbating the
deployment of multi-core platforms with distributed on-chip mem-
ories [15, 20]. Traditional memory hierarchies consist of caches,
however, it is known that caches may consume up to 50% of the
processor’s area and power [3]. As a result, ScratchPad Memories
(SPMs) are rapidly being adopted and incorporated into multi-core
platforms for their high predictability, low area and power con-
sumption. Efficient SPM management can greatly reduce dynamic
power consumption [16, 19, 26, 30], and may be a good alterna-
tive to caches for applications with high levels of regularity (e.g.,
Multimedia). As sub-micron technology continues to scale, leakage
power will overshadow dynamic power consumption [21]. Since
SRAM-based memories consume a large portion of the die, they
are a major source of leakage in the system [2], which is a major
issue for multi-core platforms.

In order to reduce leakage power in SRAM-based memories, de-
signers have proposed emerging Non-Volatile Memories (NVMs)
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as alternatives to SRAM for on-chip memories [17, 24, 28]. Typi-
cally, NVMs (e.g., PRAM [11]) offer high densities, low leakage
power, comparable read latencies and dynamic read power with
respect to traditional embedded memories (SRAM/eDRAM). One
major drawback across NVMs is the expensive write operation
(high latencies and dynamic energy). To mitigate the drawbacks of
the write operation in NVMs, designers have made the case for de-
ploying hybrid on-chip memory hierarchies (e.g., SRAM, MRAM,
and PRAM) [28], which have shown up to 37% reduction in leak-
age power [14], and increased IPC as a byproduct of the higher
density provided by NVMs [24, 32]. Orthogonal to traditional hy-
brid on-chip memory subsystems which have been predominately
focused on caches, Hu et al. [14] showed the benefits of exploiting
hybrid memory subsystems consisting of SPMs and NVMs.

In this paper, we present HaVOC, a system-level hardware/soft-
ware solution to efficiently manage on-chip hybrid memories to
support multi-tasking Chip-Multiprocessors. HaVOC is tailored to
manage hybrid on-chip memory hierarchies consisting distributed
ScratchPad Memories (SRAM) and Non-Volatile Memories (e.g.,
MRAMS). HaVOC allows programmers to partition their applica-
tion’s address space into virtualized SRAM address space and vir-
tualized NVM address space through a minimalistic API. Program-
mers (through annotations) and compilers (through static analysis)
can then specify hybrid-memory-aware allocation policies for their
data/code structures at compile-time, while HaVOC dynamically
enforces them and adapts to the underlying memory subsystem.
The novel contributions of our work are that we:

e Explore distributed shared on-chip hybrid-memories consisting
of SPMs and NVMs and virtualize their address spaces to
facilitate the management of their physical address spaces

e Introduce the notion of data volatility analysis to drive efficient
compilation and policy generation for hybrid on-chip memories

e Present a filter-driven dynamic allocation algorithm that ex-
ploits filtering and volatility to find the best memory placement

e Present HaVOC, a run-time hybrid-memory manager that en-
forces compile-time-derived allocation policies through a filter-
inspired dynamic allocation algorithm that exploits filtering and
volatility to find the best memory placement

To the best of our knowledge, our work is the first to consider
distributed on-chip hybrid SPM/NVM memories and their dynamic
management through the use of virtualized address spaces for re-
duced power consumption and increased performance. Our experi-
mental results with a set of embedded benchmarks executing simul-
taneously on a Chip-Multiprocessor with hybrid NVM/SPMs show
that HaVOC is able to reduce execution time and energy by 60.8%
and 74.7% respectively with respect to traditional multi-tasking-
based SPM allocation policies.
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Figure 1. HaVOC-aware Policy Generation (a) and Enforcement (b).

2. Motivation
2.1 Comparison of Memory Technologies

Table 1. Memory Technology Comparison [32]

Features SRAM eDRAM MRAM PRAM

Density Low High High Very High

Speed Very Fast Fast read Slow read

Fast Slow write Very slow write

Dyn. Power Low Medium Low read Medium read
High write High write

Leak. Power High Medium Low Low

Non-Volatile No No Yes Yes

In order to overcome the growing leakage power consump-
tion in SRAM-based memories, designers have proposed emerg-
ing Non-Volatile Memories (NVMs) as possible alternatives for
on-chip memories [17, 24, 28]. As shown in Table 1 [32], NVMs
(MRAM [13], and PRAM [11]) offer high densities, low leakage
power, and comparable read latencies and dynamic read power with
respect to traditional embedded memories (SRAM/eDRAM). One
key drawback across NVMs is the high write latencies and dy-
namic write power consumption. To mitigate the drawbacks of the
write operation in NVMs, designers have made the case for deploy-
ing hybrid on-chip memory hierarchies (a combination of SRAM,
MRAM, and PRAM) [14, 32], which have shown up to 37% reduc-
tion in leakage power [14], and increased IPC as a byproduct of the
higher density provided by NVMs [24, 32].

2.2 Programming for SPM/NVM Hybrid Memories

Unlike caches, which have built-in HW policies, SPMs are soft-
ware controlled memories as their management is completely left
to the programmer/compiler. At first glance, we would need to take
traditional SPM-management schemes and adapt them to manage
hybrid memories. However, SPM-based allocation schemes (e.g.,
[16, 26, 30]) assume physical access to the memory hierarchy; con-
sequently, the traditional SPM-based programming model would
require extensive changes to account for the different characteris-
tics of the NVMs. Thus motivating the need for a simplified address
space to minimize changes to the SPM-programming model.

2.3 Multi-tasking Support for SPM/NVM Hybrid Memories

The challenge of programming and managing SPM/NVM-based
hybrid memories is aggravated by the adoption of open environ-
ments (e.g., Android OS), where users can download applications,
install them, and run them on their devices. In these environments,
it is possible that many of the running processes will require ac-
cess to the physical SPMs, therefore, programmers/compilers can
no longer assume that their applications are the only ones running
on the system. Traditional SPM-sharing approaches [9, 27, 29]
would either allocate part of the physical address space to each
process (spatial allocation) or time-share the SPM space (tempo-
ral allocation). Once the entire SPM space has been allocated, all

remaining data is then mapped to off-chip memory. In order to re-
duce the overheads of sharing the SPM/NVMs, our scheme exploits
programmer/compiler-driven policies obtained through static anal-
ysis/annotations (Sec. 3.2) and uses the information to efficiently
manage the memory resources at run-time (Sec. 3.3).

2.4 Target Platform
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Figure 2. HaVOC Enhanced CMP with Hybrid NVM/SPMs.

Figure 2 shows a high level diagram of our SPM/NVM en-
hanced CMP, which consists of a number of OpenRISC-like
cores, the HaVOC manager, a set of distributed SPMs and NVMs
(MRAM or PRAM), and a DRAM/PRAM/Flash main memory hi-
erarchy. For this work we focus on bus-based CMPs, so the commu-
nication infrastructure used here is an AMBA AHB bus, however,
we can also exploit other types of communication fabrics.

2.5 Assumptions

We make the following assumptions: 1) The application can be
statically analyzed/profiled so that code/data blocks can be mapped
to SPMs [15, 16, 29]. 2) We operate over blocks of data (e.g.,
1KB mini-pages). 3) We can map all code/data to on-chip/off-
chip memory and do not use caches (e.g., [15]). 4) Part of off-chip
memory can be locked in order to support the virtualization of the
on-chip SPM/NVM memories.

3. HaVOC Overview

Figure 1 (a) shows our proposed compilation flow, which takes an-
notated source code, and performs various types of SPM/NVM-
aware static analysis techniques (e.g., code placement, data reuse
analysis, data volatility analysis); the compiler then uses this infor-
mation to generate allocation policies assuming the use of virtual
SPMs (vSPMs) and virtual NVMs (vNVMs). Figure 1 (b) shows
our proposed dynamic policy enforcement mechanism for multi-
tasking CMPs. The HaVOC manager (black box) takes in the vSP-
M/VNVM allocation policies provided by each application (Ap-
plication 1 & 2), and decides how to best utilize the underlying
memory resources. The rest of this section will go over each of
the different components at a high level. The rest of paper will use
data/code block interchangeably as our approach supports place-
ment of both data and code onto the hybrid memories and will refer
to SPM/NVM-based hybrid memories as hybrid memories.



3.1 Virtual Hybrid-Memory Space

In order to present the compiler/programmer with an abstracted
view of the hybrid-memory hierarchy and minimize the complex-
ity of our run-time system we propose the use of virtual SPMs
and virtual NVMs. We leverage Bathen’s [4] concept of vSPMs,
which enables a program to view and manage a set of vSPMs as
if they were physical SPMs. In order virtualize SPMs, a small part
of main memory (DRAM) called protected evict memory (PEM)
space was locked and used as extra storage. The run-time system
would then prioritize the data mapping to SPM and PEM space
based on a utilization metric. In this work we introduce the con-
cept of virtual NVMs (VNVMs), which behave similarly to vSPMs,
meaning that the run-time environment transparently allows each
application to manage their own set of VNVMs. The main differ-
ences (w.r.t [4]) are: 1) Depending on the type of memory hier-
archy, vNVMs can use a unified PEM space denoted as sPEM or
off-chip NVM memory as extra storage space, denoted as nPEM.
2) The allocation cost estimation takes into account the volatility
of a data (frequency of writes over its lifetime on a given mem-
ory), the cost of bringing in the given data, and the cost of evicting
other application’s data. 3) HaVOC’s dynamic policy exploits the
notion of volatility and filtering (Sec. 3.5) to efficiently manage
the memory real-estate. Management of virtual memories is done
through a small set of APIs, which send management commands to
the HaVOC manager. The HaVOC manager then presents each ap-
plication with intermediate physical addresses (IPAs), which point
to their virtual SPMs/NVMs. Traditional SPM-based memory man-
agement requires the data layout to use physical addresses by point-
ing to the base register of the SPMs, as a result, the same is expected
of SPM/NVM-based memory hierarchies [14]. In our scheme, all
policies use virtual SPM and NVM base addresses, so any run-time
re-mapping of data will remain transparent to the initial allocation
policies as the IPAs will not change.

3.2 Hybrid-memory-aware Policy Generation

The run-time system needs compile-time support in order to make
efficient allocation decisions at run-time. In this paper we present
various ways by which designers may generate policies (manual
through annotations or through static analysis). These policies are
then enforced (currently in best effort fashion) by the run-time
system in order to prioritize the access to SPM/NVM space for the
various applications running on the system. Each policy attempts
to map data to virtual SPMs/NVMs, while the HaVOC manager
dynamically maps the data to physical memories.

3.2.1 Volatility Analysis

We introduce a new metric, data volatility, to facilitate efficient
loading of data on the hybrid on-chip memory configurations. Data
volatility is defined as the write frequency of a piece of data over
its accumulated lifetime. In order to estimate the volatility of a data
block we first define a sampling time (S77;), which can be in cycles,
so that the union of all sample times equals the block’s lifetime
(Eq. 1). Next, we calculate the write frequency for each sample
time (Eq. 2). Finally, we estimate the volatility of the data as the
variation in its write frequency (Eq. 3). This metric is useful when
deciding whether data is worth (cost effective) being mapped onto
NVM. Highly volatile data implies that at some point the cost of
keeping data in NVM during its entire lifetime might be greater
than leaving it in main memory. As a result, when two competing
applications request NVM space, the estimated cost function (e.g.,
energy savings) will be used to prioritize allocation of on-chip
space, while volatility can be used as a tie breaker and prediction
metric of cost fluctuation. Volatility may also be used to decide the
granularity at which designers might do their data partitioning.
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Figure 3. Data volatility across various lifetime granularities.

Figure 3 (a) shows sample code from JPEG [12] and how par-
titioning its data’s lifetime may affect its data’s volatility. Figure 3
(b) shows the global life time of the data arrays (a, b, ¢, zt, qt),
where the number of accesses to NVM would be (128 rd, 23K wr)
for gt/zt if we map and keep them in NVM during the entire execu-
tion of the program. To accomodate other data structures onto SPM
space, arrays gt/zt’s lifetime may be split, resulting in finer life-time
granularities (Figure 3 (c-d)). Though the read/write ratio of data
remains the same (g#/zt still have 23K reads to 0 writes), finer gran-
ularity lifetimes might result in higher volatility (g#/zt now do 23K
writes to NVM since they are reloaded every time block_decode is
executed), making g#/zt poor mapping candidates for NVM.

3.2.2 Annotations

Programmers can embedded application-specific insights into
source code through annotations [10] in order to guide the com-
pilation process. Since we are working with virtualized address
space, programmers can create hybrid-memory-aware policies that
define the placement for a given data structure by simply defining
the following parameters: <preferred memory type, reads, writes,
lifespan, volatility>. These annotations are carried through the
compilation process and used at run-time by the HaVOC manager,
which uses the annotated information to allocate the data onto the
preferred memory type.

3.2.3 Instruction Placement

Instructions/Stack-data are a very good candidates for mapping
onto on-chip NVMs since their volatility is quite low (e.g., write
once and use many times). In this work, we borrow traditional
SPM-based instruction-placement schemes [18] and enhance them
to take into account the possibility of mapping the data to NVM
memories by introducing data volatility analysis into the flow. Like
we discussed in Sec. 3.2.1, the granularity of the code partitioning
(e.g, function, basic block, etc.) will affect how volatile the place-
ment will become. As a result, when mapping a piece of code onto
vNVM/vSPM, we need to partition our code such that Eq. 5 is met,
where C(D;) represents the cost in Eq. 4. Our goal is to partition



the application such that we can minimize the number of code re-
placements ([18]) in order to minimize energy and execution time.
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Figure 4. Reuse Tree Examples: a) Original Code, b) Original
DRDU Input, ¢) Original Reuse Tree, d) Hybrid-memory-aware
DRDU Input, e) Hybrid-memory-aware Reuse Trees.

We exploit data reuse analysis (DRDU) [16] to guide the map-
ping of data onto the VNVM/vSPM space. We adapted Issenin’s
DRDU algorithm to account for differences in NVM/SPM ac-
cess energy and latency. DRDU takes as input access patterns
derived from C source code in affine-expression mode and pro-
duces reuse trees (Figure 4 (a-c)), which are then used to decide
which data buffers to map to SPMs (typically highly reused data).
Our scheme splits the access patterns into read, write, and read/-
modify reuse trees (Figure 4 (d)) and feeds them separate to the
DRDU algorithm. We then use the reuse trees (Figure 4 (e)) gen-
erated to decide what data to map onto VNVM/vSPM space. The
idea is to map highly read-reused data with a long access dis-
tance onto VNVM to minimize number of fetches from off-chip
memory, while highly reused read-data with short lifetimes will
be mapped to vSPM preferably. Highly reused-read-modify data
with low write-volatility should be mapped to vNVM, while highly
reused write-data and read-modify data with high write-volatility
should go to vSPM.

3.2.5 Memory Allocation Policy Generation

Policy generation is not limited to the schemes above; they are
exemplars of how our virtualization layer can be used to seamlessly
manage on-chip hybrid memories. The last step in our flow involves
the generation of near-optimal hybrid-memory layouts we define
as allocation policies. This process takes as input data/code blocks
with various pre-computed costs (e.g., Eq. 4) obtained from static
analysis (Sections 3.2.1,3.2.4, and 3.2.3) and annotations (Sec.
3.2.2), which are combined and feeds them as input to an enhanced
hybrid-memory-aware allocator based on [14].

3.3 HaVoC Manager
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Figure 5. HaVOC Manager

The HaVOC manager may be implemented in software as an
extended memory manager embedded within a hypervisor/OS or
as a hardware module (e.g., [4, 9]). The software implementation
is quite flexible and does not require modifying existing platforms.
The hardware version requires additional hardware and the nec-
essary run-time support, but the run-time overheads will be much
lower than the software version. In this work, we present a proof-
of-concept embedded hardware implementation (Figure 2). Fig-
ure 5 shows a block diagram of the HaVOC manager. It consists
of a memory-mapped slave interface, which is used by the sys-
tem’s masters (e.g., CPUs) and handles the read/write/configura-
tion requests. The address translation layer module converts IPAs
to physical addresses (PAs) in one cycle [4, 7]). The manager con-
sists of 1KB to 256KB of configuration memory used to keep block
metadata information (e.g., volatility, # accesses, etc.). The alloca-
tion/eviction logic uses the cost estimation (e.g., efficiency) logic
to prioritize access to on-chip storage. Finally, the internal DMA
(iS-DMA) allows the manager to asynchronously transfer data be-
tween on-chip and off-chip memory. In order to use the HaVOC
manager, the compiler generates two things: 1) the creation of the
required virtual SPM/NVMs through the use of our APIs (creates
configuration packets) and 2) The use of IPAs instead of PAs during
the data/code layout stage (e.g., memory maps using purely virtual
addresses for SPMs/NVMs). Any read/write to a given IPA is trans-
lated and routed to the right PA. Any write to HaVOC configuration
memory space is then used to mange the virtualized address space.
The goal is to allow each application to manage its virtual on-chip
memories as if it had full access to the on-chip real-estate.

3.4 HaVOC’s Intermediate Physical Address
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Figure 6. HaVOC’s Virtual Memory Metadata

Figure 6 shows the metadata needed to keep track of the allo-
cated blocks. Note that these fields are tunable parameters and we
leave the exploration for future work. The Physical Address Offset
is used to complement the byte offset in the original IPA (Figure 7)
when translating IPA to PA addresses. The E'f ficiency and the
volatility (V') fields are used during the allocation/eviction phases
as metrics to guide the allocator’s decisions. The M field represents
the preferred memory type (e.g., SPM, NVM, DRAM).

Figure 7 shows a high level view of the layout of one applica-
tion during its execution and the address translation an IPA under-
goes. Each application requiring access to a virtual SPM or virtual
NVM must do so through an IPA, which means creating the de-
sired # of vSPMs and vNVMs for use (see Sec. 3.8). For the sake
of demonstration, we set the on-chip SRAM to 4KB, so to address
a vSPM’s block metadata we only need 12bits. The IPA is trans-
lated and complemented by the Physical Address Offset fetched
from the block metadata (Figure 7 (a)). These 16bits combined
with the 10bit Byte Offset make out the physical address of the on-
chip SPM/NVM memory (Figure 7 (b)). Though we can virtualize
226 Bytes of on-chip storage, we are bounded by the total meta-
data stored in configuration memory. Figure 7 (c) shows the ini-
tial mapping of Application 1, and Figure 7 (d) shows an updated
mapping after Application 2 has launched. Notice that the IPA re-
mains the same for both, as HaVOC updates its allocation table and
its block’s metadata. Re-mapping blocks of data/code requires the
HaVOC manager to launch an interrupt which tells the CPU run-
ning Application I that it needs to wait for the re-mapping of its
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data. It is possible to avoid interrupting execution as HaVOC has
an internal DM A module so it may asynchronously evict blocks. In
the event that there is a request for a piece of data belonging to a
block being evicted, the HaVOC manager waits until re-mapping is
done since read/write/configuration requests to HaVOC are block-
ing requests (e.g., HaVOC behaves like an arbiter).

3.5 HaVOC’s Dynamic Policy Enforcement

Table 2. Filter Inequalities and Preferred Memory Type

Filter Pref. Inequalities

Fl sram E(D;"™) > E(DI*™) NE(DF*™) < E(DF™) AV > Tval
F2 nvm E(D?"™) > E(DIF*"™) AV < Toal

F3 either E(D{P™) > E(DF™™) A E(D}"™) > E(D{™™™)

F4 dram E(D{"™) < E(DF™™) A E(D}*™) < E(D{™™™)

Algorithm 1 FilterDynamic Allocation Algorithm

Requlre req{size, cost, volatility}

. pref-mem < filter(req)

: if allocatable(req, pref-mem) then

return ipa < update_alloc_table(req)

¢ end if

I Mminget < sortg2LowEyf f(alloctable, size)
:if E(minget) < Ceypict(minget) + E(req) then
evict(minget)

return ipa < update_alloc_table(req)

: else

10: return ipa < mm-malloc(req)

11: end if
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Figure 8. Dynamic Hybrid-memory Allocation Policies

In order to support dynamic allocation of hybrid-memory space
we define three block-based allocation policies: 1) Temporal alloca-
tion, which combines temporal SPM-allocation ([29]) and hybrid-
memory allocation ([14]), and adheres to the initial layout obtained
through static analysis (Sec. 3.2); however, the application’s SPM
and NVM contents must be swapped on a context-switch to avoid
conflicts with other tasks (Fig. 8 (a)). 2) FixedDynamic allocation,
which combines dynamic-spatial SPM-allocation ([9]) and hybrid-
memory allocation [14], and maps the data block to the preferred
memory type (adhering to the initial layout) as long as there is
space, otherwise, data is mapped to DRAM (Fig. 8 (b)). 3) Filter-
Dynamic allocation (Alg. 1), which exploits the concept of filtering
and volatility to find the best placement. Each request is filtered ac-
cording to a set of inequalities (shown in Table 2) which determine
the preferred memory type (Fig. 8 (d)). The volatility of the data
block (V') and its mapping efficiency (E(D;) = C(D;)/|D;|) are
used to determine what memory type would minimize the block’s
energy (or access latency). For instance, data with low volatility
and high energy efficiency could potentially benefit more from be-
ing mapped to NVM than SRAM (e.g., filter F2 in Table 2). If there
is enough preferred memory space (e.g., SPM or NVM), the dy-
namic allocator adheres to Eq. 4 prior to loading the data. If there
is not enough space, then the allocator follows Alg. 1 and sorts
the allocated blocks from highest to lowest efficiency (e.g., en-
ergy per bit). It then compares the cost of evicting the least im-
portant blocks (M INse:) with the cost of dedicating the space
to the new block. If the efficiency of bringing the new block oft-
sets the eviction cost and efficiency of the data already mapped
to the preferred memory type (E(MINget)), then HaVOC evicts
the M I Nge: blocks and updates the allocation table with the new
block (|new block| < |MINget|). In the event the preferred mem-
ory type is either NVM or SPM (filter '3 in Table 2), the allocator
evicts the min(MINZT, MINg:™). At the end, HaVOC allo-
cates either on-chip space or off-chip space (unified PEM space
(SPEM)), resulting in the allocation shown in Fig. 8 (c), where a
data block originally intended for SPM is mapped to NVM.



3.6 Dynamic Allocation Decision Flow
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Figure 9. Application Execution

Figure 9 shows the decision flow followed by our FilterDynamic
allocation policy. Each allocation request for data/code block (D)
is filtered by applying a set of inequalities to derive the preferred
memory type (PM) for the given block. This results in a tuple
(D, PM), which is forwarded to the allocation engine. The alloca-
tor checks if there is enough space in the preferred memory (P M),
if so, allocate the block in the preferred memory (D, PM). If there
is not enough space or the preferred memory type is either SPM or
NVM, then we sort the allocated blocks from highest to lowest effi-
ciency generating a set of least useful allocated blocks (M INg.3™
as long as the sum of the blocks is less than or equal to the requested
block size. Since we are using block-based allocation, it is possi-
ble to optimize this step. For instance, it the block unit is 1KB and
each request block is 1KB, then the (M INg.i™) is composed of a
single 1KB block. The backend implementation is open for explo-
ration so that we may find what the optimal/best block size should
be as the block size affects how much required on-chip configura-
tion memory we may need to store the block’s metadata. The next
step may be done in parallel (if either memory is preferred), or syn-
chronous (if there is not enough space in the preferred memory). In
the case either memory is acceptable, then the allocator evicts the
min(MINGT, MINgZ™), and allocates the space to the new
block (D). Another optimization to bypass the sorting step, it is
possible to maintain a small linked list of blocks, sorted from low-
est to highest efficiency, so that rather than sorting on every trans-
action, we keep a sorted list, and compute the M I Ng.;"™" using the
head of the list, and on eviction we can update the list. Computing
MINgS™ would then be O(1), and updating the list O(Blocks).
This of-course comes at the cost of extra storage to keep the list,
therefore increasing the size of the configuration memory.

3.7 Application Layout

Figure 10 shows a snapshot of the resulting allocation policy (Fig-
ure 10 (c)) for the JPEG [12] benchmark. First, we start with the
source code (Figure 10 (a)) which is statically analyzed. Second,
the application’s memory map is shown in Figure 10 (b). Note that
the source code itself is executed 180 times, and if loaded once,
its volatility is very low, if loaded every time it gets executed, then
its volatility increases. Figure 10 (c) shows the block information
consisting of the virtual start/end addresses, number of accesses,
volatility, and the preferred memory type (e.g., NVM).

Figure 11 shows a snapshot of a subset of blocks for the three
dynamic allocation policies discussed in this paper (Oracle, Fixed-
Dynamic, FilterDynamic). The bold-red lines mark difference in
mappings between the various policies. These allocations are a
combination of the concurrent execution of the ADPCM and AES
benchmarks [12]. As we can observe, the FixedDynamic policy

runs out of SPM space, and all data mapped to SRAM or NVM
is mapped to off-chip memory (DRAM). The Oracle and Fil-
terDynamic policies have similar resulting mappings, however,
there are some difference as in this case; Buffer_-Ox10<25> is
mapped to NVM by Oracle and to SRAM by FilterDynamic.
The Buffer_ Ox10<25> block appears at a time when evicting
the (MINgZ™) is more expensive than the benefits of mapping
Buffer_Ox10<25> to NVM, however, the FilterDynamic policy re-
alizes that SRAM space is more cost-effective (at the time), and
maps the block to SRAM.

3.8 Execution Timing Diagram
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Figure 12. Application Execution

Figure 12 shows a timing diagram for the loading/execution of
an application. First, prior to executing the application, we create
the vSPMs/vNVMs. Second, we load the application’s allocation
policies, which determine how to allocate the memory space. Fi-
nally, once the space is created, the application will continue to
execute as if it was talking to physical SPMs/NVMs.

4. Related Work

Most work in hybrid memories has focused on replacing/comple-
menting main memory (DRAM) or caches (SRAM) with a com-
bination of various NVMs to reduce leakage power and increase
throughput (a by product of higher NVM density). Joo et al. [17]
proposed PCM as an alternative to SRAM for on-chip caches. Sun
et al. [28] introduced MRAM into the cache hierarchy of a NUCA-
based 3D stacked multi-core platform. Mishra et al. [24] followed
up by introducing STT-RAM as an alternative MRAM memory and
hid the overheads in access latencies by customizing how accesses
are prioritized by the the interconnect network. Wu et al. [32] pre-
sented a hybrid cache architecture consisting of SRAM (fast L1/L2
accesses), eEDRAM/MRAM (slow L2 accesses), and PRAM (L3).
Hu et al. [14] were the first to explore a hybrid SPM/NVM memory
hierarchy and proposed a compile-time allocation algorithm that
exploits the benefits of both NVMs and SPMs for a single appli-
cation. Hybrid main memory has also been studied [33]. Mogul et
al. [25] and Wongchaowart et al. [31] attempted to reduce write
overheads in main memory by exploiting page migration and block
content signatures. Ferreira et al. [8] introduced a memory man-
agement module for hybrid DRAM/PCM main memories. Static
analysis has been explored to efficiently map application data on
off-chip hybrid main memories [22, 23].

HaVOC is different from approaches that address hybrid cache/-
main memories in that we primarily focus on hybrid SPM/NVM-
based hierarchies, however, our scheme can be complemented by
both existing schemes that leverage the benefits of both on-chip
SRAMs and NVMs as well as hardware/system-level solutions
that address hybrid off-chip memories (e.g., DRAM/eDRAM and
PCM). Our work is different from [14] in that we consider: 1)
shared distributed on-chip SPMs and 2) dynamic support for multi-
tasking systems, however, our scheme can benefit from compile-
time analysis schemes that provide our runtime system with allo-
cation hints (e.g., [14, 22, 23]). Like [4], we use part of off-chip



a) Source Code b) Memory Map

void IZigzagMatrix () text 0x004001f0  0x6130 /tmp/cc7mgwib1.0
{
int i;
for (i = 0; i < DCTSIZE2; i++)
{ | 0x00402b28 1ZigzagMatrix
omatrix[i] = imatrix[zigzag_index[i]];
}
}
c) Buffer Information and Mapping
Buffer Name Start AdngEnd Add5| Reads| WritegIVoIatiIitJMagging
| Buffer 0x40<10> | 4204544 4205567|398708 0 ONVM |47
Buffer 0x40<11> | 4205568 4206591/59580! 0 ONVM
Buffer 0x40<12> | 4206592 4207615/440754) 0 ONVM
Buffer 0x40<13> | 4207616 4208639313128 0 ONVM
Figure 10. Layout Information After Static Analysis
-MEMIEE_-MEMI-MEM
Buffer_0x40<9> NVM 34012 33 Buffer_0x40<9> NVM 34012 0 33 Buffer_0x40<9> NVM 34012 0
Buffer_0x7f<31> DRAM 7 0 0 Buffer_0x7f<31> DRAM 7 0 0 Buffer_0x7f<31> DRAM 7 0 0
Buffer_0x7f<32> SRAM 139055 88045 135 Buffer_0x7f<32> DRAM 139055 88045 135 Buffer_0x7f<32> SRAM 139055 88045 135
Buffer_0x7f<34> DRAM 84 82 0 Buffer_0x7f<34> DRAM 84 82 0 Buffer_0x7f<34> DRAM 84 82 0
Buffer_0x10<19> DRAM 230 120 0 Buffer_0x10<19> DRAM 230 120 0 Buffer_0x10<19> DRAM 230 120 0
Buffer_0x10<20> DRAM 62 36 0 Buffer_0x10<20> DRAM 62 36 0 Buffer_0x10<20> DRAM 62 36 0
Buffer_0x10<21>NVM 15254 416 14 Buffer_0x10<21>DRAM 15254 416 14 Buffer_0x10<21>SRAM 15254 416 14
Buffer_0x10<22>SRAM 18680 512 18 Buffer_0x10<22>DRAM 18680 512 18 Buffer_0x10<22>SRAM 18680 512 18
Buffer_0x10<23>SRAM 18722 512 18 Buffer_0x10<23>DRAM 18722 512 18 Buffer_0x10<23>SRAM 18722 512 18
Buffer_0x10<24>SRAM 18892 512 18 Buffer_0x10<24>DRAM 18892 512 18 Buffer_0x10<24>SRAM 18892 512 18
Buffer_0x10<25>NVM 24496 154 23 Buffer_0x10<25>DRAM 24496 154 23 Buffer_0x10<25>SRAM 24496 154 23

Figure 11. Resulting Map

memory to virtualize on-chip memories, however, our approach
differs in that our primary focus is the efficient management of
hybrid on-chip memories, and as a result, HaVOC’s programming
model and run-time environment account for the different physi-
cal characteristics of SRAMs, DRAMs and NVMs (MRAM and
PRAM). Moreover, we believe that we can complement our static-
analysis/allocation policy generation with other SPM-management
techniques [9, 19, 27, 29, 30].

5. Experimental Results

Table 3. Configurations

Config. | Applications CPUs vSPM/VNVM SPM/NVM
Space Space
Cl1 adpcm,aes 1 32/128 KB 16/64 KB
C2 adpcm,aes,blowfish,gsm 1 64/256 KB 16/64 KB
C3 C2 & h263,jpeg,motion,sha 1 128/512 KB 16/64 KB
C4 same as C2 2 64/256 KB 32128 KB
C5 same as C3 2 128/512 KB 32/128 KB
C6 same as C3 4 128/512 KB 64/256 KB

5.1 Experimental Setup and Goals

Our goal is to show that HaVOC is able maximize energy sav-
ings and increase application throughput in a multi-tasking environ-
ment under various scenarios. First, we generate two sets of hybrid-
memory aware allocation policies (Sec. 3.2.5), one set of policies
attempts to minimize execution time (Sec. 5.2) and the other at-
tempts to minimize energy (Sec. 5.3). These policies are generated
at compile-time and enforced at run-time by a set of dynamic allo-
cation policies (Sec. 3.5) under various system configurations (Ta-
ble 3). Next, we show the effects of the allocation policy’s block-
size on execution time (Sec. 5.4). We built a trace-driven simula-
tor that models a light-weight RTOS, with a round-robin scheduler

and context-switching enabled (time slot = 50K cycles). Our sim-
ulator is able to model CMPs consisting of an AMBA AHB bus,
OpenRISC-like in-order cores, distributed SPMs and NVMs, and
the HaVOC manager (Fig. 2). We bypassed the cache and mapped
all data to either SPM, NVM, or main memory (see Sec. 3.2.5).
We obtained traces from the CHStone [12] embedded benchmarks
by using SimpleScalar [1]. We model on-chip SPMs (SRAMs),
MRAMs and PRAMs by interfacing our simulator with NVSim
[6] and set leakage power as the optimization goal. To virtualize
SPMs/NVMs we use the unified PEM space model discussed in
Sec.3.1 (sSPEM). The HaVOC manager consists of 4KB low power
configuration memory (SRAM).

5.2 Enforcing Performance Optimized Policies

Normalized Execution Time (Goal=Performance,pageSize=4KB)  BTemporal
15 ®Oracle
1.0 BFixedDyn
BFilterDyn
0.5
0.0
C2 | C3 | C4 | C5|C6 |AG C1[C2|C3|C4  C5| C6 | AVG
MRAM P/G=P PRAM P/G=P
Normalized Energy (Goal=Performance,pageSize=4KB) G Temporal

®Oracle
OFixedDyn

§&&&ﬁ£%ﬁ e

C1[C2|C3|C4 | C5]C6 | AG C1/C2 C3|C4|C5]C6|AG
MRAM E/G=P PRAM E/G=P

Figure 13. Normalized Execution Time and Energy Comparison
for Performance Optimized Policies



For this experiment we generated allocation policies that mini-
mized execution time for each application. We then executed each
application on top of our simulated RTOS/CMP. Table 3 shows
each configuration (C1-6), which has a set of applications run-
ning concurrently over a # of CPUs, and a pre-defined hybrid-
memory physical space. To show the benefit of our approach we
implemented four policies: The three described in Sec. 3.5 (Tem-
poral, FixedDynamic, FilterDynamic), and a policy we call Oracle
(black bar in Fig. 13), which is a near-optimal policy because on
every block-allocation request, it feeds the entire memory map to
the same policy generator the compiler uses to generate policies
statically (see Sec. 3.2.5). The idea is to show that our FilterDy-
namic policy (backward-slashed bars in Fig. 13) achieves around
the same quality allocation solutions as the more complex Oracle
policy. Fig. 13 shows the the normalized execution time and energy
for each of the different configurations (CI-6, Goal=Min Execu-
tion Time denoted as G=P) using 4KB blocks and different mem-
ory types with respect to the Temporal policy. The FixedDynamic
policy (forward-slashed bars in Fig. 13) suffers the greatest impact
on energy and execution time as memory space increases (C4-6)
since it adheres to the decisions made at compile-time and does not
efficiently allocates memory blocks at run-time. In general, we see
that the FilterDynamic policy performs almost as good (in terms of
energy and execution time) as the Oracle policy (within 8.45% exe-
cution time). Compared with the Temporal policy, HaVOC’s Filter-
Dynamic policy is able to reduce execution time and energy by an
average 75.42% and 62.88% respectively when the initial applica-
tion policies have been optimized for execution time minimization.

5.3 Enforcing Energy Optimized Policies

15 Normalized Execution Time (Goal=Energy,pageSize=4KB) BTemporal
®Oracle
1.0 BFixedDyn
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Figure 14. Normalized Execution Time and Energy Comparison
for Energy Optimized Policies

Fig. 14 shows the the normalized execution time and energy for
each of the different configurations and memory types (Goal=Min
Energy denoted as G=E) with respect to the Temporal policy. Like
it was in the case of G=P, both the Temporal and FixedDynamic
policies are unable to efficiently manage the on-chip real-estate.
The FilterDynamic and Oracle policies are able to greatly reduce
execution time and energy, the FilterDynamic is within 3.54%
of the execution time achieved by the The Oracle policy. Com-
pared with the Temporal policy, HaVOC'’s FilterDynamic policy is
able to reduce execution time and energy by an average 85.58%
and 61.94% respectively when the initial application policies have
been optimized for energy minimization. The goal of this experi-
ment was to show that regardless of the initial optimization goal,
HaVOC'’s FilterDynamic policy is able to achieve as good results
as the Oracle policy.
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Figure 15. Effects of Varying Block Size on Policy Enforcement
and Allocation

5.4 Block Size Effect on Allocation Policies

So far we have seen that Oracle policy seems as a feasible dynamic
allocation solution, which would potentially enhance HaVOC’s vir-
tualization engine. However, as we mentioned before, the Oracle
policy is very complex as it runs in O(Blks * spmsize * NUMg;ze)-
The FixedDynamic policy on the other extreme runs in O(Blks),
however, its efficiency may be even worse than the Temporal policy.
HaVOC'’s FilterDynamic policy on the other hand, keeps a semi-
sorted list of data blocks, as a result it can be O(Blks) best case or
O(Blks log Blks) worst case for sorting, and the final filtering de-
cision runs in O(Blksspm + Blksnvm + BlkSdram ), which results
in O(Blks log Blks) + O(Blksspm + Blksnvm + Blksdaram)-
Thus, the complexity and execution time of the Oracle policy will
increase orders of magnitude as the number of data/code blocks
to allocate increases (Blks) or as the available resources increases
(8pMisize, NUMsize). This is validated in Fig. 15, where we have
varying block size (as a result, number of blocks to allocate in-
creases) and increase in available resources (C3-C6). As we can
see, for block size = 1KB, where the number of blocks to allocate
is in the hundreds, the allocation time of the Oracle is orders of
magnitude greater than the FilterDynamic policy. For block size =
2KB, we see that as resources increase, the Oracle allocation time
once again prevents it from being a feasible solution. On average,
we observe that HaVOC’s FilterDynamic is capable of achieving
as good solutions as the Oracle policy (within 10% margin) with
much lower complexity. On average, across all test scenarios (vary-
ing page sizes, different optimization goals, and different configu-
rations) we see that the FilterDynamic is able to reduce execution
time and energy by 60.8% and 74.7% respectively.

6. Comparison Between Oracle and
FilterDynamic Run-times
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Figure 16. Oracle and FilterDynamic Run Time Comparison

Figure 16 shows a more detailed comparison between the ag-
gregate run time (in cycles) between the Oracle and FilterDynamic



policies. As we can see, the configuration with the highest re-
sources (C6) causes the Oracle policy to spend orders of magni-
tude more cycles deciding where to allocate blocks than the Filter-
Dynamic policy. Another factor that affects the Oracle policy’s de-
cision time is the number of buffers to allocate, which is the highest
when the block size is 1KB.

7. Conclusion

We presented HaVOC, a hybrid-memory aware virtualization layer
for dynamic memory management of applications executing on
CMP platforms with hybrid on-chip NVM/SPMs. We introduced
the notion of data volatility analysis and proposed a dynamic filter-
based memory allocation scheme to efficiently mange the hybrid
on-chip memory space. Our experimental results for embedded
benchmarks executing on a hybrid-memory-enhanced CMP show
that our dynamic filter-based allocator greatly minimizes execu-
tion time and energy by 60.8% and 74.7% respectively with respect
to traditional multi-tasking-aware SPM-allocation policies. Future
work includes: 1) Integrating HaVOC’s concepts in a hypervisor
to support full on-chip hybrid-memory virtualization. 2) Integra-
tion, evaluation, and enhancement of other SPM-based allocation
policies for hybrid-memories. 3) Add off-chip NVM memories to
support the virtualization of on-chip NVMs (nPEM).
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