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Abstract— Data transfer in ad hoc environments shows poor
network performance due to frequent link breakages and route
failures. Selfish and malicious nodes may further deteriorate
nodes communication, having a strong impact on transport
layer protocols such as TCP, which are highly sensitive to
packet losses. Although these misbehaviors have similar effects
on the network functioning (i.e. packets are dropped), they are
separately addressed by the research community.

This paper provides a comprehensive method to improve the
performance and reliability (performability) of nodes commu-
nication in presence of faults, selfish and malicious behavior.
Specifically, we propose and evaluate a novel forwarding policy
that is based on multi-path routing and considers nodes reliability
and routes length in forwarding decisions. We investigate through
simulations how this mechanism improves the performability of
TCP data transfers. In particular, we show that the simultaneous
use of multiple paths yields higher throughput and continuous
network connectivity when compared to single path forwarding.
This has been verified in case of both fault conditions and
intentional nodes misbehavior.

I. INTRODUCTION

Mobile ad hoc networking represents a new fron-
tier for wireless communications. Its intrinsic extensibility,
auto-configuration, ease of maintenance, and infrastructure-
independence capabilities make it a prime candidate for be-
coming the stalwart technology for the future information
society. An essential factor in the deployment of this powerful
networking technology is the performability of nodes com-
munication, which may be affected by two important aspects,
typical of such environment. On the one hand, the wireless
nature of ad hoc nodes exposes the network to temporary
fault conditions, such as congestion, route breakages and
link failures, that may severely degrade data transfer among
nodes. On the other hand, the necessity of distributing basic
network functions, such as routing and forwarding, to all
participating nodes, combined with energy constraint issues,
poses tough challenges from a cooperation point of view.
Selfish and/or malicious nodes may misbehave by not adhering
to the cooperative paradigm, causing poor performance and
low reliability on nodes communication. In the worst case
scenario, the network may become partitioned.

Currently, different research areas deal with the complexity
typical of ad hoc scenarios. Network faults caused by uncon-
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trollable events are generally addressed at the TCP level, with
specific protocol enhancements [1][2][3]. Intentional misbe-
havior characterized by malice are targeted by the security
area [4], while selfishness is the main subject of cooper-
ation enforcing mechanisms [5][6]. Each proposed solution
copes well with the target issue. However, the different kinds
of misbehavior affect the network functioning in a similar
way, producing the same effects (i.e. packet dropping) and
yielding degradation of network performance and reliability.
Furthermore, in some cases they may interfere with each
other. For example, the solution of a cooperation problem can
be the cause of a congestion event, since the avoidance of
misbehaving nodes in packet delivery can lead to overloading
well-behaving nodes.

This paper copes with performability issues of nodes com-
munication, independently from the causes behind service
degradation. For the concept of performability we point at
the definition given in [7], where performance refers to how
effectively (i.e. throughput), or efficiently (i.e. resource uti-
lization) a system delivers a specified service, presuming it
is delivered correctly. On the other hand, reliability reflects
the dependability (i.e. continuity) of service delivery. We aim
at optimizing both performance and reliability measures by
improving

• the throughput of data transfer (i.e. service effectiveness)
through a lightweight mechanism (i.e. system efficiency);

• the quality of data transfer, so as to provide continuous
network connectivity (i.e. service dependability).

To this end, we adopt a simple forwarding scheme, based on
multi-path routing, which estimates neighbors’ reliability and
forwards traffic on most reliable routes. The basic mechanism,
called REEF (REliable and Efficient Forwarding) [8], is com-
posed by a reliability estimator and a forwarding policy. Every
node keeps a reliability index for each neighbor. This measure
is affected by all paths rooted at the pointed neighbor and is
updated every time the node sends a packet through it. The
updating is positive whenever the packet delivery is successful,
negative otherwise. In order to understand whether packets get
delivered, we use end-to-end acknowledgments. If data packets
are sent relying on the UDP protocol, REEF requires the
introduction of a notification system that entails the destination
node to send acknowledgments. In case data transfer relies on
the TCP protocol (as considered in this paper), REEF uses
TCP ACKs as delivery notifications. Although REEF works
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at the network level, it can efficiently retrieve transport layer
acknowledgments through a cross-layer interaction with the
transport agent. Specifically, REEF is supported by the cross-
layer architecture described in [9][10], which allows protocols
to exchange information beyond that provided by standard
interfaces, and maintaining a clean architectural modularity.
After sending a packet, the sender node waits for an ack
from the destination node, and then updates the neighbor’s
reliability. With a set of routes at hand, REEF can select
the best route to forward a packet, according to reliability
estimates, which reflect the behavior so far observed.

This mechanism has shown significant improvement on
network throughput when a simplified transport protocol with
acknowledgment is used [8]. However, the impact on transport
protocols with congestion control mechanisms, such as TCP,
has not been investigated. This is an important aspect because
multi-path routing is not always convenient in the ad hoc
environment. As studied in [3], and also confirmed in this
paper, the plain use of multiple routes may degrade the TCP
performance. This is due to intrinsic mechanisms of the TCP
protocol. When a TCP sender does not get acknowledgment of
sent packets, it reduces the congestion window, causing the re-
transmission timeout to progressively enlarge, leading to high
restart latency and very poor efficiency. Another problem is
that the round trip time estimation is not accurate under multi-
path routing. TCP senders may prematurely timeout packets
which happen to take the longest path. Packets going through
different paths may arrive at destination out of order and
trigger duplicate ACKs, which in turn may trigger unnecessary
TCP congestion window reductions.

The first contribution of this paper is a novel forwarding
policy for the REEF mechanism, which improves the network
performability, taking into account the several causes of packet
dropping, as well as the above mentioned TCP limitations.
The main idea is to combine the reliability of a route with its
length, so as to keep the advantages of multi-path forwarding,
necessary to tolerate network faults or intentional misbehavior,
and limit, at the same time, the drawbacks of using TCP over
multiple routes.

In addition, this paper provides an accurate performability
analysis, which has been carried out with the ns2 Network
Simulator, to demonstrate the effectiveness of the forward-
ing mechanism, in realistic environments. To this end, we
implemented a multi-path routing protocol, and modified the
forwarding agent at the network layer to include the REEF
mechanism. Furthermore, we realized a cross-layer interaction
between the forwarding and the transport agents to make them
exchange information on TCP acknowledgments. We simu-
lated practical situations where nodes execute file transfers
(e.g. FTP) over TCP connections. Besides totally cooperative
environments, where only network faults, such as congestion
and lossy links, may affect the network performance, the
mechanism has proved effective also in presence of a variable
percentage of misbehaving nodes. Furthermore, nodes mobility
is nicely tolerated.

The rest of the paper is organized as follows. Section II

gives an overview of the REEF mechanism and describes the
new forwarding policy . Section III presents the simulation
framework used to carry out the performability evaluation.
Section IV details the simulation results on TCP performance,
obtained by comparing the standard single path forwarding
with our multi-path policy. Finally, Section V draws some
conclusions.

II. OVERVIEW OF REEF

The forwarding mechanism is composed by a reliability
estimator and a policy to forward traffic. In the following,
we first give a brief overview of the reliability estimator. For
a detailed description we point the reader at [8][11]. Then, we
describe the new forwarding policy, which is later evaluated
with an extensive simulation study.

A. Reliability estimator

Each node keeps track of neighbors’ reliability according to
its “personal” experience while transferring data. Whenever
a node communicates with another node in the network, it
estimates the reliability of the neighbor node involved in
relaying its packets. Specifically, it maintains a table of sent
packets, storing also the identity of the next hop that has been
charged with forwarding the packet toward the destination.
Then its reliability is estimated according to the delivery result.
If the source node receives a TCP acknowledgment, then all
the intermediate nodes have correctly forwarded the packet,
and hence the reliability of the neighbor node is positively
updated. Otherwise, some node on the path misbehaved,
and the neighbor’s reliability decreases. This means that the
reliability of a neighbor node may be affected by a packet loss
that was caused by another node on the path, and quantifies the
cooperation/performance/reliability so far observed for paths
rooted at that neighbor. The simplest way to estimate the
reliability of a neighbor j is

Rj ← αRj + (1− α)M (1)

where α, 0 ≤ α ≤ 1, is the percentage of the previous estimate
that we consider in the current update, and M represents
the present delivery outcome and may assume the following
values:

M =
{

0 if s does not receive ack from d
1 if s receive ack from d

(2)

As previously stated, the reliability estimator works at the
network layer and uses information coming from the trans-
port layer. This is possible through a cross-layer interaction
between the two protocols, which bases on an innovative
architecture that standardizes vertical communication between
protocols, and allows for several performance optimizations
[9][10]. In this specific case, the TCP notifies packet acknowl-
edgments to the forwarding agent through cross-layer events,
which in turn trigger the update of the relative reliability index
(see Section III-B). In this way, the network layer can easily
understand the packet delivery status without producing any
additional overhead (packet sniffing would result heavy).



B. Forwarding policy

Reliability estimates are useful to choose the best route for
packet forwarding. Whenever multiple paths are available, the
route with the highest success probability is desired. However,
a forwarding policy must be defined keeping in mind also the
limitations of TCP over multi-path routing. Sending packets
on routes that highly differ for the number of hops toward
the destination has proved to be detrimental for network
throughput [3]. For this reason, we propose to select paths
according to reliability indexes as well as distances to the
destination. In order to combine this two factors, we estimate
the average number of transmissions, in terms of hops number,
to successfully deliver a packet to its destination. Let n be the
number of hops between the source and destination nodes on
a given route, and RI the reliability index of the first node I
on that route. Let us approximate p = RI the probability to
succeed while sending a packet through node I, and suppose to
obtain a successful delivery (represented by the p factor) after
k − 1 failures (see Figure 1). Then, we estimate the average
number of times the sender transmits a packet to successfully
reach the destination node as:

E[NT ] =
∞∑

k=1

kp(1− p)k−1 (3)

As the packet delivery may fail at any hop on the path, we
consider the distance n between the source and the destination
nodes as an upper bound for the number of transmissions along
the path, and estimate the average cost E[C] of transmitting
through a specified neighbor as:

E[C] ≤ n

∞∑
k=1

kp(1− p)k−1 (4)

If we consider that the mean of the geometric distribution
is 1

p , we can re-write the average cost as,

E[C] � n

p
(5)

Thus, we define a new forwarding policy, namely
performability-route (p-route), in the following way. Given
pi = Ri for each neighbor i, and ni the number of hops
to reach the destination through neighbor i, then we choose
the route with the minimum cost, in terms of number of
transmissions, mini {ni

pi
}, and if multiple routes have the

same value, we randomly choose one of them. This choice
is made on a per-packet base (as provided for the route
selection by standard forwarding agents), and is repeated by
each intermediate hop between the source and the destination
nodes, whenever the routing protocols provides only the next
hop toward the destination. Furthermore, with this policy, we
consider routes that require the minimum (estimated) number
of transmissions to successfully reach the destination, and
avoids next-hops that are far from the destination.

Fig. 1. Example of a packet delivery success between nodes S and D, after
k-1 failures. At each tentative the packet may be dropped at any hop between
the source and destination nodes.

C. Performability requirements and goals

As previously stated, performability of data transfer involves
service efficiency and effectiveness for measuring perfor-
mance, and service dependability or continuity for judging
the level of reliability. We identify the efficiency as a design
requirement for the forwarding mechanism, while service
effectiveness and dependability are goals to achieve.

Service efficiency focuses on resource utilization and asks
for computational lightness. Our forwarding mechanism is
based on a cross-layer architecture [9][10] that allows to
easily retrieve transport layer acknowledgments, without any
additional effort (i.e. packet sniffing or watchdog mechanisms
would results heavy [5]). Furthermore, resources employed to
keep and update reliability indexes are minimal: a single value
is stored for each neighbor. However, it is worth noting that
the hypothesis on multi-path routing brings some overhead in
terms of network traffic. Hence, in order to satisfy the need
for service efficiency, an evaluation of resource utilization (in
terms of network resources) is necessary. To this end, we
perform a simulation study (see Section IV-A), showing that
the overhead produced by multi-path and single path routing
protocols are comparable.

Service effectiveness and dependability are achieved through
the multi-path forwarding policy that distributes traffic among
most successful routes and avoids misbehaving nodes. The
idea is to choose the route with a low number of hops and high
reliability, so as to to minimize the number of transmissions
needed to reach the destination. The policy is such that as
soon as the reliability of a path decreases, because the sender
observes packets losses, and the ratio of its distance to the
destination over the reliability of the next node is no more
the most convenient, a different (more reliable) route is used,
even if it is longer. This allows to go round misbehaving
points, providing continuous network connectivity. In fact,
in case of nodes that are congested, selfish, or malicious,



packet dropping may lasts for a while, paralyzing the data
transfer. Furthermore, spreading traffic among routes, with
the same level of success, operates a load balancing that,
in turn, reduces the possibility of congestion, as well as
the motivations for selfish behavior. As a consequence, the
throughput and the quality of data transfer are increased (see
Section IV), thanks to a fairly distribution of traffic on different
paths, and the avoidance of misbehaving nodes that cause
service interruption.

III. EVALUATION FRAMEWORK

To realize a simulation framework, suitable for a complete
evaluation of the reliable forwarding components, we used the
Network Simulator ns2 (v. 2.27) [12], and a library of objects
and abstractions provided by the Naval Research Laboratory
(i.e., ProtoLib) [13], which includes an implementation of the
Optimized Link-State Routing protocol (OLSR) [14]. OLSR
is a well-established proactive protocol of the Manet IETF
working group, which suites our cross-layer architecture and
supports several cross-layer optimizations [9][10]. An example
is given in [15], where the performance of the Gnutella
protocol is enhanced through a closer cooperation with the
routing agent.

Starting from the ns2+ProtoLib basement, we were able
to first introduce the cross-layering concepts described in [10]
and, therefore, use them to develop a reliable forwarding agent
at the network layer. As detailed in the following section,
we extended OLSR in order to have a multi-path version
of it, and also re-programmed agents at transport layer (i.e.,
TCP agents) so as to send cross-layer events for positive and
negative acknowledgments. We used TCP-Reno with Delayed
Ack. Furthermore, we modified the forwarding agent at the
network layer in order to:

1) catch cross-layer events coming from transport agents;
2) maintain reliability tables according to the notified

events, and the routes discovered by the OLSR routing
agent;

3) implement the REEF forwarding policy on the reliability
tables.

A. Multi-Path OLSR

Performance of packet forwarding is dependent on the
ability of the REEF mechanism to utilize alternative routes
when it detects non-operational ones. The availability of
redundant routes is usually not provided by common routing
protocols that, typically, build shortest-path routing tables. For
this reason, we implemented a multi-path extension of the
OLSR protocol provided by the ProtoLib package.

OLSR is a proactive routing protocol, based on a link
state algorithm and optimized for mobile ad hoc networks.
It minimizes the overhead from flooding of control traffic by
using only selected nodes, called Multipoint Relays (MPRs),
to send and retransmit topology control (TC) messages. When
a node broadcasts a packet, only its MPR set rebroadcasts
the packet, while other neighbors simply process the packet.
TC messages are sent by a node in the network to declare a

set of links, called advertised link set, which must include at
least the links to all nodes of its MPR Selector set (i.e. the
neighbors which have selected the sender node as a MPR).
This is sufficient information to ensure the computation of a
routing table based on a shortest path algorithm. By increasing
the amount of information included in the TC messages, and
the number of node sending them, it is possible to build a
multi-path routing table. In particular, the requirements for
multi-path routing are: i) the advertised link set of the node is
the full neighbor link set; ii) besides MPRs each node having
at least one neighbor must send TC messages. In practice,
these two requirements are easily satisfied by the “all links”
feature implemented in the ProtoLib’s OLSR agent.

Our contribution to realize multi-path routing was to en-
hance the OLSR agent implementation with a new proce-
dure, MakeNewMultiPathRoutingTable, that is based on
a breadth-first logic. The first step is to add to the routing table
all symmetric neighbors (with hop distance h=1) as destination
nodes. Then, for each added route, we go through the topology
set to build all routes of length 2 (h=2). Again, starting from
this new set of routes, all routes 3-hops long are built, and so
on. The procedure is repeated starting from the set of routes
just added (h=n) and building the set of routes 1-hop longer
(h=n+1), until there are no more routes to build. Obviously,
in case of multiple routes to a destination passing through the
same neighbor we consider only the shortest one.

B. Introducing cross-layer interactions

After patching the network simulator with the ProtoLib and
the multi-path OLSR implementation, we introduced also a
set of primitives to allow cross-layer interactions. Specifically,
the realization of the forwarding mechanism in our evaluation
framework involves the introduction of a class of cross-layer
events of type Recv TCP-ack/nack, to which the forwarding
agent subscribes for notifications coming from a local TCP
agent. These events notify the forwarding agent about delivery
outcomes of packets related to connections between the local
host and a foreign party. In particular, the TCP agent sends a
TCP-ack event to the forwarding agent whenever it receives a
valid acknowledgment. Instead, TCP-nack events are caused
by packets retransmissions and generated when: 1) a packet
timeout expires; 2) three duplicate acknowledgments on the
same packet are received. An event notification causes the
forwarding agent to update the reliability index associated to
the neighbor through which the packet passed. The update is
positive for TCP-ack and negative for TCP-nack.

In order to easily relate notified events with neighbor nodes,
the forwarding agent keeps a transmission list containing
for each sent packet, the TCP sequence number and flow
identity, plus the neighbor through which the packet was sent.
When an acknowledgment is notified, the forwarding agent
looks for the corresponding packet in the transmission list,
in order to retrieve the neighbor that relayed it. Then, it
updates the reliability index of such neighbor according to
the entity of the event. Packets are stored in the transmission
list before being sent, and removed after the reception of a



Fig. 2. Cross-layer interaction between the network and the transport layers.

Recv-ack/-nack event. If the received ack is cumulative (i.e.,
it acknowledges the reception of multiple consecutive packets),
then the forwarding agent makes an update for each entry in
the transmission list with the sequence number lower or equal
to the received ack.

Reliability indexes are maintained in a table containing an
entry for each neighbor. In order to keep the reliability table
constantly up-to-date, we trigger an update every time there
is a change in the neighbor list. Figure 2 shows the resulting
system architecture, with the cross-layer interaction between
the forwarding and TCP agents.

IV. PERFORMABILITY EVALUATION

To evaluate the performability of data transfer on top of
REEF, we consider the following metrics.

Overhead Since the cost of internal computation in terms of
space and energy consumption is negligible compared
to the cost of transmission, we look at the overhead
caused by extra routing messages, measured in Bytes/sec.
Hence, routing overhead represents a measure of service
efficiency.

TCP sequence number The sequence number of TCP pack-
ets acknowledged by the destination, as function of time,
is a measure of both performance and reliability. In
the first case, a comparison of TCP sequence numbers
between different forwarding policies allows to under-
stand which one performs better (i.e. effectiveness). In
the second case, a constant increase of TCP sequence
numbers shows continuous network connectivity, while a
flat line on the plot indicates an interruption of packet
delivery (i.e. reliability).

Throughput We refer to the TCP throughput as the amount
of the data correctly received by TCP destination nodes,
in a time unit. This metric is useful to quantify the
effectiveness of the forwarding mechanism in presence
of TCP data transfer.

In the following, we first evaluate the routing overhead pro-
duced by our multi-path OLSR. This study is important to
demonstrate that it is possible to improve TCP performance at

the expense of very low routing overhead. After demonstrating
that multi-path routing adds a reasonable amount of overhead,
we investigate the impact of REEF on TCP traffic. Performa-
bility improvements are analyzed from two perspectives. With
a transient analysis, we observe TCP connections on time
intervals, in order to check whether our policy improves the
quality of TCP data transfer. On the other hand, with a steady-
state analysis, we show statistic results on general scenarios,
which measure, for example, the total network throughput by
varying the percentage of misbehaving nodes, and the nodes
mobility. In order to simulate nodes misbehavior, we used the
SelectErrorModel class, provided by ns2, that allows
to selectively discard packets, by indicating the packet type
(e.g., tcp) and the dropping frequency. Simulations are based
on TCP-Reno agents with Delayed Ack.

A. Single vs. multi-path routing

Instructing the routing agent to calculate multiple routes
may cause additional overhead, depending on the nature
(proactive or reactive) of the protocol. For example, simulation
studies on reactive protocols show that there are significant
advantages with multi-path routing [16][17]. Their findings
demonstrate that the number of route discoveries and hence of
routing load decreases, even though end-to-end delay of data
packets slightly increases. Further results show that multi-path
routing allows to achieve faster and efficient recovery from
route failures in highly dynamic networks.

In this paper, we consider OLSR, a proactive routing proto-
col, and evaluate the additional overhead induced by a multi-
path version of it. In the implementation of the multi-path
OLSR we identified the following as the main requirements:
i) the advertised link set of the node must be the full neighbor
link set; ii) besides MPRs each node having at least one
neighbor must send TC messages. Consequently, the addi-
tional overhead produced by the multi-path version is mainly
determined by the amount of increased topology information
traveling through the network, and the number of generated
TC messages. Hereafter, we go through a measurement study
to quantify this overhead.

To evaluate the performance of multi-path OLSR with
respect to its legacy version, we simulated a range of network
scenarios. Figure 3 shows the mean overhead (Bytes/sec.)
produced by the two protocols, varying the network size.
This metric is measured as the mean total number of bytes
sent by all network nodes. In particular, we evaluated routing
overhead for different network sizes, respectively 10, 20, and
40 nodes. For each network size, we created three different
scenarios, with increasing routes length. To this end, nodes are
randomly placed in an area of different shapes: from a square
to thin rectangles. Results are averaged on the three scenarios.
Simulation time is 900 seconds, and Hello and TC message
intervals are respectively 2 and 5 seconds. Figure 3 shows
that in a static environment, the additional overhead produced
by multi-path OLSR is almost independent of the number of
nodes, and is around 15%. Considering that in the case of 40
nodes we have less than 2000 Bytes/sec of added routing load,
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we can state that multi-path routing adds a reasonable amount
of overhead, and hence we can have a good trade-off between
costs and benefits of our multi-path forwarding.

B. The impact of REEF on TCP: A transient analysis

The objective of this evaluation is to find out whether
REEF may provide higher throughput and better network
connectivity to TCP traffic, with respect to the conventional
case in which packet forwarding is based on single path
routing (OLSR), where the shortest route is always chosen. In
particular, we focus on networks affected by fault conditions
and misbehaving nodes that forward traffic in an intermittent
fashion.

1) Partially misbehaving network: With this study, we aim
at evaluating REEF’s effectiveness, investigating the quality of
single TCP connections, on a time interval. To this end, we
consider a small network, composed of a dozen of nodes, with
routes that are 3-4 hops long. The small size of the network
allowed us to Analise in details the behavior of single nodes
and connections. Evaluations on a larger network have been
conducted and are detailed in Section IV-C.

The simulated network is composed of 11 nodes, on a 600
by 600 square meters area (see Figure 4). One node in the
network (i.e. node 10) behaves as on/off forwarder1: it does
not relay traffic, from second 100 to 200, and from 300 to 400.
This behavior can be typical of a selfish or a malicious node,
as well as a fault condition. We configured 4 TCP connections
with an FTP application on top of each as traffic generator.
As FTP produces bulk data to send, it may cause situations
of congestion. In the simulation, all FTP agents start around
time 60 and last for the whole simulation run, which is 600
seconds. In particular, FTP transfers are active between nodes
6 and 2, 1 and 6, 0 and 7, and 2 and 9.

To check TCP behavior, we analyzed the sequence number
of packets received by the destination nodes (i.e. FTP clients),

1The node participates to the routing function but does not always forward
packets on behalf of other nodes.

Fig. 4. Simulated network.

as function of the application lifetime. In this way, it is possible
to understand how the forwarding policies react to nodes
misbehavior, and what their impact is on active connections.

The results from this simulation study have validated the
performance improvement achieved by the p-route policy.
Besides Figure 6(a), which deserves to be discussed apart,
Figures 5(a), 5(b), and 6(b) illustrates how the p-route policy
outperforms single path forwarding. As shown by diagrams,
not only p-route achieves the higher sequence number, increas-
ing it up to 100% (Fig. 5(b) and 6(b)), but it also provides
better service delivery. In fact, p-route offers continuous
network connectivity regardless of nodes misbehavior. It uses
alternative paths, and hence avoids the delivery interruption,
while the other policy shows an evident discontinuous behavior
when the selfish node discards packets: flat lines on misbehav-
ior intervals (i.e. 100-200s and 300-400s) indicate a complete
inability of nodes to exchange data.

Looking at the TCP connection between nodes 0 and
7 (see Figure 6(a)), it is evident that both policies obtain
similar results, even if in different ways. Performance on this
connection is very poor as the maximum sequence number
obtained is around 600, while the other connections get
up to 8000. The reason for this behavior does not directly
depend on the applied forwarding policy. Instead, it is due
to a combination of factors such as network topology, active
connections, and nodes congestion. First of all, we remark that
packet loss has detrimental effects on TCP performance, as the
congestion window is reduced and the TCP retransmission
timeout becomes progressively larger leading to high restart
latency and very poor efficiency. Hence, the more packets
get lost, the higher is the degradation of the involved TCP
connections. Furthermore, the connection between nodes 0 and
7 relies on a route that is longer than the others. Packets have to
traverse more intermediate hops, increasing chances of getting
into congested nodes. In fact, most of nodes between 0 and 7
are overloaded because of the other active FTP transfers, and
hence there is no way to go around the problem. With single
path forwarding, the connection experiences long pauses that
correspond to misbehavior intervals. With p-route, connections
get the best service, without transfer interruptions. However,
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Fig. 5. Sequence number of TCP packets received by FTP clients as function
of time, in presence of a misbehaving node.

the last TCP sequence number is quite low. From an analysis of
trace files, we observed that the connection is affected mainly
by congestion events. This causes poor performance because
the neighbors of the sender node do not have knowledge of
current network conditions. As they are not involved in end-
to-end communications, they do not update their reliability,
and hence unconditionally use shorter (but congested) routes.
Analyzing more in details the TCP connection between node 0
and 7, the sender can communicate with the receiver through
neighbor nodes 3, 5, and 1. In case the delivery relies on
neighbor 3, this must choose one route toward the destination.
As all neighbors of node 3 have the same reliability, node 3
chooses 6 or 10 as they provide a shorter route. Unfortunately,
both of them are not reliable, because the former is overloaded
and the latter is misbehaving. Node 6 would be chosen even
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Fig. 6. Sequence number of TCP packets received by FTP clients as function
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in the case the communication occurs through neighbor 5.
Packets find similar obstacles through neighbor 1, because
node 10 is misbehaving and node 2 is involved in the other
two connections. The only way to successfully deliver packets
to the destination would be through the nodes on the border
of the network (i.e. 5, 8, and 9), but this path is longer
and intermediate nodes do not have knowledge in order to
deviate traffic there. Hence, the protraction of intermittent
losses (experienced on almost all used routes) slows down
the TCP sender that stabilizes on low sending rate.

Figure 7 shows the total TCP throughput of FTP clients,
as a function of time. In this case, we also report the results
obtained with a load-balancing policy, which equally spreads
traffic among all possible routes to the destination. We remark
that this policy, as well as our p-route policy, makes a
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Fig. 7. TCP throughput on FTP clients obtained by applying the different
forwarding policies, in presence of a misbehaving node.

per-packet and per-hop choice. P-route achieves the higher
throughput and keeps it constant for the whole time, show-
ing high tolerance to misbehaving nodes. Instead, the other
forwarding policies are more sensitive to packets dropping;
as soon as the misbehaving node starts discarding packets,
both single-path and load-balancing experience a sharp drop
of network throughput. This result confirms the ineffectiveness
of a plain multi-path forwarding, as studied in [3].

In conclusion, in presence of misbehaving nodes, the p-route
policy significantly improves the performance and reliability
of TCP connections, achieving a twofold advantage: 1) the
amount of packets successfully delivered at destination is
increased up to 100%; 2) TCP connections benefit from a
delivery service of higher quality, which provides continuous
connectivity to the communicating end-points, hiding the
effects of misbehaving nodes.

2) Totally cooperative network: To show that REEF yields
better performance even in absence of misbehaving nodes,
we repeated the simulation on the same network scenario
(see Figure 4), with the difference that all nodes cooperate to
packet forwarding. In this case, packet loss can be caused only
by temporary fault conditions. Behavior of TCP connections
is depicted in Figures 8 and 9. Plots show that the p-route
policy is globally better than single path forwarding, as it
almost always achieves the highest sequence number; the only
exception is for the connection between nodes 6 and 2 (see
Figure 8(a)).

The connection between nodes 0 and 7 shows results similar
to the case with the misbehaving node. The low performance
for both policies confirms the motivations previously stated.
This connection suffers from congestion events on interme-
diate nodes, and the higher distance between source and
destination increases the negative effects.

Finally, Figure 10 shows the predominance of p-route over
single path. The achieved throughput is on average higher
and more uniform for p-route, while single path forwarding
presents wide fluctuations, staying often below the p-route
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Fig. 8. Sequence number of TCP packets received by FTP clients as function
of time, in a network without misbehaving nodes.

curve. The load-balancing policy again performs worse than
single path.

C. The impact of REEF on TCP: A steady state analysis

With a steady-state analysis, we show aggregate results on
general scenarios, to evaluate the scalability of the REEF
mechanism. Specifically, we measure the average total network
throughput as a function of the percentage of misbehaving
nodes, and mobility.

The experiments have been conducted in various network
scenarios. We fixed the network size to 20 nodes, placed in a
1000x700 area, and configured 5 TCP connections. We used
Telnet sessions as traffic generators. Packets inter-arrival times
are chosen from an exponential distribution with average 0.2
seconds. All TCP connections are established at time 60 (to
allow the routing table construction), and last for the whole
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Fig. 9. Sequence number of TCP packets received by FTP clients as function
of time, in a network without misbehaving nodes.

simulation time that is 15 minutes (900 s). Connection end-
points are generated randomly and, for each scenario, 10 runs
are performed to decrease the impact of randomness. We then
introduced misbehaving nodes that cooperate to routing (and
hence they appear in routing tables of the other nodes) but
do not forward TCP traffic. The experiments were repeated
for the different forwarding policies and the presented results
are the average of the 10 runs. Hereafter, we present the
performance analysis of our forwarding policy according to
the aforementioned parameters.

Percentage of misbehaving nodes The first set of experi-
ments aimed at evaluating the effect of an increasing
percentage of misbehaving nodes on the network through-
put. To this end, we produced random scenarios with
increasing number of misbehaving nodes, which are not
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Fig. 10. TCP throughput on FTP clients obtained by applying p-route and
single path forwarding, in absence on intentional nodes misbehavior.
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Fig. 11. Mean TCP throughput in a network of 20 nodes with 5 TCP
connections as function of the percentage of misbehaving nodes.

endpoints of TCP connections. We created 6 different
scenarios, with respectively 0, 2, 4, 6, 8, 10 misbehaving
nodes (i.e., 0% to 50%). Figure 11 shows that when
TCP works on top of load-balancing, it always behaves
worse than using single path, regardless of the percentage
of misbehaving nodes. This negative result is caused
by the combination of two factors: i) spreading traffic
among multiple routes increases the possibility to run into
unreliable routes (with consequent packet loss); ii) TCP
sensitively reacts to packet loss, decreasing the trans-
mission rate. Hence, some communications encounter
misbehaving nodes, even if the shortest path between the
endpoints is free of them. This causes TCP to slow down
the sending rate, with consequent performance degra-
dation. On the other hand, p-route outperforms single
path forwarding whenever misbehaving nodes are present,
while the two method are comparable in cooperative
networks (i.e. the percentage of misbehaving nodes is 0).
Specifically, the performance gain grows up to 50% in
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Fig. 12. Mean TCP throughput as function of nodes mobility in a network
of 20 nodes with 5 TCP connections and 30% of misbehaving nodes.

the case of 20% and 30% of misbehaving nodes. This is
a visible improvement.

Nodes mobility In the following set of experiments we
wanted to study the effects of nodes mobility on the total
network throughput. To this end, we generated random
way-point mobility scenarios using the set-dest utility
shipped with ns2. Considering a fixed population of 20
nodes moving over a rectangular area of 1000 by 700
square meters, with nodes speed uniformly ranging inside
[1,5] m/s, we created three sets of mobility scenarios: 1)
a slow scenario with pause times up to 10 seconds; 2)
a medium scenario with pause times up to 5 seconds; 3)
a fast scenario where nodes continuously move as the
pause time is set to 0. The percentage of misbehaving
nodes is set to 30% (i.e., 6 nodes discard TCP traffic).
Figure 12 shows that even in presence of nodes mobility
the p-route policy globally achieves better performance
than single path forwarding, with a constant increase in
network throughput around 10%. This is a significant
result because p-route is able to distribute traffic among
multiple routes even a dynamic environment.
It is worth noting that throughput increases while mobility
goes up. This effect is caused by the random way-point
mobility model that tends to group nodes in the middle
of the simulation area, making nodes closer and routes
shorter. A more dense network allows nodes to easily
reach each other, increasing their ability to communicate.
Intuitively, we believe that p-route performance can be
further improved by providing the REEF mechanism with
a cache on reliability indexes. Instead of deleting a node
from the reliability table as soon as it is not anymore
a neighbor, the idea it to keep it for some time, so as
to remember its reliability value in the case it appears
again as neighbor node. Ongoing work is evaluating this
caching mechanism on different mobility models, such as
Group and Manhattan mobility [18].

V. CONCLUSIONS

The performability of data transfer in ad hoc environments
is highly sensitive to packets loss, that may be caused by
several factors, such as congestion and lossy links, as well
as selfish and malicious nodes. When designing protocols for
nodes communications, special care has to be taken to consider
all the causes that may degrade the system performance. In the
case of TCP traffic, even the use of multiple paths may have
negative effects on the network throughput.

This paper proposes a new multi-path forwarding policy,
performability-route (p-route), which address nodes misbehav-
ior and network faults. Focusing on TCP traffic, we show
how the p-route policy tolerates the negative effects that
packet loss has on the protocol behavior, and overcomes the
limitations of using multiple paths for TCP packets. To show
such improvement, we carried on a simulation analysis in
realistic environments, with a multi-path routing protocol, and
TCP file transfers. We also simulated nodes misbehavior, so
as to investigate the effectiveness of our forwarding policy in
both cooperative and partially misbehaving networks. The per-
formability achieved with the p-route policy is compared with
the standard single path forwarding, which chooses always the
shortest route. Simulation outcomes elect the p-route policy
as the more efficient forwarding method, as it shows good
tolerance to packets loss, maintaining a satisfactory level of
connectivity among nodes, and avoiding delivery interruptions
typical of single path forwarding. By increasing the percentage
of misbehaving nodes (from 0% to 50%), p-route maintains a
high level of efficiency, with a TCP throughput improvement
up to 50%. The predominance of p-route is visible even in
comparison with a plain multi-path forwarding, or in presence
of nodes’ mobility.

One may argue that the p-route policy may not make the cor-
rect decision in choosing alternative paths, as in some cases the
one-link reliability does not correctly capture the reliability of
the whole path from a sender to a specific destination. This is
possible when some nodes do not communicate spontaneously
(open TCP connections) with other parties, and hence have no
mean for updating their reliability indexes. In REEF jargon,
this is equivalent to have “blind” nodes, where reliability
indexes are set to the initial value, and nodes are unable to
distinguish the proximity of misbehaving nodes. This behavior
has been observed in the simulation study (see Section IV-B).
Obtained results show that choices made by blind intermediate
nodes do not cause inefficiency, in comparison with single path
forwarding, and result in a multi-path forwarding mechanism
that favors shorter routes.

Future work will evaluate our policy in more dynamics en-
vironments (e.g. Manhattan and Group mobility models), and
integrate in the simulation framework a scheme that assigns
priority to packets in the forwarding queue, depending on the
reliability of sender nodes, in order to enforce cooperation
among nodes [8].
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