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ABSTRACT
Network-on-chip (NoC) has been proposed as a solution for the
global communication challenges of System-on-chip (SoC) design
in the nanoscale technologies. NoC design with mesh based topolo-
gies requires mapping of cores to router ports, and routing of traffic
traces such that the bandwidth and latency constraints are satis-
fied. We present a novel automated design technique that solves
the mesh based NoC design problem with an objective of minimiz-
ing the communication energy. In contrast to existing research that
only take bandwidth constraints as inputs, our technique solves the
NoC design problem in the presence of bandwidth as well as la-
tency constraints. We compare our technique with a recent work
called NMAP and an optimal MILP based formulation. We prove
that the complexity of our technique is lower than that of NMAP.
For the latency constrained case, while NMAP fails on most test
cases, our technique is able to generate high quality results. In
comparison to the MILP formulation, the results produced by our
technique are within 14 % of the optimal.

Categories and Subject Descriptors
B.4 [Input/Output Data Communications]: Interconnections

General Terms
Algorithm, Performance, Design

Keywords
Network-on-Chip, Automated design, Mesh topology, Core map-
ping, Routing

1. INTRODUCTION
The advent of deep sub-micron technology will pose many chal-

lenges for next generation high end System-on-Chip (SoC) design.
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Figure 1: Low energy mapping and routing

In the future a SoC architecture is expected to consist of tens of
computing cores operating in the multi-gigahertz range. The var-
ious cores would require a communication medium that can sup-
port simultaneous high bandwidth data transfers with low laten-
cies. Current day bus based shared medium architectures will not
be suitable as they would have to be implemented as hierarchical
structures extending to multiple levels. The high signal propaga-
tion delays in deep sub-micron technologies will also make syn-
chronous bus based global communication difficult. Noise due to
increased RLC effects in deep sub-micron technologies will lead to
signal integrity issues which also cannot be easily addressed by bus
based architectures.

On-chip packet switched interconnection architectures or Network-
on-Chip (NoC) have been proposed as a solution for the commu-
nication challenges in the nanoscale regime [1]. NoC is charac-
terized by asynchronous communication between routers. NoC is
inherently scalable and can be easily applied towards the design of
larger sized SoC architectures. NoC supports easier application of
error control schemes for increased signal integrity. In particular
mesh based NoC architectures are especially attractive due to their
regular two dimensional structure that results in IP re-use, easier
layout, and predictable electrical properties. Consequently, in re-
cent years a number of researchers have proposed architectures and
tools for mesh based NoC [2, 3, 4].

NoC design for an application specific SoC architecture offers
an opportunity for optimizing the mapping of cores to different
routers, and incorporation of custom routing of the packets that do
not necessarily conform to a pre-determined routing scheme. Pe-
riodic high performance applications with deadlines enforce band-
width and latency requirements for data transfer on the communi-
cation medium. Further, each router also places an upper bound
on the bandwidth of traffic that can supported at every input/output
port. In the nanoscale technologies energy minimization has emerged
as a first order design goal. The global communication energy is
expected to account for a significant portion of the total energy
consumption [1]. Therefore, the objective of the interconnection
design is to obtain an implementation that satisfies the performance
requirements and minimizes the communication energy. The paper
addresses automated NoC design for mesh based interconnection
architectures.
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Figure 2: Latency versus injection rate

The NoC design problem on mesh based interconnection net-
works is depicted in Figure 1. The input to the problem is a di-
rected graph called the communication trace graph. Each node in
the graph represents a computation or storage core, and the directed
edges represent communication between the cores. Each commu-
nicating trace is annotated as “Cm(B,L)” where ‘m” represents the
trace number, “B” represents the bandwidth requirement, and “L”
is the latency constraint. The bandwidth and latency requirement
on the communication traces can be easily obtained from the de-
sired performance of the overall application and the individual task
latencies of each node. The output of the NoC design problem is
a mapping of cores onto different routers, a corresponding mesh
based NoC, and a static packet route for each traffic trace such
that the total communication energy is minimized. On the right
hand side of Figure 1, the static routing of a communication trace
is shown by the corresponding annotation of physical links.

We characterized the energy consumption of the unit router in
100nm technology with the help of a cycle accurate energy and
performance evaluator [3]. In the interest of space, we have omitted
the details of the experiments. We observed that over time, the en-
ergy consumption of the input and output ports varied linearly with
the injection and acceptance rates, respectively. Quantitatively, we
estimated the energy consumption of 2.07pJ/Mbps for the input
port, and 2.29pJ/Mbps for the output port. The variation of av-
erage latency on a port with respect to injection rate is shown in
Figure 2. We observe from the plot that average latency remains
almost constant in the un-congested mode, and the onset of conges-
tion is marked by a sharp increase in latency. Our technique pre-
vents network congestion by static routing of the communication
traces subject to the peak bandwidth constraint on the router ports.
As the network is always operated in the un-congested mode, we
can represent the network latency constraint as router hops (such as
1 or 2) instead of an absolute number (such as 60 cycles).
Problem Definition : We define the mesh based NoC design prob-
lem as follows. Given:

• A directed communication trace graph G(V, E), where each
vi ∈ V denotes either a processing element or a memory
unit (henceforth called a node), and the directed edge ek =
(vi, vj) ∈ E denotes a communication trace from vi to vj .

• For every ek = {vi, vj} ∈ E, ω(ek) denotes the bandwidth
requirement in bits per second, and σ(ek) denotes the latency
constraint in hops.

• A mesh based topology of NoC I(N, L), where each ni ∈ N
denotes a router, and each li ∈ L denotes a physical link. All
routers are identical 5-port routers with 4 ports connected
to neighboring routers via links and one open port for node
mapping.

• I is placed on a grid in the XY plane with unit distances
between adjacent routers. x(ni) and y(ni) denote the x and
y coordinates of a router ni ∈ N .

• Each router architecture is characterized by:

– Ω which denotes the peak input and output bandwidth
that the router can support on any one port,

– Ψi that denotes the energy consumed per Mbps of traf-
fic bandwidth flowing in the input direction for any port
of the router, and

– Ψo which denotes the energy consumed per Mbps of
traffic bandwidth flowing in the output direction for any
port of the router.

The objective of the NoC mapping and routing problem is to obtain:

• a one to one mapping function M : V → I that denotes the
mapping of a node to a router,

• a set R of ordered tuples of routers, where each ri〈ni, nj ,
. . . , nk〉 ∈ R, ni, . . . , nk ∈ I denotes a route for a trace
e(vi, vk) ∈ E (M(vi) = ni, M(vk) = nk),

such that

• the bandwidth constraints on router ports are satisfied,

• the bandwidth and latency constraints on the traces are satis-
fied, and

• the total communication energy is minimized.

As mentioned earlier, the energy consumption of the NoC in the
un-congested mode varies linearly with the traffic flowing through
the network. Therefore, the energy consumption of the NoC can be
minimized by minimizing the cumulative traffic flowing through
the ports of all routers.

Bandwidth requirements and latency constraints of communica-
tion traces can be viewed as mutually independent. A trace such
as a signalling event or a cache miss is not expected to have a high
bandwidth requirement, but is bound by tight latency constraints.
On the other hand, many non-critical multimedia streams have high
bandwidth requirement, and their latency is bound only by the pe-
riod constraint of the application. A mapping and routing technique
has to perform a trade-off between placing high bandwidth traffic
traces close to each other to minimize energy, and placing tight la-
tency traces close to satisfy the performance constraints.

In this paper, we present a novel two phase technique that effec-
tively performs energy versus latency trade-off in stage 1 to obtain
a mapping of cores on the mesh based NoC, and then generates
a custom route for each communication trace in stage 2 such that
communication energy is minimized and performance constraints
are satisfied. We evaluate the performance of our technique by
comparing it with a recent work called NMAP [4], and against an
optimal MILP formulation.

The paper is organized as follows: Section 2 discusses previous
work, Section 3 presents our automated design technique, Section 4
discusses our experimental results, and finally Section 5 concludes
the paper.

2. PREVIOUS WORK
Hu et al. [2] and Ascia et al. [5] presented branch and bound

and genetic algorithm based techniques, respectively, to map cores
onto a regular mesh based NoC architecture. Murali et al. [4] pre-
sented a heuristic technique called NMAP for mapping cores and
routing traffic traces on mesh based NoC architectures. All exist-
ing research only accepts bandwidth constraints on communication
traces. The novelty of our technique is that we address the problem
of bandwidth and latency constrained NoC design. Unlike previ-
ous work, we trade off energy minimization (obtained by routing
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high bandwidth traces in minimum hops), with the objective of ob-
taining legal solutions (by routing tight latency traces in minimum
hops) to obtain a pareto optimal point. The results of NMAP were
shown to be better than other existing research. We prove that the
computational complexity of our technique is lower than NMAP.
We also show that for the latency constrained designs, our tech-
nique is able to generate high quality solutions while NMAP fails
in most cases.

3. LOW ENERGY MAPPING AND ROUT-
ING ON NOC ARCHITECTURES

This section presents our technique for design of low energy
mesh based on-chip interconnection architectures, henceforth called
MOCA. MOCA operates in two phases. In the first phase, it in-
vokes a bi-partitioning based slicing tree generation technique to
map cores on to the different routers of the mesh. In the second
phase, MOCA invokes a hierarchical router that generates routes
for all the communication traces.

3.1 MOCA Phase I: Core to router mapping
The MOCA core mapper (CM) takes a CTG and a mesh topol-

ogy as inputs, and maps the cores to different routers of the given
mesh. The mesh is assumed to be placed in the first quadrant
of the X-Y plane with the routers placed at unit distance apart.
Therefore, the mesh can be denoted by a finite sized plane P de-
fined by bottom left hand side (x1, y1) and top right hand side
(x2, y2) co-ordinates, respectively. Each integral location (x, y)
(x1 ≤ x ≤ x2, y1 ≤ y ≤ y2) in the plane denotes the co-ordinate
of the respective router. The mapping of the cores to routers as-
signs a unique (x, y) co-ordinate to each core that corresponds to
the router at that particular location.

We determine the coordinates of the cores by recursively invok-
ing the technique proposed by Fiduccia and Mattheyses [6] (FM) to
solve the graph equicut problem. We restrict the FM technique to
generate partitions with equal sizes. The input to the equicut prob-
lem is a graph with weights on its edges. The solution is a partition
of the graph such that the two partitions have the same number of
nodes, and the cumulative weight of the edges crossing the par-
tition is minimized. Each partitioning step divides the mesh and
the CTG into two halves to generate a slicing tree. On algorithm
completion, the intermediate nodes of the tree are the directions of
each cut (horizontal or vertical) and the leaf nodes are the cores.
The CTG is modified through two pre-processing steps before it is
mapped onto the mesh.

3.1.1 Core mapper pre-processing
The core to router mapping algorithm performs two preprocess-

ing steps.
In the first pre-processing step, CM adds m additional nodes to

the n nodes in the CTG such that the total number of nodes in the
graph is a power of 4. Mathematically, 22p < n < 22p+2 and n+
m = 22p+2 for some p. This step is performed so that every re-
cursive call to the FM partitioner divides the nodes into two equal
halves. Note that m < 3n.

The second pre-processing step performed by CM pertains to
determining a new weight for each edge in the CTG for min-cut
purposes. Bandwidth constraints can be satisfied by finding alter-
native (sometimes longer) route for the trace. Latency constraints,
on the other hand, cannot be adhered to by finding alternative paths.
Therefore, CM gives higher priority to latency compared to band-
width. Let ei be a trace with the highest bandwidth requirement
among all traces in the graph. Let ej be the trace with tightest
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Figure 5: Output of MOCA Phase I: Core to router mapping

(lowest) latency constraint among all traces in the graph. CM de-
termines an integer k such that it is the minimum value required to
ensure that ω(ei)

σ(ei)k ≤ ω(ej)

σ(ej)k . Once k is determined, CM assigns

an edge weight to each edge given by: ∀e ∈ E, ρ(e) = ω(e)

σ(e)k .
For two edges with the same edge weight, the one with tighter la-
tency has higher priority. This heuristic ensures that traces with
low bandwidth requirements but with tight latency constraints are
given priority over those with high bandwidth requirement and re-
laxed latency constraints.

3.1.2 Slicing tree based core mapping
Given a mesh based interconnection network placed in the first

quadrant of the X-Y plane, the CM generates a slicing tree by re-
cursively dividing the mesh into two equal halves by partitioning it
either vertically, or horizontally. Figures 3, 4, and 5 give examples
of the input CTG, slicing tree, and various stages of the algorithm
execution, respectively. In the figure, the first cut is a vertical cut,
the two child cuts are horizontal, and so on. The leaves of the tree
are occupied by the nodes of CTG. The position of the node in the
tree indicates its coordinates after successive partitioning steps.

Figure 6 shows the algorithm for mapping cores onto the routers
of the mesh. The slicing tree based core mapping technique main-
tains a queue data structure (Q). Each element of the queue consists
of a subgraph Gi, a sub-plane Pi, and a direction of cut dir cut.
The queue is utilized to perform a breadth first traversal of the slic-
ing tree. Initially, the given X-Y plane P , the graph G, and a cut
direction dir cut are enqueued. Without loss of generality, we as-
sume that the first cut is vertical. The slp function is invoked by
passing the queue as a parameter to generate a mapping of nodes to
routers.

For the purpose of the discussion on slp, we denote the subgraph
belonging to the element at the head of the queue as G, the corre-
sponding sub-plane as P , and the corresponding cut as dir cut.
The head of the queue is dequeued and stored in a temporary data
structure. Initially, slp checks if the sub-plane is a point. If yes, the
node in the corresponding subgraph is mapped to the router located
at the location of the sub-plane, and the function returns.

If the sub-plane is not a point, the slp function performs the fol-
lowing steps on the temporary data structure. First, slp invokes
the FM technique to partition G into subgraphs G1, and G2. The
second step partitions P into two sub-planes, P1 and P2 of equal
size. If the direction of the cut is vertical (dir cut = v cut ), P
is partitioned into left sub-plane and right sub-planes. On the other
hand, if the direction of the cut is horizontal, P is partitioned into
top and bottom sub-planes.
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CM (G)
add extra nodes() / * Pre-processing step 1 */
assign edge weights() /* Pre-processing step 2 */
enqueue(Q,G,P,v cut)
slp(Q)

end

slp(Q)

(G,P,dir cut) = dequeue(Q)

if (x1 = x2 AND y1 = y2)

M(v) = n, s.t. x(n) = x1, y(n) = y1 /* node → rtr */

return()

end if

(G1, G2) = FM(G)

if (dir cut = v cut)

P1 = [(x1, y1), (� x1+x2
2 �− 1, y2)], P2 = [(� x1+x2

2 �, y1), (x2, y2)]

else /* dir cut = h cut */

P1 = [(x1, y1), (x2, � y1+y2
2 �− 1)], P2 = [(x1, � y1+y2

2 �), (x2, y2)]

endif

add dummy nodes(P1, G1, G2)

if (dir cut = v cut) next cut = h cut else next cut = v cut end if

enqueue(Q,G1,P1,next cut)

enqueue(Q,G2,P2,next cut)

if (|Q| �= 0) slp(Q) end if

return()

end

Figure 6: MOCA Phase I: Core to router mapper

Assuming that the left partition is processed before the right par-
tition, the partition of each left sub-plane is followed by placing
dummy nodes at the intersection with the right sub-plane. Simi-
larly, for a horizontal cut, the partition of each top sub-plane is fol-
lowed by placing dummy nodes at the intersection with the bottom
sub-plane. All crossing traffic traces are captured by these dummy
nodes. This dummy propagation step attracts connected nodes to-
wards each other such that, in the final mapping, nodes connected
with large edge weights are placed close to each other. In order
to place the dummy nodes effectively, the slicing tree should be
traversed in a breadth first manner.

The next step determines the direction of next cut for P1 and P2

which is complement of dir cut. Finally, (G1, P1, next cut), and
(G2, P2, next cut) are enqueued, followed by a recursive call to
the slp function. The recursive call initiates a breadth first traversal
of the search space such that, when CM terminates, the mapping
function M contains a node to router mapping for all nodes in the
original graph G.

Figure 5 presents the different stages of slicing tree based map-
ping of the nodes constituting the CTG. The empty circles in the
figure denote the m additional nodes. The black circles denote the
dummy nodes. In Figure 5(B), traces A-D, and A-E are captured
by the dummy node on the top half plane, and trace C-E is captured
by the dummy node on the bottom half plane.

3.2 MOCA Phase II: Route generation
The MOCA route generator (RG) is a novel technique that oper-

ates on the slicing tree to formulate a unique route for each commu-
nication trace (see Figure 7 for pseudo code). RG operates in two
stages, namely, RG hierarchical router (RGhier) that generates a
route for every trace by traversing the slicing tree, and RG shortest
path router (RGsp) that searches for a minimal distance route for a
communication trace that was not successfully routed by RGhier .

3.2.1 RG hierarchical router
The RGhier attempts to find a minimal path from the source to

the destination for each traffic trace. RGhier traverses the slicing

RG ()
RGhier(P,v cut)
RGsp(tbd trace list)

end

RGhier(P, dir cut)
if (x1 = x2 AND y1 = y2) return() end if
if (dir cut = v cut)

P1 = [(x1, y1), (� x1+x2
2 �− 1, y2)], P2 = [(� x1+x2

2 �, y1), (x2, y2)]

C1 = (
x1+x2

2 , y1), C2 = (
x1+x2

2 , y2)
else /* dir cut = h cut */

P1 = [(x1, y1), (x2, � y1+y2
2 �− 1)], P2 = [(x1, � y1+y2

2 �), (x2, y2)]

C1 = (x1,
y1+y2

2 ), C2 = (x2,
y1+y2

2 )
endif
trace list = get traces(C1, C2) /*list of traces*/
for t ∈ trace list

(n1, n2) = get routers(t,P1, P2)
update routers(t, n1, n2,R)
if (mapping fail(t))

remove(t,R) /* Remove trace from route */
add(t, tbd trace list) /* Add trace to list for next phase */

end if
end for
if (dir cut = v cut) next cut = h cut else next cut = v cut end if
RGhier(P1, next cut), RGhier(P2, next cut)
return()

end

RGsp(tbd trace list)

for t ∈ tbd trace list

for e ∈ L /* For all physical links in I */

if (ω(e) + ω(t) > Ω) /* BW violation */

edge weight(e) = ∞ else edge weight(e) = 1

end if

end for

shortest path(t, I,R)

end for

end
Figure 7: MOCA Phase II: Route generation

tree generated by CM and routes traces that cross the cut at each
level of the tree. The inputs to RGhier are a plane P that con-
stitutes the mesh, and a direction of cut dir cut (vertical in the
pseudo code). RGhier returns a set of ordered tuples R, where
each ri ∈ R = {(x1, y1), (x2, y2), . . .} denotes a unique route
for every traffic trace ei ∈ CTG. Each (xj , yj) ∈ ri denotes the
router through which the trace is routed. RGhier also returns a list
of traffic traces that could not be routed due to violation in either
the bandwidth or latency constraints.

Initially, RGhier checks if the plane passed to it is a point. If
yes, the function returns as no routing is necessary. If the plane
is not a point, RGhier generates a partial route for the traces. It
considers two partitions of the given sub-planes, P1 and P2 as de-
fined by CM (discussed in Section 3.1.2). It generates the cut that
defines the two partitions as (C1, C2), where C1 and C2 are the
end points of the cut. Any traffic trace that crosses the cut (C1, C2)
to complete its route from source to sink, is added to the list of
traces to be routed (trace list). A partial route for the traces in
trace list is generated by assigning the traces on the routers ad-
jacent to the cut. This step is equivalent to assigning the traces to
physical links that are across the cut (C1, C2) subject to the band-
width constraints. Clearly, this is a knapsack problem and is known
to be NP-Complete.

We route traces on the respective routers by considering the traces
in a decreasing order of their bandwidth requirement. The pair of
routers that are connected to the physical links affected by the cut
are considered for routing the trace. The trace is routed through the
pair of routers that is closest to the source, and can support the traf-
fic without bandwidth violation. The selection of the pair of routers
is performed by get router() in Figure 7. Once the trace is routed,
the partial route of the trace in the set R is updated.
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Figure 8 gives an example of the algorithm execution on the
mapping shown in Figure 5(D). In the figure the black squares rep-
resent the routers, the solid lines represent the links, and the la-
belled circles represent the cores from Figure 3. The dotted lines in
Figure 8 refer to the successive cut lines that are generated during
the algorithm execution. The NoC architecture at the end of the
routing stages is shown in Figure 8(G). As an example of the traces
that are selected to be routed across a cut, Figure 8(B) maps traces
(A,B), (A,C), and (A,E) across the horizontal cut in the left hand
side.

We state the following theorem regarding the optimality of RGhier .
Theorem: RGhier finds a minimal path if bandwidth constraints are
not violated.
Proof: Routing of traces through the routers adjacent to a cut take
the trace closer to the sink in the X-direction for vertical cut, and
Y-direction for horizontal cut. Since the trace is routed through the
router closest to the source, at any point, the distance between the
router and the source is minimum. This is Dijkstra’s shortest path
algorithm, and therefore, the path is minimal. Q.E.D

If a trace cannot be mapped to any router in the cut due to band-
width violation, the partial route for the trace in the set R is re-
moved, and the trace is added to a list of unmapped traces. The
RGhier function finally makes a recursive call on P1 and P2 by
setting the dir cut parameter to be complementary to the corre-
sponding value for its call with P . The recursive call initiates a
depth first traversal of the tree such that, when all instances of the
function return, each trace in the edge set E of the CTG either has
a route in R, or the edge is present in the list of unmapped traces
called tbd trace list.

3.2.2 RG shortest path router
The RG shortest path router is called for each traffic trace that

is left unmapped at the end of RGhier stage. For each trace in
tbd trace list, RGsp sweeps the links L of the mesh, and assigns
an edge weight of ∞ to all links that would see a bandwidth vio-
lation on the corresponding ports constituting the links, if the trace
was routed through that link. This step is followed by invoking the
Dijkstra’s shortest path algorithm to find a route for the trace on the
mesh.

The solutions generated by MOCA could have deadlocks that
can be removed by a post-processing step that introduces additional
virtual channels at selected routers [7].

Graph Graph ID Nodes Edges

DSP filter G1 6 5
H.263 encoder G2 7 7
MP3 encoder G3 8 8

H.263 enc MP3 dec G4 12 11
MPEG4 decoder G5 12 13

MWD G6 12 13
VOPD G7 12 13

MP3 enc MP3 dec G8 13 12
H.263 enc MP3 enc G9 15 17
H.263 enc H.263 dec G10 16 17

Table 1: Graph Characteristics

3.3 Complexity Analysis
Complexity of CM : Let n be the number of nodes in the CTG,
u be the number of nodes in the mesh, e be the number of edges
in the CTG, and f be the number of links in the mesh. MOCA
adds m nodes such that n + m = u. As explained in Section 3.1,
n + m = u < 4n. In a square mesh based network with u = 22p

for p ≥ 1, f = 2(u − u
1
2 ). The initial processing in CM takes

linear time. CM performs at most (u − 1) partitions as denoted
by the number of internal nodes of a balanced binary tree. The
FM technique has a linear time complexity in total number of pins
when the input is a hypergraph [6]. In the case of a directed graph
such as the CTG, the total number of pins is O(e). Therefore, the
overall complexity of CM is O(ue).
Complexity of RG : RGhier performs routing by traversing a slic-
ing binary tree of height log2(u) that denotes (u − 1) partitions.
During the processing of each slice the algorithm explores at most
e traces. Traces can be sorted during pre-processing. The com-
plexity of the algorithm for processing each slice is given by the
product of the maximum number of traces and the number of links.
The number of links explored at a particular internal node of the
tree are half that of the parent. However, the total number of links
explored by RGhier at each level of the binary tree are equal, and
are given by u

1
2 . Therefore the complexity of RGhier is given by:

eu
1
2 + 2 · eu

1
2

2
+ 4 · eu

1
2

4
· · · log2(u) terms = eu

1
2 log2(u)

RGsp calls the shortest path algorithm for each trace. The shortest
path algorithm has a complexity of O(f +u). Hence, the complex-

ity of RGsp is O(e(f + u)) = O(e(3u − 2u
1
2 )).

Complexity of MOCA : From the analysis presented above, the
overall complexity of MOCA is given by O(max(eu, eu

1
2 log2(u),

e(3u − 2u
1
2 )) = O(eu).

Comparison with NMAP : The authors of NMAP computed the
complexity of NMAP to be O(eu3 log(f)). Substituting for f , the

complexity of NMAP is given by O(eu3 log(2u− 2u
1
2 )) which is

greater than the complexity of MOCA.

4. RESULTS
In this section we present the results obtained by the execution of

our technique on various multimedia benchmark applications. We
generated custom NoC architectures for six combinations of four
multimedia benchmarks: MP3 audio encoder, MP3 audio decoder,
H.263 video encoder, and H.263 video decoder [2]. In addition, we
obtained results for four other benchmarks: MPEG4 decoder, video
object plane decoder (VOPD), multi-window display (MWD), and
DSP filter application (DSP) [8][4]. Table 1 lists the graph IDs and
sizes of the CTG of the various benchmarks.

We compared the topologies generated by MOCA against those
generated by NMAP, and an optimal MILP formulation [9]. Table
2 presents the results of the comparison in energy consumption of
the topologies generated by MILP, NMAP, and MOCA for traces
with latency constraints. In the table, the sixth column presents

391



No. Graph Energy (nJ) Ratio
MILP NMAP MOCA MOCA vs MOCA vs

MILP NMAP

1 G1 20.935 20.935 27.109 1.3 1.3
2 G2 2143.2 FAIL 2400.2 1.11 NA
3 G3 91.6 FAIL 103.13 1.12 NA
4 G4 2203.6 FAIL 2830.0 1.28 NA
5 G5 70.93 FAIL 103.13 1.45 NA
6 G6 10.16 FAIL 11.191 1.10 NA
7 G7 35.29 FAIL 39.227 1.11 NA
8 G8 154.23 FAIL 218.61 1.41 NA
9 G9 2128.9 FAIL 2724.3 1.27 NA
10 G10 2166.4 FAIL 2378.9 1.09 NA

Table 2: Comparison of MILP, NMAP and MOCA:
With latency constraints

No. Graph Energy (nJ) Ratio
MILP NMAP TEMPO MOCA vs MOCA vs

MILP NMAP

1 G1 20.935 20.935 27.109 1.29 1.29
2 G2 1960.5 1960.5 1960.5 1 1
3 G3 91.362 91.362 91.738 1.00 1.00
4 G4 2018.6 2018.6 2018.6 1 1
5 G5 64.059 72.453 68.401 1.06 0.94
6 G6 9.7440 10.708 10.612 1.08 0.99
7 G7 33.862 34.345 36.178 1.06 1.05
8 G8 152.52 152.52 165.45 1.08 1.08
9 G9 2047.8 2366.4 2047.8 1 0.86
10 G10 2075.7 2075.6 2080.5 1.00 1.00

Table 3: Comparison of MILP, NMAP and MOCA:
Without latency constraints

Node MPEG4 VOPD

0 VU VLD
1 SDRAM RUN LEN DEC
2 ADSP INV SCAN
3 AU STRIPE MEM
4 UPSP IQUANT
5 MCPU ACDC PRED
6 SRAM1 IDCT
7 RAST ARM
8 SRAM2 UP SAMP
9 BAB VOP REC
10 IDCT PAD
11 RISC VOP MEM

Table 4: Node descriptions
for MPEG4 and VOPD
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the ratio of the energy consumption of MOCA over MILP, and the
seventh column presents ratio of energy consumption of MOCA
over NMAP. Since NMAP does not consider latency constraint, the
topologies produced by the technique violated latency constraints
on most test cases. On the other hand, MOCA was able to generate
topologies satisfying latency constraints for all test cases. On an
average, the energy consumption of MOCA was within 22 % of the
MILP. The solution time of MILP grows exponentially with input
size unless P = NP . While MILP timed out for most input cases,
MOCA was able to generate results within 0.01secs.

Table 3 presents the comparison of MOCA with MILP and NMAP
for the input traces without latency constraints. As is evident from
the table, both NMAP and MOCA performed as well as MILP in
many cases. On average, MOCA performed within 6 % of the so-
lution generated by MILP. The overall variation of MOCA against
NMAP was negligible. However, as we proved earlier the algorith-
mic complexity of MOCA is lower than that of NMAP.

Figures 9, and 10 present trace graphs for MPEG4 decoder, and
VOPD, respectively. The description of the various nodes in the
two figures is shown in Table 4. The labels of the edges denote
bandwidth requirement in Mbps, and latency constraint in router
hops, respectively. Figures 11, and 12 present the mesh based NoC
architectures for MPEG4 generated by MOCA for the latency con-
strained and latency unconstrained cases, respectively. The corre-
sponding designs for VOPD are shown in Figures 13, and 14. Since
MOCA gives higher priority to latency, traces with tight latency are
routed through minimum hops. For example, in the case of MPEG4
decoder, trace (1,2) is routed in only two hops due to its tight la-
tency (2 hops). Note that when latency is not a constraint, the same
trace is routed in three hops due to its low bandwidth requirement.

5. CONCLUSION
We presented a novel polynomial time heuristic technique called

MOCA for automated design of low energy mesh based NoC ar-
chitectures. We proved that the algorithmic complexity of MOCA
is lower than that of NMAP [4]. MOCA takes latency constraint on
the traces into consideration, and is able to generate valid topolo-
gies under tight latency constraints for all benchmarks while NMAP
fails for many designs. The quality of results of MOCA and NMAP
are comparable when latency is not a constraint. We also compared
MOCA against an optimal MILP formulation, and it could produce
solutions that were within 14% of the optimum.
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Figure 11: MPEG4 with la-
tency constraints

4 1 5 2

8 7 6 3

11 9

10 0

Figure 12: MPEG4 without
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Figure 13: VOPD with latency
constraints
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Figure 14: VOPD without la-
tency constraints
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