C Center for Embedded Computer Systems
S University of California, Irvine

Towards A Unified Hardware Abstraction Layer
Architecture for Embedded Systems

Hao Peng 12 R. Démer!
hao.peng@uci.edu doemer@uci.edu

CECS Technical Report 12-14

Nov. 26,2012
'Center for Embedded Computer Systems ’Engineering Research Center of Safety
University of California, Irvine Critical Industry Measure and Control

Technology of Ministry of Education

Irvine, CA 92697-3425, USA Hefei, Anhui 230009, China
(949) 824-8059 (0551) 2903897
http: //www.cecs.uci.edu/ http://ialab.hfut.edu.cn

Towards A Unified Hardware Abstraction Layer
Architecture for Embedded Systems

Hao Peng 12 R. Démer?
hao.peng@uci.edu doemer@uci.edu

CECS Technical Report 12-14

Nov. 26,2012
'Center for Embedded Computer Systems ’Engineering Research Center of Safety
University of California, Irvine Critical Industry Measure and Control

Technology of Ministry of Education

Irvine, CA 92697-3425, USA Hefei, Anhui 230009, China
(949) 824-8059 (0551) 2903897
http://www.cecs.uci.edu/ http://ialab.hfut.edu.cn
Abstract

The Hardware Abstraction Layer (HAL) is a software layer which resides between the
hardware platform and the operating system (OS). The HAL hides the implementation
details of the hardware platform from the upper layers of software. The purpose of using a
HAL is to reduce the development period of new systems, shortening the pre-market time,
and increasing software reusability. Although some 0S’s define an integrated HAL, these
are typically OS-specific and thus not reusable.

In this report, we propose the idea of a Unified Hardware Abstraction Layer (UHAL) which
contains the basic set of abstract features of the underlying hardware platform. With such a
UHAL, programmers are able to easily compose a software foundation for different OS’s.
We present a MP3 player case study to demonstrate the UHAL idea. Our case study
experiment uses a BeagleBoard as the hardware platform and eCos as embedded operating
system. The case study results show that the proposed UHAL clearly separates the
hardware-dependent software development from the hardware-independent software
development, while these two parts can be integrated quickly and with low effort
afterwards.

Contents

i [A o To [¥ Lot o o EO T TP P PO PP 1
2. The Architecture of Embedded ProCessorscoceerieriierieniieeseceeeee e 2
3. A Unified Hardware Abstraction Layer (UHAL)cooocvivverieeiiiiiireeeee e eeeeiireeeee e e eeeanrreeeees 5
4. Features and FUNCLIONS Of @ UHAL........ooiiiiiiiiceece e 6
4.1 Core-related fEAtUIESciiii i 6
4.1.1 Hardware context creation and SWItChccocueiriiiiiiiiiiiiiieeee e 6
4.1.1.1 General MOElc.ueiiiiiiii e 7
4.1.1.2 Hardware context creation and switch for eCos exampleccccceeeevieccviveneennn. 7

4.1.2 Internal exception handler ... 9
4.1.2.1 General MOdel ...c...ooiieieeeee e e 9
4.1.2.2 Internal exception handler for eCos examplecccovveeeeiieiiiiiineeeneeeeeeeinneeen, 11

4.2 CPU-related fEAatUreS.cc.eiiiiiiieee e 13
4.2.1 Clock generation and CONIoleeeeiiiiiiiiiiiieeee e 13
4.2.1.1 General MOel ...co..eiiiiiiii e s 13
4.2.1.2 Clock generation and control for eCos examplecccccevvviieeeniiieeeiniineennnns 14

4.2.2 External exception handler....... ..o 15
4.2.2.1 General MOdelooiiiiiiiii e 15
4.2.2.2 The external exception handler for eCos example......ccccccccvevvvvvvereieeeeiecnnnnen. 16

4.2.3 TIMEI CONTIOl .o s e 18
4.2.3.1 General MOdelooiiiiii e 18
4.2.3.2 Timer control for Cos eXamplecccuieeiiiiieiiiiiiiee e seee e 19

4.2.4 CaCh@ CONTIOL ..ot snee e 20
4.2.4.1 General MOdelc..ooiiiiiiiii e 20
4.2.4.2 Cache control for eCos eXamplecoocciiiieeeie e 21

4.2.6 Memory management UNIt ... eeeeiiiiiiiiee et e e e e e e e e e ae e e 23
4.2.7 Direct memory access (DIMIA)uuvveeiei i et e e eerarrere e e e e s seabraeeeeeees 23
4.2.7.1 General MOdelooiiiii e 23
4.2.7.2 Direct memory access control for eCos examplecccccevevieeeeiicieeeiniiieeeenns 24

4.3 Peripheral-related fEatures. ..o 25
4.3.1 PolliNg WOIrd tranSfer......cii it 28
4.3.2 Interrupt block transfer ... 29

iR T I D 11 1N o] o Yo [= 1 1Y =1 R 30

5. Case Study of a MP3 Player on BeagleBoard..........cccccuvveeeeieeieiiiireeeeee e 32
5.1 Hardware configUrationccccuvieieiiii et ctrrree e e e araee e e e e e e e nannees 32
5.2 Software CoONfIGUIatioN.......cocuiiiiiiiiiie e s re e s 32
ST B 0T o] (= g =T a1 = [] o PP 33
5.4 Issues encountered and SOIUTIONS........coocuieiiiiiiiiiiiiee e 36

5.4.1 Remote debugging with GDB remote serial protocol..........cccccviviveeeeieeccciieeeennn. 36
5.4.2 Codec chip configuration and debUZEiNG.......c..ccoovvvmrrieeiiiiiiiiireeeeee e 38
5.5 RESUILS ..ttt s e e r e aneenes 40

I 0] 4 Tol (U1 T o F- 3PP P PR PSP 41

T FUTUIE WOTK .ttt e sttt e r e sae e s n e e s meesneenneens 42

8 ACKNOWIEAGEMENT ... s s e s s sba e e e s sate e e s s aaaeeeas 42

21 o Lo = =T o] 2 VAR SO TUPPRROPPPPROE 43

List of Figures

Figure 1.1 Hardware abstraction layer (HAL) in a layer-based software architecture............. 2
Figure 2.1 The general architecture of an embedded processorcccccceeccviiieeeeeeeccccciveeeeenn, 3
Figure 2.2 The architecture of Freescale MPC8572E PowerQUICC™ Il processor (1)............. 4
Figure 2.3 The architecture of TI DM3730 ARM CORTEX-A8 based processor (2)........cceeeunee 4
Figure 2.4 The architecture of RENESAS (NEC) SH7214 Group, SH7216 Group MCU (3)......... 5
Figure 3.1 Three categories Of HAL. ...ttt e et e e e e e 6
Figure 4.1 3-stages general internal exception handler........cccocveeiiiiiiiiniiecie e 10
Figure 4.2 The clock module archit@Ctureocuieiiiiiiiiiieee e 14
Figure 4.3 The architecture of general external exception handler........cccccoceviviiieiiniiieennns 15
Figure 4.4 The general model of multiple timers within one processorccccccevivriiveeene 18
Figure 4.5 Memory hIi€rarChycoo ettt s e e s s bae e s ssabaaeesenes 21
Figure 4.6 The architecture of DMA CONtroller.......coocuuiiiiiiiiiiiiiiiee et 23
Figure 4.7 Registers Of 1/O dEVICESccvivvieiiieeie ettt ettt sae e 25
Figure 4.8 Architecture of deViCe dIiVEIS........iiiiiiiiciirieeee et ee e e e e 26
Figure 5.1 The system configuration of MP3 player experimentccccceevcveeeeeiieeeircineeenns 32
Figure 5.2 The default configuration of virtual vector table (VVT) ..ccccoeeeeiiiieiiieeieeene 34
Figure 5.3 Communication interface table (CIT) of UARTcocciiieeiieiieirreeeee e, 35
Figure 5.4 Remote debugging via GDBcoiieiiiiiiiieieeec et eecrrree e e e essarrreee e e e e eeans 37
Figure 5.5 12S protocol data format.......cccueeeeiiiiieiiiiieeee e et e e e e e 38
Figure 5.6 The architecture of aUdIiO EVICEcccuvriieeiii i 39

List of Tables

Table 4.1 Functions/macros support multithreading..........cccccveeeeieeciee e 7
Table 4.2 Functions/macros of general internal exception handlerccccccooveeeiveeeieeenneen. 10
Table 4.3 Functions/macros of clock CONTrol HALuveivviiiiiiieiieieecee ettt e ee e 14
Table 4.4 Functions/macros of external exception handling HAL...........cccceeveieeviieeecveeenneen. 16
Table 4.5 Functions/macros of general purpose timer HAL.........cccceeeeveeecieeccieeeciee e, 19
Table 4.6 Functions/macros of cache CONTIOl HALvvivvviiiiiiciiiiieeeeeeeeeieeeee e eeseianeeeee e 21
Table 4.7 Functions/macros of DMA controller HALccuvvviieuiieiiciiieeeeieee e eeveee e 24
Table 4.8 An example of protocol-defined parameters configuration HAL: UART protocol
parameter configuration fUNCLIONScooviiiiiiiiii e s 27
Table 4.9 An example of hardware module configuration.........cccccevecveeeiniiieeiniiiee e 27
Table 4.10 Functions/macros for polling word transfer..........cccocveveeevieeviecie e 28
Table 4.11 Functions/macros for interrupt block transfer..........cccoveeveeiieviecceecie e 29
Table 4.12 Functions/macros for DMA block transfercoocvveiiieiiiecieiiieececieee e 30
Table 5.1 Functions of UART HAL for Beagleboardccccoeccvvveeeeiiiiecccieeeee e 36
Table 5.2 The performance without compiler optimizationcccceeeeeiiiiiieeiie e, 40
Table 5.3 The performance with compiler optimization level 2 (02)cccoveeeeeeeiicccnnennnneen. 41

List of Source Code Listings

Listing 4.1 HardWare CONTEXLuuuiiiiiiieiiiiiieee e e eeccctree e e e e e ritree e e e e e e s eanatae e e e e e e e eensaaeseeeeeesnnnes 7
Listing 4.2 ARM CORTEX-A8 hardware context without floating point accelerator registers . 7
Listing 4.3 Hardware context creating for ARM COTecuieiiiiicciiiiiiee e eeeree e 8
Listing 4.4 Context switch code fOr ARM COME......uuuiiiiiieieii e e e e 8
Listing 4.5 Code redirecting exception to handler address.........ccccceeeeiieicciiieeee e, 11
Listing 4.6 Internal exception handlers 1% Stage ProCess.uowwveeeeeeeeeeeeeeeeeeeeenens 11
Listing 4.7 Internal exception handlers 2" STAZE PrOCESS coovieiiiiieeee et eerireee e e e e e seiireeeeee e 12
Listing 4.8 Internal exception handlers 3" STAZE PrOCESS oevviiiieiiiiiiteee et 13
Listing 4.9 DPLL1 module initializationcoooriiiiiiiiieecieeeesiees e 15
Listing 4.10 External exception handler routine table..........cccoviiiiiiniieiiiniie e 16
Listing 4.11 External exception handlers 1% stage Processccovvveeeeeeeeeererereseseeseeeenenas 17
Listing 4.12 External exception handlers 2" STAZE PrOCESS ceevieeviiiiieeee e et e e e 17
Listing 4.13 Interrupt controller OPerationsc.ueiiviiieiiniieee e 17
Listing 4.14 Timer initialization roULINEoiiieiiiei e 19
Listing 4.15 Interrupt handler of @ tIMErueeii i 20
Listing 4.16 Reading the current counting value of the timer........cccoccveeieiieee e, 20
Listing 4.17 Enabling inStruction CAChe.........ciiiiiiiei e 22
Listing 4.18 Disabling inStruction CaChe........ccoocuiiii i 22
Listing 4.19 Data cache syNChronization...........cooociiiieee e 22
Listing 4.20 Transferring element width configurationcccccccvveiiiiiiie i, 24
Listing 4.21 Source and destination starting address configurationcccccceveeeeeiviciiveeennen. 25
Listing 4.22 Data transmitting/receiving functions for UART module on Beagleboard......... 28
Listing 4.23 Interrupt service routine for UART module on Beagleboard.......cc..cccoeeuvrveennn... 29
Listing 4.24 Initializing @ DMA Channeloeoiiiiiiiiiieiiee e 30

Towards A Unified Hardware Abstraction Layer Architecture

for Embedded Systems

Hao Peng 12 R. Démer!
hao.peng@uci.edu doemer@uci.edu
'Center for Embedded Computer Systems 2Engineering Research Center of Safety Critical
University of California, Irvine Industry Measure and Control Technology of

Ministry of Education

Irvine, CA 92697-3425, USA Hefei, Anhui 230009, China
(949) 824-8059 (0551) 2903897
http://www.cecs.uci.edu/ http://ialab.hfut.edu.cn

1. Introduction

In embedded systems, software is becoming more and more important than ever before
due to its high complexity in the entire system. Because of the market requirements,
decreasing design time is one of the key issues in the design process. Software portability and
reuse are effective ways to address this problem. However, on account of a change of the
hardware architecture and underlying platform, porting an operating system (OS) and/or an
application requires a lot of efforts in adjustment, modification and debugging.

In order to improve the portability and reusability, software is generally separated into
several layers, a layer of hardware-dependent software (HDS), typically called hardware
abstraction layer (HAL), and several hardware-independent layers which include the operating
system and application software (1), as shown in Figure 1.1.

OS

Hardware

Figure 1.1 Hardware abstraction layer (HAL) in a layer-based software architecture.

Definition: Hardware Abstraction Layer (HAL)

In this paper, we define the hardware abstraction layer (HAL) as the part of the software
that directly relies on the underlying hardware platform. The HAL provides a standard
application procedural interface (API) to the OS and the actual applications with which they can
control the hardware.

Conceptually, the presence of a HAL ensures software portability (1) (2). When porting
the OS to different platforms, only the HAL needs to be modified. Based on a well-defined API
between HAL and OS, hardware and software development can also be carried out
simultaneously so that the overall development time is reduced.

In chapter 2, we first take a look at the underlying hardware platform of general
embedded systems and show some examples of the architecture of microcontrollers and
microprocessors. In chapter 3, we then discuss in detail the features and functions which are
necessary and important in a HAL. We also list specific examples of how the HAL API may look
like. In chapter 4, we then investigate the specific HAL in some existing operating systems and
compare them to the features described in chapter 3. Finally, in chapter 5, we conclude our
study.

2. The Architecture of Embedded Processors

In semiconductor market, there are hundreds of different kinds of embedded processors.
They are widely used in various application areas, such as automotive, military, cell phone,
office and home electronics, etc. In general, they have the similar architecture. We sort the
components within the embedded processors into three categories: core, central processing
unit (CPU) and peripherals, which is shown in figure 2.1. Core is the component which executes
the instructions. CPU contains the core and the other components which support the core to

execute programs. Peripherals are the components which communicate with other systems or
physical world.

Peripherals

Figure 2.1 The general architecture of an embedded processor

Figure 2.2 illustrates the architecture of Freescale MPC8572E microprocessor (3). It is a
dual-core microprocessor with two Power-architecture cores. The cores are separated from
other components by the system bus. They are the most critical parts of this chip. The cache is
also in the same scope with cores since they have matchable speed. Cache is not as important
as cores because without cache the system is still able to work under lower performance. Of
other components which connect to the system bus, some are sorted into CPU category while
others are sorted into peripheral category based on their roles in the system. For instance, the
SDRAM controller is definitely a necessary part for executing programs so that it is part of CPU.
However, the Ethernet controller is an application specific component for communicating
purposes which is then categorized as a peripheral.

’4"
+» = MPCB8572E 500 Core
-

%m

€500 Core

%mﬁm
-y = ----

i R

SGMII
SerDes

Figure 2.2 The architecture of Freescale MPC8572E PowerQUICC™ IIl processor (3)

The architecture of TI DM3730 ARM CORTEX-A8 based microprocessor is depicted in figure
2.3 (4). It has a single ARM core with other coprocessors. According to our definition, the ARM
core and the coprocessors are classified into the core category as they all execute instructions.
The rest components which are connected to “L3 interconnect network”, excluding camera and
USB components, are sorted into CPU category. The camera and USB controllers are clearly
peripherals. The reason that they are connected to “L3 interconnect” is for speed requirement.
Then everything beyond the “L4 interconnect” is a peripheral.

S
m,i.m) ,cm TT
HS-USB
(32&1]
GPMC: General
Put

imose
Mamory I
Controller System Controls
PRCM
NAND/NOR SmartRefiex
- T
External
Peripherals

External / Stacked Interfaces
Memories

Figure 2.3 The architecture of TI DM3730 ARM CORTEX-A8 based processor (4)

VA2

(DM37x Only)

TMS320DMG4x+ DSP
Video &

Audio processor

2K LIPS

48K/32K L1D/L1DS RAM

4K 128

32K L2 RAM
16K L2 ROM
Video Accelerators:
iME, iLF, CAVLCD, Saq

64y 21
| meme

54 321

3.pmum

e

Figure 2.4 depicts the architecture of Renesas (NEC) microcontroller (5). It shows a clearly
hierarchical structure. The upmost part is the core which connects with supporting components
via the CPU bus and the internal bus with a bus bridge. All the peripherals connect to a

4

peripheral bus and communicate with upper hierarchies via a peripheral bus bridge. Then from
the top of the picture, the first row of blocks is in the core category, the second and third row
of blocks are in the supporting component category, and the last two rows are in peripheral
category.

A
IVE

il | vy || S | |l | e | | Fenena | [

Figure 2.4 The architecture of RENESAS (NEC) SH7214 Group, SH7216 Group MCU (5)

From the examples illustrated above, we have seen that a typical embedded processor
matches our definition of general architecture. Then if we create an abstractive model for each
component within one category, it is possible to use different combinations to abstract the
specific underlying hardware platforms which are significantly different from each other.

3. A Unified Hardware Abstraction Layer (UHAL)

In the last section, we can see that the embedded processors have similar architectures. In
general, they have one or multiple cores, execution supporting components, and peripherals.
Even though they are implemented in different ways, from a software developer’s point of view,
the same hardware component from different vendors basically does the same thing. For
instance, the core executes instructions regardless it is an ARM, POWER or MIPS core, the MMU
unit always performs virtual-to-physical memory translation, and an Ethernet controller sends
and receives Ethernet packages. Each implementation of a kind of hardware may have different
registers, access method, or buffer size. However they have the same function which can be
utilized by operating systems and applications. So the idea here is we can abstract a hardware
component into basic functions and hide the details of the way how these functions are
implemented. With these functions programmers are able to compose system calls and device
drivers for various OS’s.

According to the classification of hardware components, HAL is divided into three
categories as well: core-related, CPU-related and peripherals-related, which is shown in figure
3.1.

Hardware independent layer

Core-related CPU-related Peripheral I/O
HAL HAL device driver HAL

hardware

Figure 3.1 Three categories of HAL

Each part of upper layer is able to invoke any part of the HAL if needed. For instance, the
HAL of DMA controller, as well as the HAL of interrupt controller, can be utilized by either of OS,
communication stack, or device driver.

4. Features and Functions of a UHAL

In all the sections below, all functions are defined with lowercase letters while the macros
are defined with uppercase letters. In this section, the real code examples come from the eCos
(6) distribution on the ARM architecture.

4.1 Core-related features

Core is the central part of the CPU. It carries out the instructions of programs. There are a
lot of differences between different cores, such as registers, internal exception types, etc. Thus
for running an OS on a specific architecture, the code related to the core should be modified,
including the context creation and switching, internal exception handler, etc.

4.1.1 Hardware context creation and switch

Context switch is a critical feature to support multithread operating systems, which is
directly related to hardware architecture. Regardless of the different software structure of a
6

thread among different operating systems, the hardware context within a thread has some
common features. The hardware context contains all the registers of a CPU, should be saved to
memory when the thread stops running and loaded into registers when the thread is activated
again. These features are hardware-dependent, consequently, should be implemented in HAL.

4.1.1.1 General model

First, HAL defines a structure which represents the specific hardware context shown in listing
4.1. This structure contains all general purpose registers, floating point registers and status
registers corresponding to the core architecture.

Listing 4.1 Hardware context

struct
{ general purpose registers;
floating point registers;
status registers;
PC, SP, etc;
} hardware_context;

oA W=

Then we need functions/macros which save the hardware context into memory and load
hardware context into CPU registers to support multithreading, shown in table 4.1.

Table 4.1 Functions/macros support multithreading

Function/Macro Comment

hardware_context * Create a hardware context for a thread.

create_context (entry point, stack, entry data)

SAVE_CONTEXT (hardware_context * ptr) Save the hardware context of current executing
thread to address “ptr”.

LOAD_CONTEXT (hardware_context * ptr) Load the hardware context saved in address
“ptr” to CPU registers.

void Save the current hardware context to address

switch_context(hardware_context* from, “from” and restore the hardware context from

hardware_context* to) address “to”.

4.1.1.2 Hardware context creation and switch for eCos example

Listing 4.2 to 4.4 show the hardware context manipulation in eCos.

In listing 4.2, a structure which represents the hardware context architecture of ARM
CORTEX-A8 CPU is defined. Because eCos is not an OS intended to do much floating-point
arithmetic operations, the hardware context doesn’t include the floating point registers
however they are easy to be added.

Listing 4.2 ARM CORTEX-A8 hardware context without floating point accelerator registers

1. typedef struct

2. { cyg_uint32 d[11]; //r0-r10

3 cyg_uint32 fp; // (r11) Frame pointer

4 cyg_uint32 ip; // (r12)

5. cyg_uint32 sp; // (r13) Stack pointer

6. cyg_uint32 Ir; // (r14) Link Reg

7 cyg_uint32 pc; // (r15) PC

8 cyg_uint32 cpsr; // CPU status register

9 // The data below are only saved for exceptions and interrupts
10. cyg_uint32 vector; // Vector number

11. cyg_uint32 svc_Ir; // saved system mode Ir
12. cyg_uint32 svc_sp; // saved system mode sp

13. } HAL_SavedRegisters;

Listing 4.3 shows the hardware context creation macro in eCos where “_sparg " is the
thread stack, “_thread_” is the data argument passed to the entry function “_entry_”, “_id_"is
an identification value assigned to this thread for debugging purpose only.

Listing 4.3 Hardware context creating for ARM core

1. #define HAL_THREAD_INIT_CONTEXT(_sparg_, _thread_, _entry_ , _id_) \
2 register uint32 _sp_ = ((uint32)_sparg_) &~15; \

3 register HAL_SavedRegisters *_regs_; \

4, int_i; \

5. _regs_ = (HAL_SavedRegisters *)((_sp_) - sizeof(HAL_SavedRegisters)); \
6 for(_i_=0;_i_<=10; _i_++) \

7 (_regs_)->d[_i_]=(_id_)[_i_;

8 (_regs_)->d[00] = (uint32)(_thread_);

9

10. (_regs_)->Ir = (uint32)(_entry_);

11. (_regs_)->pc = (uint32)(_entry_);

12. (_regs_)->cpsr = (CPSR_THREAD_INITIAL); \
13. _sparg_ = (CYG_ADDRESS) regs_;

\
\
(_regs_)->sp = (uint32)(_sp_); \
\
\

In listing 4.4, there are two assembly functions, “hal_thread_switch_context” and
“hal_thread_load_context”. The former switches the program from one thread to another and
the latter loads and executes a new thread. Before invoking these functions, the address from
which the new hardware context is loaded is stored in register “rO0” and the address to which
the current hardware context is saved is stored in register “r1”. From line 3 to line 9, it can be
considered as a function which saves current thread as well.

Listing 4.4 Context switch code for ARM core

.globl hal_thread_switch_context
hal_thread_switch_context:

mov ip,sp

sub sp,sp,#(ARMREG_SIZE — 20)

stmfd spl{ip,Ir}

stmfd sp!l,{r0-r10,fp,ip}

mrs r2,cpsr

str r2,[sp,#armreg_cpsr]

O NS AWNR

9. str sp,[r1]

10. .globl hal_thread_load_context
11. hal_thread_load_context:

12. Idr fp,[r0]

13. mrs r0,cpsr

14. orr r0,r0,#CPSR_IRQ_DISABLE |CPSR_FIQ_DISABLE
15. msr cpsr,r0

16. Idr r0,[fp,#armreg_cpsr]

17. msr spsr,rO

18. Idmfd fp,{rO-r10,fp,ip,sp,Ir}

19. mov pc,Ir

4.1.2 Internal exception handler

An exception is an event that disrupts normal execution of the program. It might be
generated by an internal failure or an external signal. Based on the source, the exceptions are
classified into internal exceptions and external exceptions which are also called interrupts. In
this section, only internal exceptions are discussed. The external exceptions are left to the
interrupt controller section.

The internal exceptions are brought about by execution of program, for instance, reading a
non-existing memory address, executing an unknown instruction, executing a software
exception instruction, etc. They are non-maskable and need to be handled effectively and in
time.

4.1.2.1 General model

Different OS’s have different methods to handle or utilize the internal exceptions. For
example, Linux utilizes the “software interrupt” instruction to switch to kernel mode. If we
ignore the exact meaning of an exception, the exception handler is a piece of code which
resides on a specific address in memory and would be executed when the corresponding
exception occurs. For achieving most portability, we propose a 3-stages general internal
exception handler architecture, which is shown in Figure 4.1.

In the 1st stage process the current hardware context is saved, the exception type and
address are recorded as well. Then the saved context is passed to the 2" stage process which
chooses the proper exception handler routine from a pre-defined internal exception handler
routine table to handle the exception. This table is maintained by the operating system or
applications by attaching exception handling function to or detaching it from the table. After
finishing the 2" stage process, the condition which causes the exception has been properly
handled. The 3™ stage process restores the context saved in the 1% stage process and brings the
program back to the normal execution flow.

1% stage 2" stage 3" stage

Internal
Exception
Handler
Routine
table

Universal internal exception handler

Figure 4.1 3-stages general internal exception handler

To carry out this strategy, first, a macro which implements the 1* stage process should be
attached to every exception vector respectively. Usually this macro is written by assembler.
Then a function that invokes corresponding exception handler from the routine table is
required for the 2" stage process. Meanwhile the attaching and detaching functions for
maintaining this table are also provided by HAL. Finally there is a macro that implements the 3
stage process, e.g. restoring context and normal execution. The functions and macros that
constitute the general internal exception handler are listed in table 4.2.

rd

Table 4.2 Functions/macros of general internal exception handler

Function/Macro Comment

PRECODE This macro is the 1°* stage process implementation. It
saves hardware context and records exception type
and address.

POSTCODE This macro is the 3™ stage process implementation. It
restores the hardware context saved in 1* stage then
goes back to normal execution flow.

void Invoke the exception handler corresponding to the

call_handler (expt_type, expt_address) exception type “expt_type”. Pass the address
“expt_address”, where the exception occurred, as a
parameter.

void Attach an exception handler “handler_routine” to the

attach_handler (expt_type, handler_routine) | corresponding position in routine table.

void Set corresponding position in routine table to NULL.

detach_handler (expt_type)

10

4.1.2.2 Internal exception handler for eCos example

In ARM architecture, there are 5 types of internal exceptions and 2 types of external
exceptions. Each one has an exception vector respectively all of which reside in a consecutive
space of eight 32-bit including a reserved vector.

Listing 4.5 and listing 4.6 is an example of “PRECODE” in an eCos distribution on BeagleBoard.
Since each exception vector only has 32-bit space, obviously we have to make a jump in each
vector to the “real PRECODE”. Listing 4.5 shows the code making this jump. This part is totally
dependent on the hardware architecture.

Listing 4.5 Code redirecting exception to handler address

1. .global __exception_handlers

2. __exception_handlers:

3. b reset_vector

4. Idr pc,.undefined_instruction

5. Idr pc,.software_interrupt

6. Idr pc,.abort_prefetch

7. Idr pc,.abort_data

8. .word 0

9. Idr pc,.IRQ

10. Idr pc,.FIQ

11. .global vectors

12. vectors:

13. .undefined_instruction: .word undefined_instruction
14. .software_interrupt: .word software_interrupt
15. .abort_prefetch: .word abort_prefetch

16. .abort_data: .word abort_data

17. .word 0

18. .IRQ: .word IRQ

19. .FlQ: .word FIQ

Listing 4.6 is the “real PRECODE” in the eCos distribution on BeagleBoard. The reset
exception is different from others thus need to be written separately. The other three
exception handlers have the same structure except saving different exception types in register
“r2”. The function “call_exception_handler” from line 27 to line 29 saves the context before the
exception then call function “exception_handler”, which is considered as the “general internal
exception handler” in this example.

Listing 4.6 Internal exception handlers 1°* stage process

1 .global reset_vector

2. reset_vector:

3. // initialize platform, then jump to main function
4. undefined_instruction:

11

© %o NSO

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

Idr sp,.__undef_exception_stack
stmfd spl,{r0-r5}
mrs rl,spsr
sub ro,Ir,#4
mov r2,#CYGNUM_HAL_EXCEPTION_ILLEGAL_INSTRUCTION
mov r3,sp
b call_exception_handler
software_interrupt:
//save current context
mov r2,#CYGNUM_HAL_EXCEPTION_INTERRUPT

b call_exception_handler
abort_prefetch:
//save current context
mov r2, #CYGNUM_HAL_EXCEPTION_CODE_ACCESS

b call_exception_handler
abort_data:
//save current context
mov r2,#CYGNUM_HAL_EXCEPTION_DATA_ACCESS

b call_exception_handler
call_exception_handler:
//save the context before the exception
bl exception_handler

Listing 4.7 is an implementation of 2" stage process, i.e. “general internal exception
handler” in figure 4.1 . All the information is saved in structure “regs” and passed to the
function “exception_handler()” in line 1. Then it gets the exception handler from the array
“exception_handler[]” in line 9 and invoke that handler to handle the exception.

1
2
3
4.
5.
6
7
8
9

10.
11.
12.

Listing 4.7 Internal exception handlers 2" stage process

void exception_handler(HAL_SavedRegisters *regs){
cyg_hal_deliver_exception(regs->vector, (int)regs);
return;

}

void cyg_hal_deliver_exception(int code, int data){
Cyg_Thread::self()->deliver_exception((cyg_code)code, data);

}

void Cyg_Exception_Control::deliver_exception(int exception_number,int exception_info){
handler = exception_handler[exception_number - CYGNUM_HAL_EXCEPTION_MIN];
data = exception_data[exception_number - CYGNUM_HAL _EXCEPTION_MIN];
handler(data, exception_number, exception_info);

}

Listing 4.8 shows an example of “POSTCODE”. After restoring the context before exception
in line 3, the program returns to the normal execution flow.

12

Listing 4.8 Internal exception handlers 3 stage process

1. return_from_exception:
2. msr spsr,rO
3. Idmeqfd sp,{r0-r14,pc}*

4.2 CPU-related features

In a CPU, there are supporting components around the core to perform instruction
execution and respond to the external events, such as memory, interrupt controller, clock, etc.
The CPU-related features contain the code for controlling these components.

4.2.1 Clock generation and control

The clock signal is used to synchronize the action of circuits. It is usually generated by a
hardware component called clock generator. A typical clock generator receives one or a few
input reference clock signals from an oscillator or an external chip, meanwhile outputs several
different frequency clock signals to on-chip hardware components and/or off-chip peripherals.

In this section, stable input reference clock signals are assumed.

4.2.1.1 General model

The clock generator usually distributes different frequency signals. For instance, the clock
signal for MPU always has a much higher frequency than that for peripherals. Furthermore each
output usually can be configured as an optional frequency. So the function which configures the
frequency of each output respectively is required as well as a function for selecting input
reference clock. Functions for shutting down and turning on each clock output are also
necessary for reducing power consumption which is of critical importance in mobile systems.

Figure 4.2 show the general architecture of the clock module. First it receives several
different frequency reference signals and dispenses them to each channel, based on the system
configuration. Then each channel generates a demanded clock signal of certain frequency and
supplies a group of hardware components.

13

Clock signal

output 1

Clock signal
output 2

Reference input clock signal 1

Reference input clock signal 2

Clock signal
output n

Reference input clock signal n

Figure 4.2 The clock module architecture

The functions/macros controlling clock module are listed in table 4.3. The function
“clock_input_select()” configures the clock module to receive a certain reference signal from a
physical pin. The frequency of that signal is usually known by the developer. The function
“output_config (channel, frequency)” sets the “channel” to output a clock of “frequency”.
These two functions are commonly used in early system initialization process since the stable
clock signals are the foundation of system execution. However the latter function is possibly
used in run time when frequency adjustment is required for making trade-off between
executing power and energy consuming. The function “clock_enable(channel)” and
“clock_disble(channel)” start or stop the clock signal “channel” output. They can be
implemented as gating/ungating the channel while keeping the channel active internally, or
even shut down the entire channel and restart it, based on the system design.

II’

Table 4.3 Functions/macros of clock control HAL

Function/Macro Comments

void Choose the reference clock signal from multiple input signal
clock_input_select(void) sources.

void Set the clock output channel output the “frequency” signal.
output_config (channel, frequency)

void Enable the output clock signal “channel”.

clock_enable (channel)

void Gate the output clock signal “channel” for energy saving.
clock_disable (channel)

4.2.1.2 Clock generation and control for eCos example

Listing 4.9 shows an example from an eCos distribution on the Innovator (ARM) Board. It
is included in platform initialization process. This small piece of code initializes and enables the
DPLL1 clock signal output.

14

Listing 4.9 DPLL1 module initialization

1. Idr r1,=DPLL1_BASE

2. Idr r2,=0x2290

3. str r2,[r1,# DPLL_CTL_REG]
4. 1 Idr r2,[r1,# DPLL_CTL_REG]
5. and r2,r2,#1

6. cmp r2,#1

7. bne 1b

4.2.2 External exception handler

An external exception, also known as an interrupt, is generated by a hardware component
and delivered to CPU through the interrupt controller. Usually it is maskable and has lower
priority than internal exceptions.

4.2.2.1 General model

The blue blocks in figure 4.3 illustrate the components of external exception handler. This
HAL module involves operation on two hardware components, i.e. programmable interrupt
controller and CPU. We assume that every interrupt source has a unique number.

1% stage 2" stage 3" stage

Interrupt
controller

External exception

Interrupt source 1 vector 1

External exception
vector 2

Interrupt source 2

External exception

Interrupt source n vector n

General external exception handler

Figure 4.3 The architecture of general external exception handler

Apparently the external exception handler has a similar 3-stage general handler as internal
exception handler. The differences are that the handler here gets and saves the exception
number from interrupt controller at the 1% stage and checks a different “external exception
handler routine table” at the 2™ stage to get the corresponding service function.

Table 4.4 lists the features of external exception handling HAL, which is quite similar to the
internal exception handling HAL, plus the interrupt controller operations. The first 5 functions
or macros in table 4.4 do the same thing as their counterparts in internal exception handler.
The rest functions are related to interrupt controller. The difference among

”n u

“enable_expt_signal ()”, “disable_expt_signal ()", “mask_int ()” and “unmask_int ()" is the

15

former two functions control the signal between interrupt controller and CPU while the latter
two control the signal between other hardware components and interrupt controller.

Table 4.4 Functions/macros of external exception handling HAL

Functions/Macro

Comments

PRECODE This macro saves context and records exception type and
address.

POSTCODE This macro restores the context saved before then goes
back to normal flow.

void Invoke the exception handler corresponding to the

call_handler (expt_num) number.

void Attach an exception handler to the corresponding position

attach_handler (expt_num, handler)

in routine table.

void
detch_handler (expt_num)

Set corresponding position in routine table to NULL.

void
enable_expt_signal (expt_signal_type)

Enable the exception “expt_signal_type” in CPU.

void
disable_expt_signal (expt_signal_type)

Disable the exception “expt_signal_type” in CPU.

void
set_type (int_num, expt_signal_type)

Set interrupt “int_num” to generate the
“expt_signal_type” interrupt signal to CPU.

void
mask_int (int_num)

Mask the interrupt input signal from an external
component to the interrupt controller with number
“int_num”.

void Unmask the interrupt input signal with number “int_num”.
unmask_int (int_num)
void Clear corresponding interrupt status bit after being

clear_int (expt_num)

handled to enable new interrupt generation

4.2.2.2 The external exception handler for eCos example

In listing 4.10, an external exception handler routine table “hal_interrupt_handlers” is
established. Since eCos defined an object and data associated with each interrupt handler, a
data table and an object table are established as well. The handler gets the data and object
from corresponding position in these two tables. “CYGNUM_HAL_ISR_COUNT” is the amount of
interrupt sources which in ARM DM3730 processor is 96.

Listing 4.10 External exception handler routine table

.globl hal_interrupt_handlers
hal_interrupt_handlers:

.long 0

.endr
.globl hal_interrupt_data
hal_interrupt_data:

N LA WNR

.rept CYGNUM_HAL_ISR_COUNT

16

8. .rept CYGNUM_HAL_ISR_COUNT
9. .long 0

10. .endr

11. .globl hal_interrupt_objects

12. hal_interrupt_objects:

13. .rept CYGNUM_HAL_ISR_COUNT
14. .long 0
15. .endr

The implementation of “PRECODE” is shown in listing 4.11. The function “hal_IRQ_handler”

inline 3 is resp
number to the

1. FlQ: ..

onsible to check the status register in interrupt controller and pass the interrupt
2" stage process by “v1”.

Listing 4.11 External exception handlers 1°' stage process

//disable IRQ and FIQ, save the context

2. IRQ:... //save the context

3. bl

hal_IRQ_handler

In listing 4.12, from line 1 to line 7, it is the “general exception handler” which invokes the
handler routine from table “hal_interrupt_handlers” defined in listing 4.10. Then in line 8, the
“POSTCODE” is called to finish the interrupt handling and go back to normal execution flow.

Idr
Idr
Idr
Idr
mov
mov
mov

O N A WLWN R

Listing 4.12 External exception handlers 2" stage process

rl,.hal_interrupt_data
r1,[r1,v1,Isl #2]
r2,.hal_interrupt_handlers
v3,[r2,v1,Isl #2]

r2,vé

Ir,pc

pc,v3
return_from_exception

Listing 4.13 shows the functions and macros for controlling interrupt delivery in the eCos

distribution on

BeagleBoard. Function “hal_interrupt_mask()” and function

“hal_interrupt_unmask()” are used for masking/unmasking a specific interrupt source in
interrupt controller. The other two macros, i.e. “HAL_DISABLE_INTERRUPTS (_old_)” and
“HAL_ENABLE_INTERRUPTS()” are for disabling or enabling external exception signals on CPU
side. All these functions and macros are invoked many times in the kernel and applications.

Listing 4.13 Interrupt controller operations

1. void hal_interrupt_mask(int vector){
2 intij;

3. i=vector/32;

4 j=vector%32;

17

HAL_WRITE_UINT32(INTCPS_MIR_SET(i),(1<<j));

}
void hal_interrupt_unmask(int vector){

intij;

i=vector/32;
10. Jj=vector%32;
11. HAL_WRITE_UINT32(INTCPS_MIR_CLEAR(i),(1<<j));
12. }

© %o NSO

13. #define HAL_DISABLE_INTERRUPTS(old._) \

14. asm volatile (\

15, "mrs %0,cpsr;" \

16. "mrs rd,cpsr;" \
17. "orr rd,r4,#0xC0;" \
18. "msr cpsr,r4" \
19. :"=r"(_old_) \
20. : \
21. 2 'r4" \
22.);

23. #define HAL_ENABLE_INTERRUPTS() \

24. asm volatile (\

25. "mrs r3,cpsr;" \

26. "bic r3,r3,#0xC0;" \

27. "msr cpsr,r3" \

28. - \

29. : \

30. :"r3" \

31.);

4.2.3 Timer control

Timer is usually used for the OS and applications to perform schedule and synchronization.
It receives a clock signal and by counting that signal up or down to a specific value generates an
interrupt.

4.2.3.1 General model

Timer n

Timer 2 |

Timer 1 Interrupt n

Interrupt
controller

Clock signal 1

Clock signal 2 Interrupt 2

- -

Clock signal n

Figure 4.4 The general model of multiple timers within one processor

18

Figure 4.4 shows the common structure of the timer module. Usually in one processor there
are multiple timers with the same architecture. The usage of each timer is determined by
system designer. The differences among each timer configuration are primarily interrupt
generation interval and repeatability.

Because of the identical function and architecture, we can use a set of functions to control
multiple timers. Table 4.5 lists the operations within the timer HAL, with which programmers
are able to get single or periodic interrupts. The first function in table 4.5 initializes a timer to
work with desired behavior. The parameters for the function are determined by system
demands. The next 3 functions are for run time. After being initialized, the timer doesn’t have
much control operation but just “start” and “stop”, as well as the less important “get current
value” operation. The last 4 functions are related to interrupt generation of the timer.

Table 4.5 Functions/macros of general purpose timer HAL

Functions/Macros Comments

void Initialize the “timer n”, including selecting the

init_timer (timer n, clock, period, iteration) reference signal, setting the interrupt period and
setting the number of iteration.

void Start timer n.

start_timer (timer n)

void Stop timer n.

stop_timer (timer n)

current_val Read the current counting value from the

get_val_timer (timer n) corresponding register.

void Enable the interrupt of timer n

enable_int_timer (timer n)

void Disable the interrupt of timer n.

disable_int_timer (timer n)

void The ISR of timer m. Using attaching function

ISR_timer_m (void)* provided in interrupt controller HAL to attach it
to the right place in the external exception
handler routine table.

void Clear the interrupt status bit to allow new

clear_int_timer (timer n) interrupt generation.

* m indicates that there is an individual instance for each hardware component

4.2.3.2 Timer control for eCos example

Listing 4.14 shows the timer initialization routine for BeagleBoard. This function is simplified
so that only applies to timer 10. However it implements all operations defined in function
“init_timer()” in table 4.5. After executing this function the timer 10 is in the proper status to
generate demand interrupts but not start running yet.

Listing 4.14 Timer initialization routine

void hal_clock_initialize(void){
stop_timer(timer);

int i;
HAL_READ_UINT32(0x48004A40,1);

BwN R

19

5. 1 &= ~(1<<6);

6. HAL_WRITE_UINT32(0x48004A40,i1);//select 32 khz as the input source

7. HAL_WRITE_UINT32(TIMER(10,TSICR),0);//non-posted mode

8. HAL_WRITE_UINT32(TIMER(10,TIER),2);//enable overflow int

9. HAL_WRITE_UINT32(TIMER(10,TCRR) ,0xFFFFFFEO);

10. HAL_WRITE_UINT32(TIMER(10,TLDR) ,OXFFFFFFEO) ;

11. HAL_WRITE_UINT32(TIMER(10,TTGR) ,OxFFFFFFFF);//l1oad value into counter
12. HAL_WRITE_UINT32(TIMER(10,TMAR) ,OxFFFFFFFF) ;//march value to generate an int
13. HAL_WRITE_UINT32(TIMER(10,TPIR),232000);

14 HAL_WRITE_UINT32(TIMER(10,TNIR),-768000

15. HAL_WRITE_UINT32(TIMER(10,TOCR),0);//1ms timer int

16. HAL_WRITE_UINT32(TIMER(10,TOWR),0);

17. }

Listing 4.15 is the interrupt handler of a timer. It simply makes the counting register load a
configured value from another register to resume counting and clear the interrupt flag to
enable the next interrupt.

Listing 4.15 Interrupt handler of a timer

1. void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period){

2. HAL_WRITE_UINT32(TIMER(10,TISR),7);

3. hal_interrupt_acknowledge IRQ(CYGNUM_HAL_INTERRUPT_RTC);
4 return;

5}

Listing 4.16 is the function for reading current counting value. This function is feasible only if
the device has the on-the-fly (while counting) read capability.

Listing 4.16 Reading the current counting value of the timer

1. void hal_clock_read(cyg_uint32 *pvalue){
2. HAL_READ_UINT32(TIMER(10,TCRR), *pvalue);
3.

}

4.2.4 Cache control

Cache is a small piece of memory within the processor memory system. It has very fast
speed, almost as quick as CPU. The performance of cache usually has a big impact to that of
overall system.

4.2.4.1 General model

Cache exists in almost all the embedded processors for improving system performance. It
stores a computed value or duplicates of an area in main memory. When the CPU requests data,
first of all it checks the cache. If the requested data is in cache (cache hit), the CPU will use the
data in cache directly. If the data is not in cache (cache miss), the CPU will access the main
memory which is much slower.

20

Figure 4.5 briefly illustrates the memory architecture of the Harvard architecture embedded
processors. It has separate instruction cache and data cache in level one memory.

CPU

7 L1cache ™
instruction
—
4—
L2 cache Main
(optional) memory
—
L1 cache]
data
—

Figure 4.5 Memory hierarchy

For achieving best performance, cache is mostly operated by hardware. But under certain
circumstance, software controlled cache maintenance is necessary, for instance, when another
bus master instead of cores writes the memory. In general, when a coherency problem is
potential, programmers need to invalidate or synchronize the cache lines. The common cache

operations are listed in table 4.6.

Table 4.6 Functions/macros of cache control HAL

Function/Macro Comments
void Initialize both data and instruction cache. Set configurable
init_cache (void) parameters.

ENABLE_ICACHE

Enable instruction cache.

ENABLE_DCACHE

Enable data cache.

DISABLE_ICACHE

Disable instruction cache.

DISABLE_DCACHE

Disable data cache.

FLUSH_ICACHE

Invalid instruction cache.

FLUSH_DCACHE

Invalid data cache.

SYN_ICACHE

Synchronize instruction cache and main memory.

SYN_DCACHE

Synchronize data cache and main memory.

4.2.4.2 Cache control for eCos example

Listing 4.17 is the code for enabling L1 instruction cache in ARM architecture. The L1 cache
is controlled by CP15 coprocessor in ARM architecture.

21

Listing 4.17 Enabling instruction cache

#define HAL_ICACHE_ENABLE() \
asm volatile (\
"mrc p15,0,r1,c1,c0,0;"
"orr r1,r1,#0x1000;"
"orr r1,r1,#0x0003;"
"mcr p15,0,r1,c1,c0,0"

Lo NSILULAWNR
—_— — -

. ”rl " \
)

[
IS

Listing 4.18 is a macro for disabling instruction cache. The operation is also performed via
writing several specific registers within CP15. Before disabling the instruction cache, a
synchronization operation is necessary for avoiding coherency issues. The instructions on line
11 and 12, i.e. “nop”, are for the synchronization purpose. In newest ARM CORTEX A series
processor, this method is not valid because of the out-of-order execution mechanism. The data
and instruction barrier instructions can resolve this problem.

Listing 4.18 Disabling instruction cache

1. #define HAL_ICACHE_DISABLE() \
2. CYG_MACRO_START \
3 asm volatile (

4. "mrc p15,0,r1,c1,c0,0;" \
5. "bic r1,r1,#0x1000;" \
6 "mcr p15,0,r1,c1,c0,0;" \
7 "mov r1,#0;" \
8 "mecr p15,0,r1,c7,c5,0;" \
9. "mcr pi15,0,r1,c7,c5,6;" \

10. "mcr pi15,0,r1,c8,c5,0;" \

11 "nop;" \

12. "nop;" \
13. ; \

14. : \

15. 1" \

16.);

The data cache synchronization code is shown in listing 4.19. Since the new ARM
architecture only supports synchronization on an individual line each time, we have to go
through all the lines to synchronize the entire data cache.

Listing 4.19 Data cache synchronization

1. #define HAL_DCACHE_SYNC() \
2. for(level=1;level>0;level--) \
3. for(way=3;way>=0;,way--) \
4, for(set=127;set>=0;set--) \

22

5. {setway=(level << 1) | (set << 6) | (way << 30); \
6. asm volatile (" mcr p15, 0, %0, c7, c14, 2;": : "r" (setway)); }

4.2.6 Memory management unit

Since the eCos doesn’t support virtual memory, we are not able to verify the HAL for
memory management feature recently. So this part of work is left to the future when we
implement our HAL under a “rich” operating system which supports virtual memory.

4.2.7 Direct memory access (DMA)

Direct memory access is a feature that certain hardware can access memory independently
of core. It is usually implemented by a dedicated hardware component called “DMA controller”.
With DMA, the core is released for other important work during the slow data transfer.
Otherwise the core would be fully occupied by read and write instructions. DMA controller is
widely found in modern embedded processors for efficient data transfer.

4.2.7.1 General model

DMA controller performs data transfer between memories or memory and peripheral. A
DMA controller usually has several channels. Each channel can be configured to perform a
specific data transfer task. The architecture of DMA controller is illustrated in figure 4.6.

Multichannel DMA controller
£ Channel n s
3
c
S
> Channel 3 » 9 Interrupt 1 ‘
2 Interrupt2 |
> Channel 2 > =
> Channel 1 P Interrupt n _
memory peripherals

Figure 4.6 The architecture of DMA controller

23

Before using any channel for data transfer, an overall initialization process should be
implemented, in which a bunch of global parameters are set, for instance, the biggest burst
transfer size. These parameters are common for all channels and usually not change during
execution. After that, each channel can be configured for specific use, such as transferring data
from Ethernet receiving buffer to memory which is classified as peripheral to memory transfer.
Other transfer types are memory to memory and memory to peripheral. For implementing a
transfer, several control parameters, such as element width, source/destination address,
triggering source, etc, should be configured, as well as the interrupt service routines (ISRs). The
functions for implementing DMA data transfer are shown in table 4.7.

Table 4.7 Functions/macros of DMA controller HAL

Function/Macro Comments

void Set common configurations for all channels,
init_global_parameters (void) such as power saving strategy.

void Set the source and destination type of the
set_type (channel ,type) “channel”, e.g. memory to peripheral, etc.
void Set the width of transferring element of
set_element_width (channel , width) “channel” to 8, 16, 32 or 64 bits.

void Set the source starting address of the
set_source_addr (channel, addr) “channel”.

void Set the destination starting address of
set_destination_addr (channel, addr) “channel”.

void Interrupt service routine for channel “m”.
ISR_m (void)*

void Enable the “channel” to generate an
enable_int (channel,event) interrupt when “event” occurs.

void Prevent the “channel” from generating an
disable_int (channel,event) interrupt when “event” occurs.

*m indicates that there is an individual instance for each channel

4.2.7.2 Direct memory access control for eCos example

Listing 4.20 is a function which set the element width for DMA channel on TI DM3730
processor. The DMA within this chip supports 8, 16 or 32 bits element transfer. Furthermore
each channel can have different element width.

Listing 4.20 Transferring element width configuration

void SDMA_set_element_width(unsigned int channel,unsigned int width){
switch(width){
case 8:
clear_bit(DMA4_CSDP(channel),0);
clear_bit(DMA4_CSDP(channel),1);
break;
case 16:
set_bit(DMA4_CSDP(channel),0);
clear_bit(DMA4_CSDP(channel),1);
0. break;
11. case 32:

RO N LA WN R

24

12. clear_bit(DMA4_CSDP(channel),0);

13. set_bit(DMA4_CSDP(channel),1);
14. break;

15. }

16. }

Listing 4.21 shows two functions which set the source and destination address of a channel.
Any one of them can be a memory address or a peripheral buffer register address.

Listing 4.21 Source and destination starting address configuration

void SDMA_set_src_addr(unsigned int channel, void* src_addr){
write_reg(DMA4_CSSA(channel),(unsigned int)src_addr);

}

void SDMA_set_dst_addr(unsigned int channel, void *dst_addr){
write_reg(DMA4_CDSA(channel),(unsigned int)dst_addr);

LA WLWNR

}

4.3 Peripheral-related features

In modern embedded systems most peripheral I/O devices are integrated into the
microcontroller and mapped into the physical address space. The operation of reading data
from or writing data to these devices is as same as reading and writing memory. In general,
there are four kinds of registers of 1/0 devices: control register, status register, input register
and output register. CPU communicates with the 1/0 devices by reading or writing these
registers, as shown in Figure 4.7.

Control register

Status register

Peripheral Bus

Input register

Output register

Figure 4.7 Registers of I/O devices

The components within a microcontroller differ in different application areas. For
example, CAN module is mostly found in the automotive/industrial microcontroller, while the
Ethernet module is common in consumer electronics. But generally the drivers of these devices
could be separated into two parts: hardware-independent layer and hardware-dependent
layer. The hardware-dependent layer, which is hardware abstraction layer, controls the device

25

directly by reading and writing the registers and provides APIs to upper part, as shown in Figure
4.8.

Device driver

Hardware

Figure 4.8 Architecture of device drivers

The HAL of device driver can be split into two parts. One takes care of communication with
CPU, defined as internal interface in this section, while the other takes care of communication
with other systems, defined as external interface. The external interface is an implementation
of a protocol, for instance, UART module implements UART protocol, memory card module
implements MMC or SD protocol. Before using the device, the protocol defined parameters
should be configured, such as data bits in UART protocol and MAC address in Ethernet protocol.

Since the parameters of different protocols are of significant difference, we consider an
UART module which implements standard UART protocol as an example. For communicating
with another system which has UART as well, the baud rate, data bits, parity, and stop bits
should be as same as that system. The table 4.8 shows the configuration functions for
communicating between systems with UART protocol.

26

Table 4.8 An example of protocol-defined parameters configuration HAL: UART protocol parameter
configuration functions

Protocol parameter Configuration function Comment

baud rate void Set the baud rate of UART module
set_baudrate (baudrate) transmitting/receiving.

data bits void Set the length of data in one frame,
set_databits (length) typical number is 7 or 8.

parity void Choose from odd, even or none parity.
set_parity (type)

stop bits void Set the length of stop session, typical
set_stopbits (length) numberis 1, 1.5 or 2.

flow control void Choose from hardware, software or
set_flowcontrol (type) none flow control.

Besides these protocol parameter configuration functions, a few other functions are
necessary to make the device work. Some of the I/O devices are able to support several
protocols, for instance, universal asynchronous receiver/transmitter (UART), infrared data
association (IrDA) and consumer infrared (CIR) can be integrated into one hardware module,
multimedia card (MMC) and secure digital (SD) card interfaces are always integrated into one
module as well. Thus, for a multifunction device, a mode selection function is needed. Then, the
interrupt enable/disable functions which control the interrupts raised by protocol specified
events, such as parity error interrupt, are provided, as well as the interrupt service routine (ISR)
for these events. The configuration functions are listed in table 4.9.

Table 4.9 An example of hardware module configuration

Functions/Macros Comments

void Set the multifunction device to the right mode.
mode_selection (mode)

void Enable the xxx event interrupt. xxx event is
enable_int (interrupt event) defined in protocol.

void Disable the “event interrupt”. xxx event is defined
disable_int (interrupt event) in protocol.

void Interrupt service routine for protocol specified
ISR_events (void) events

The internal interface is similar among all devices. The width of input/output register differs
between chips and components. We define the data that can be written into output register or
read from input register at one time as a transfer unit. If an 10 device transfers one unit at a
time, it is defined as a word-transfer device. If multiple units are transferred at a time, itis a
block-transfer device. Some devices are able to work in either of the two modes. Then we
consider the device has the type as its current working mode, e.g. if the device is configured to
transfer one unit after another, it is a word-transfer device, otherwise it is a block-transfer
device. Programmers have the choice to provide the code supporting either or both modes.

27

Usually, there are three different methods for reading/writing the input/output register,
e.g. polling, interrupt and DMA. So, theoretically, there are 6 HAL models, e.g. polling word
transfer, interrupt word transfer, DMA word transfer, polling block transfer, interrupt block
transfer and DMA block transfer. However, interrupt word transfer, DMA word transfer and
polling block transfer model are not feasible. Thus we only talk about the other three feasible
models. In each section below, we assume that the transferring model is supported by

hardware.

4.3.1 Polling word transfer

In polling word transfer model, software checks the status of read/write buffer before
accessing the device. If the buffer is available, software reads one word from or writes one
word to the corresponding register. Then it checks the status again if this is a multiple word
transfer. Table 4.10 lists a set of functions for polling transfer. First of all, the hardware module
has to be configured as working in this mode, which is done by function “set_model_PW”.
When using the 1/0O device, the program checks the status of device buffer by function
“check_receive_reg” and “check_transmit_reg” respectively then reads or writes the device by

the rest two functions when it is available.

Table 4.10 Functions/macros for polling word transfer

Functions/Mcros

Comments

void Set the device working on polling word transfer
set_model_PW (void) model.

status Check the status of receiving register to see if
check_receive_reg (void) there is data in buffer waiting for being read.
status Check the status of transmitting register to see if
check_transmit_reg (void) the buffer is available.

value Read one word from receiving buffer.

read_word (void)

void Write one word to transmitting buffer.

write_word (value)

Listing 4.22 shows two functions for writing or reading data to or from the UART module
buffer. In line 3 and line8, program continues checking the status of buffer until it becomes
available then performs the reading or writing operation.

Listing 4.22 Data transmitting/receiving functions for UART module on BeagleBoard

void output_char(char c)

{
while ((read_serial(LSR) & 0x20) ==0) ;
write_serial(THR, c);

}

Int receive_char(void)

{
while ((read_serial(LSR) & 0x01) == 0) ;
return(read_serial(RHR));

© 0O NSIULAWNR

28

10. }

4.3.2 Interrupt block transfer

In interrupt block transfer model, the read/write operations are triggered by interrupt and
handled in ISR. For improving efficiency, an output queue and an input queue are established in
memory. Applications only access output queue and input queue. ISR is responsible for
transferring data between transmitting/receiving register and output/input queue. The
protocol specified events interrupt service routines are included if available. The functions for
supporting interrupt block transfer are shown in table 4.11.

Table 4.11 Functions/macros for interrupt block transfer

Functions/Macros

Comments

void Set the device working on interrupt block transfer

set_model_IB (void) model.

void Enable device to generate an interrupt when

enable_int (void) receiving or transmitting buffer is available.

void Disable the device from generating any interrupt.

disable_int (void)

void In ISR, program checks the interrupt source. Then

ISR (void) It writes all elements in output queue to
transmitting buffer or reads the data from
receiving buffer and writes to input queue
according to the interrupt source.

value Get a word from the head of input queue. It is

read_from_queue (void) called in ISR.

void Write a word to the rear of output queue. It is

write_to_queue (value) called in ISR.

void Write data into output queue then enable the

transmit (data) transmit interrupts to accomplish transmitting.

data Read data from the input queue.

receive (void)

status Check the status of receiving register to see if

check_receive_reg (void) there is data in buffer waiting for being read.

status Check the status of transmitting register to see if

check_transmit_reg (void)

the buffer is available.

Listing 4.23 is an interrupt service routine for UART interrupt mode transfer. It reads data
from receiving buffer and writes them into a memory buffer.

Listing 4.23 Interrupt service routine for UART module on BeagleBoard

Void cyg_hal_plf_serial_isr (void){
while((read_serial(LSR)&1)!=0){

Rx_buf _head++;

1
2.
3. (*Rx_buf_head)=(unsigned char)(read_serial(RHR)&O0xFF);
4
5

if(Rx_buf_head==&(Rx_buffer[200]))

29

Rx_buf_head=&(Rx_buffer[0]);}
hal_interrupt_acknowledge_IRQ(CYGNUM_HAL_INTERRUPT_UART3);
return;

© % N

4.3.3 DMA block transfer

In DMA block transfer, program initiates a DMA channel before transfer. Then the DMA
controller will take charge of scheduling transfers. The CPU is released to execute other
programs so that an amount of CPU cycles are saved from transferring data. Table 4.12 lists the
functions for supporting DMA block transfer, which invoke DMA HAL to set up a DMA transfer.

Table 4.12 Functions/macros for DMA block transfer

Functions/Macros Comments

void Set the device working in DMA block transfer

set_model_DMAB (void) mode.

void Initialize a DMA channel for transmitting. This

set_transmit_channel (channel, type, sync, function invokes configuration functions in DMA

source, destination, length, width) HAL. “sync” means the hardware synchronizing
source.

void The ISR here deals with some unexpected

ISR (void) situation such as buffer overflow but not regular
read/write operations.

void Enable the interrupt of channel “channel_num”

enable_int (channel, event) and attach “ISR”.

void Disable the interrupt of channel “channel_num”.

disable_int (channel, event)

void Start the transmitting by starting initialized

start_trans (channel) “channel” and the peripheral.

Listing 4.24 is an example of initializing a DMA channel on TI DM3730 processor. It
eliminates some special feature provided by this device but implements a common DMA
transfer.

Listing 4.24 Initializing a DMA channel

1. void SDMA_init_channel(unsigned int channel, DMA4_trans_type type, unsigned int sync,

2 void *src_addr,void *dst_addr,unsigned int length,unsigned int width){
3 int i;

4 write_reg(DMA4_CLNK_CTRL(channel),0);//disable linking

5. SDMA_disable_int(channel, type,DMA4_ALL);

6. write_reg(DMA4_CSDP(channel),0x14000);

7 write_reg(DMA4_CEN(channel),64);//64 elements in a frame

8 write_reg(DMA4_CFN(channel),length/64),//number of frames in a block

9

1

switch(type){
0. case MtoM:
11. write_reg(DMA4_CCR(channel),0x1045000);
12. case MtoP:
13. write_reg(DMA4_CCR(channel),0x801020),//frame sync

30

14. case PtoM:

15. write_reg(DMA4_CCR(channel),0x1045000);

16. }

17. if(sync!=0){

18. for(i=0;i<=6;i++){

19. if((sync&(1<<i))==0)

20. if(i<=4)

21. clear_bit(DMA4_CCR(channel),i);
22. else

23. clear_bit(DMA4_CCR(channel),i+14);
24. else

25. if(i<=4)

26. set_bit(DMA4_CCR(channel),i);
27. else

28. set_bit(DMA4_CCR(channel),i+14);
29. }

30. }

31. SDMA_set_element_width(channel,width);

32. SDMA_set_src_addr(channel,src_addr);

33. SDMA_set_dst_addr(channel,dst_addr);

34. SDMA _enable_int(channel,type, DMA4_EOB);

35. }

31

5. Case Study of a MP3 Player on BeagleBoard

This section presents the experiment to verifying the architecture proposed above. We
implement a mp3 player case which is based on BeagleBoard (7) and eCos (6) embedded
operating system. The system configuration is shown in figure 5.1.

BeagleBoard

MPU

running

PC
s Tl
(]
[}
:)
: Thread 2 is MP3 file
= waiting CODEC
S when
H "i- thread 1 is
:
[}
L}
()
[}
.
L

Sampling
....... Data
Buffer

Z peaiyL

Figure 5.1 The system configuration of MP3 player experiment

5.1 Hardware configuration

Figure 5.1b depicts the hardware configuration. This experiment involves three serial
communication ports and components within CPU. UART is used for console channel which
receives command from and sends debug information to PC. 12C is the control channel for
codec through which we can configure the audio chip. MCBSP is the audio data channel which
is responsible for transmitting the sampling data to codec chip.

5.2 Software configuration

Figure 5.1a depicts the application software which contains two threads. Thread 1 decodes
the MP3 file while thread 2 transmits the sampling data to audio chip through MCBSP channel.
Both threads are created at the beginning of the execution when thread 1 has the higher

32

priority. Since we didn’t implement the storage device driver as well as the file system, the MP3
file is hard coded into the program. So the thread 1 just reads MP3 file from memory then
writes the decoded sampling data back to memory which keeps the experiment
straightforward. After thread 1 finished its job it suspends itself so that eCos scheduler is
triggered which activates thread 2. Thread 2 invokes the interface defined in 12C and MCBSP
HAL to control the audio chip.

5.3 Implementation

We carry out our experiment in the way that first write the HAL for the BeagleBoard and the
application on eCos independently, and then make necessary changes in eCos kernel to make it
work with our HAL. Thanks to eCos’ well-designed architecture, it is relatively straightforward
to adapt its interface to our HAL. The entire work contains about 2500 lines of code (LOC), most
of which are hardware dependent.

For example, in eCos, the scheduler call the function “hal_thread_switch_context ()" for
switching the hardware context. In our HAL, we defined a function “switch_context()” which is
shown in section 3. So by making the former function call the latter one, context switch is
implemented without any modification.

Another example is the console communication in eCos. The eCos uses a mechanism called
virtual vectors to control and utilize the communication channels. Essentially the virtual vectors
are pointers to service functions and data. The eCos uses an array of 64 pointers to store these
vectors, which is called virtual vector table (VVT). The default configuration of VVT is shown in
figure 5.2.

33

Virtual vector 63

Cyg_hal_gdb_interrupt ‘ Virtual vector 35

Flash_config_op

‘ Virtual vector 18

Unused (set seria
baudrate

Debug comm ‘ Virtual vector 12

Unused (board data)

Flush_icache

Set_debug_comm

Kill_by_reset

‘ Virtual vector 5

Hal_vsr_table

VVT version ‘ Virtual vector 0 ‘

Figure 5.2 The default configuration of virtual vector table (VVT)

From figure 5.2 we can see that there are two virtual vectors are associated with the
console communication, e.g. virtual vector 5 and virtual vector 13. Virtual vector 5 points to a
function which associates a group of services supporting console communication to virtual
vector 13. By default console channel uses the address stored in virtual vector 13 to get the

34

service routines for communicating with PC. Furthermore, the eCos uses a structure called
communication interface table (CIT) to model each communication channel. The CIT is
essentially an array which contains 7 pointers pointing to the service functions or data
associated with a specific communication channel. Figure 5.3 illustrates the structure of the CIT
associated with the UART which is used for console channel in our system.

Virtual vector
table

Pointer to the communication controller
base address. All procedures In the
table use this base address as their
first argument.

&Innovator_ser_channel[0]

Send a buffer to a device.

Cyg_hal_plf_serial_read Get a buffer from a device.

Write a character to a device.

Cyg_hal_plf_serial_getc Read a character from a device.

Device settings control.

. . ISR used to handle receive interrupts
Cyg_hal_plf_serial_isr from the device.

Read a character from the device with a
timeout.

Figure 5.3 Communication interface table (CIT) of UART

For the UART channel on our BeagleBoard, first we implement the functions defined in
table 4.8 which are protocol-specific configurations and operations. Then the functions listed in

35

table 4.9 and 4.12 are implemented as well. So far the control functions we have are listed in
table 5.1.

Table 5.1 Functions of UART HAL for BeagleBoard

Number Function

1 void set_baudrate (baudrate)

2 void set_databits (length)

3 void set_parity (type)

4 void set_stopbits (length)

5 void set_flowcontrol (type)

6 void mode_selection (mode)

7 void enable_int (interrupt event)
8 void disable_int (interrupt event)
9 void ISR_events (void)

10 void set_model_IB (void)

11 void enable_int (void)

12 void disable_int (void)

13 void ISR (void)

14 value read_from_queue (void)

15 void write_to_queue (value)

16 void transmit (void)

17 void receive (void)

18 status check_receive_reg (void)

19 status check_transmit_reg (void)

Now comparing figure 5.3 and table 5.1, all the system calls listed in figure 5.3 can be
composed by the functions listed in table 5.1. The pointer “&Innovator_ser_channel[0]” can be
ignored without any impact to the system. With function 1-8 and 10-12 in table 5.1 we can
compose the system call “cyg_hal_plf serial_control()” which configures the UART to the
desired mode. Similarly we use function 9 and 13 to compose “cyg_hal_plf_serial_isr”, use
function 14 to compose “cyg_hal_plf_serial_getc”, etc.

5.4 Issues encountered and solutions

During the experiment, we met some new techniques (to us) and some small tricks which
cost us a little time to cope with. These are summarized in below subsections.

5.4.1 Remote debugging with GDB remote serial protocol

As this MP3 player is built on bare metal platform, e.g. no OS is available, it is a good choice
to use remote debugging method. A GDB stub is already included in the Redboot which is a
boot loader associated with eCos. What we need to do is modifying the hardware dependent
code of the GDB stub to make it work on the BeagleBoard. Then we are able to debug the OS or
application which is cross compiled on host PC for target hardware.

36

Figure 5.4 shows the concept of GDB serial protocol based remote debugging. In this
scenario, most of the debugging functions are still provided by GDB debugger running on the
host machine which is also called GDB host. The GDB stub runs on the target and
communicates with the GDB host via the serial port.

Host Target

Figure 5.4 Remote debugging via GDB

The GDB stub basically consists of exception handlers and support for these handlers. In our
system, there are two exception handlers: the handler for break point instruction and the
handler for “Ctrl+c” message. The former communicates to GDB host whenever meeting a
breakpoint instruction. The latter is essentially an interrupt handler for serial communication
which directs the program to GDB stub when detecting a “Ctrl+c” message.

The communication between GDB host and GDB stub is subject to GDB remote serial
protocol (RSP), which is an ASCii message based protocol (8). The basic format of a RSP package
is shown in figure 5.5.

N
Package data Checksum

Figure 5.5 RSP package format (8)

Each RSP packet starts with a “S” following by the data area. The binary data is represented
as two hexadecimal digits per byte of data. The “#” split the data and the checksum which is the
unsigned sum of all the characters in the packet data modulo 256. For any package an

37

acknowledgement is required when a single character “+” represents successful receipt while a
“-" stands for a failure and retransmitting.

In our case, the Redboot is loaded into memory and executed at the first place. When it gets
a “S” which means a GDB RSP package is coming, the Redboot creates a new thread of GDB
stub and pass the control to it by context switch. The GDB stub takes the full control of the
system until it gets a “quit” command. Then the control is passed back to Redboot.

Using the GDB remote debugging is quite similar as using common GDB debugger. A graphic
interface frontier is also available for remote debugging, such as insight and eclipse, which can
significantly improve debugging efficiency.

5.4.2 Codec chip configuration and debugging

The audio output of the BeagleBoard is driven by an independent chip which is called
“TPS65950”. The “TPS65950” is a multifunction device. But we only use its power supple and
audio components in our experiment. The chip connects with the processor by several serial
communication interfaces. Then the configuration and debugging of that chip is a little tricky. It
uses an I12C interface as the control interface, which means all the read/write operations
towards its registers are based on 12C protocol. The HAL of I12C component of the processor is
implemented beforehand and won’t be discussed in this section. The music sampling data is
transmitted through the MCBSP interface.

The first thing we must notice is that the “TPS65950” doesn’t have buffer on audio receiving
channel. This means we should configure the transmission speed as same as the sampling
frequency, which in our system is 44.1k sampling data per second. The unmatched speed would
damage the data.

The MCBSP module of the processor supports several data format transmitting. In our
system we choose 12S protocol format, which is shown in figure 5.5 (9). The data is transmitted
with MSB first and the length can be 16, 24, or 32 bits with or without padding. One thing
should be noticed is that if transmitting less than 32 bits length data, the data have to be put in
the least significant bits within a 32-bits word.

i 1 bitjshift oo Ly Co 1 bitshift, o + 1 bityshift |

o T T N A P e A o
Frame-sync : : : ! : : : ! | : ! : ! : : ! ! ; :
:paddmgl Msmg! ﬂ 1 ;:msnj .EZZ

\MsB H H LSB | H H imsB ‘L8 : | MSE :

L‘ H ! ! ! H H H - H -
Left phase Right phase

Figure 5.5 12S protocol data format (9)
38

Another thing that should be paid attention to is the endianness, since we don’t know the
system configuration when the MP3 was encoded.

Debugging audio chip is a little tricky because it is hard to know the status inside the
external chip. Within the audio component of “TPS65950” there are two signal loops which can
be utilized for debugging. Figure 5.6 shows the architecture of audio module (9). The green, red,
and blue lines represent three signal paths respectively, while the black line represents the
shared path. The green path is the analog loop which sends the analog signal coming from
audio-in jack directly to headset jack. The red path is the digital loop which sends the sampled
data back to output channel. The blue path sends the received data to output channel.

v ® | Com RL pesstie to prediver Diiver Douipuss |

Anfsgminiyg L em e | |-.
5|

id
- = - el T
M S
; H N —H

Twn outgmd s i) |
Fan be R by wn - il II .

oz
i
i

\
E

At g RIPGA vt |-
§ Ty "

rida
I
]
'

At AT I A e 3 1

LB

LT’

"

[l

#
M
Ll

3_r_j.
:

At

AL + A (T T 1
T |G

et == b e e e e A
I:I o e LA
- | —
Sl] - |
TR 04 M chat b —_—
oo Mimds ._‘_ It sepE \J__k;

\‘q H S|

Figure 5.6 The architecture of audio device (9)

The major work of configuring the audio output is setting up the right data path and the
proper gain. For narrowing the potential error in as small scope as possible, we implement the
analog loop first, then the digital loop, and the “real” data path at last. A music signal is
connected to audio-in channel. In each step, a part of the register set need to be configured
correctly to get the music output.

After getting the digital loop work, we just simply turn off the loop back channel so that a
working music channel is established.

5.5 Results

We use 9 mp3 files to test the “mp3 player”. Each one has a different parameter set which
is shown in table 5.2 and table 5.3.

First, we turned off the compiler optimization feature by adding “-02” option to command
line. The results are shown in table 5.2. For most situations, the decoding time is much longer
than playing time, which means we can’t execute decoding and playing concurrently.

Table 5.2 The performance without compiler optimization

file name | 4432 4464 4496 2232 2264 2296 1132 1164 1196
channel stereo | stereo | stereo stereo | stereo | stereo stereo stereo | stereo
size (KB) 50.3 92.7 135 45 87.2 129.5 44.7 86.6 86.6
sampling 44.1 44.1 44.1 22.05 22.05 22.05 11.025 11.025 | 11.025
frequency

(kHz)

bit rate 32000 | 64000 | 96000 32000 | 64000 | 96000 32000 64000 | 96000
decoded 4428 4080 3972 1984 1924 1904 984 948 948
file size

(KB)

decoding | 33.365 | 35.344 | 38.578 17.485 | 21.099 | 21.697 10.738 11.361 | 11.361
time (s)

playing 12.863 | 11.843 | 11.530 11.540 | 11.173 | 11.069 11.462 11.043 | 11.043
time (s)

ratio 259% | 298% | 335% 152% 189% 196% 94% 103% 103%

40

For the second experiment, we turn on the level 2 compiler optimization by adding “-02”
option to command line. The result is shown in table 5.3.

Table 5.3 The performance with compiler optimization level 2 (02)

file name | 4432 4464 4496 2232 2264 2296 1132 1164 1196
channel stereo | stereo | stereo stereo | stereo | stereo stereo stereo | stereo
size (KB) 50.3 92.7 135 45 87.2 129.5 44.7 86.6 86.6
sampling 44.1 44.1 44.1 22.05 22.05 22.05 11.025 11.025 | 11.025
frequency

(kHz)

bit rate 32000 | 64000 | 96000 32000 | 64000 | 96000 32000 64000 | 96000
decoded 4428 4080 3972 1984 1924 1904 984 948 948
file size

(KB)

decoding 22.106 | 22.284 | 22.436 11.514 | 11.624 | 11.839 5.852 6.05 6.05
time (s)

playing 12.863 | 11.843 | 11.530 11.540 | 11.173 | 11.069 11.462 11.043 | 11.043
time (s)

ratio 172% 188% 195% 99% 104% 107% 51% 55% 55%

Comparing table 5.2 and table 5.3, we can see that the decoding performance has been
improved significantly by turning on compiler optimization feature. For each individual mp3 file,
the decoding time decreases 30%-50% respectively. But in table 5.3, we still can find part of the
files have longer decoding time than playing time, especially the files with 44.1k sampling rate.
This is because our system is lack of hardware accelerator support, i.e. floating point
accelerator or NEON. Further experiment will be carried out after hardware support is added
into our system.

6 Conclusions

A well-defined HAL can effectively split the embedded software development into hardware
dependent code design and hardware independent code design. Then the two developing
phases can be done in parallel by which the pre-market time is reduced. The reliability of the
system is also improved because of the possibility of formal verification and reuse of the
application code and the operating system kernel. The experiment shows that the interface
defined in our HAL architecture is capable to support a real time operating system with slight
modification of OS kernel. We can conclude that our HAL architecture is capable to supporting a
real time operating system. But considering the complexity of a rich feature operating system
such as Linux, the modification of OS kernel for adapting to our HAL might be still “too much”,
which may be solved by adding more features to the HAL architecture.

41

7 Future Work

So far, we have implemented our unified HAL in the eCos. However the eCos does not
support virtual memory which limits its functionality. The next step of this project is building
the HAL for MMU. Then we would port a full-featured OS such as Linux on the BeagleBoard
with the UHAL.

8 Acknowledgement

The authors would like to acknowledge the Texas Instruments University Program for the
donation of the BeagleBoard hardware for this project. The authors thank the Tl University
Program for the valuable support.

42

Bibliography

1. Wolfgang Ecker, Wolfgang Mueller, Rainer Doemer. Hardware-dependent Software:
Principles and Practice. s.l. : Springer, 2009. ISBN 978-1-4020-9435-4.

2. Introduction to Hardware Abstraction Layers for SoC. Sungjoo Yoo, Ahmed A. Jerraya.
Munich, Germany : In Proceedings of DATE 2003, 2003. pp. pp 336-337.

3. MPC8572E PowerQUICC™ Il Integrated Host Processor Family Reference Manual.
[Online] http://cache.freescale.com/files/32bit/doc/ref_manual/MPC8572ERM.pdf?fpsp=1.

4. AM/DM37x Multimedia Device Technical Reference Manual. [Online]
http://www.ti.com/lit/ug/sprugn4q/sprugndq.pdf.

5.SH7214 Group, SH7216 Group User’s Manual: Hardware. [Online]
http://am.renesas.com/products/mpumcu/superh/sh7216/sh7216/Documentation.jsp.

6. eCos Home. [Online] http://ecos.sourceware.org/.
7. BeagleBoard.org. [Online] http://beagleboard.org/.

8. Embedding with GNU: the gdb Remote Serial Protocol. Gatliff, Bill. 12, s.I. : Embedded
Systems Programming, 1999, Embedded Systems Programming, Vol. 12, pp. 108-113.

9. TPS65950 OMAP Power Management and System Companion Device Technical
Reference Manual. www.Tl.com. [Online] http://www.ti.com/lit/ug/swcu050g/swcu050g.pdf.

43

