
Snug Set-Associative Caches
Reducing Leakage Power while Improving Performance ∗

Jia-Jhe Li
Department of Computer Science
National Taiwan Ocean University

Keelung 20224
Taiwan

jjli@pllab.cs.ntou.edu.tw

Yuan-Shin Hwang
Department of Computer Science
National Taiwan Ocean University

Keelung 20224
Taiwan

shin@cs.ntou.edu.tw

ABSTRACT
As transistors keep shrinking and on-chip data caches keep grow-
ing, static power dissipation due to leakage of caches takes an in-
creasing fraction of total power in processors. Several techniques
have already been proposed to reduce leakage power by turning
off unused cache lines. However, they all have to pay the price of
performance degradation. This paper presents a cache architecture,
the Snug Set-Associative (SSA) cache, that does not only cut most
of static power dissipation but also reduces execution times. The
SSA cache reduces leakage power by implementing the minimum
set-associative scheme, which only activates the minimal numbers
of ways in each cache set, while the performance losses incurred by
this scheme are compensated by the base-offset load/store queues.
These two techniques are both developed based on the principle of
locality and they work together nicely—experimental results show
that the minimum set-associative scheme can cut static power con-
sumption of the L1 data cache by 90% on average for SPECint2000
benchmarks, while the execution times are reduced by 3% when the
default 8-entry load/store queue is modified to the base-offset de-
sign. Furthermore, the SSA cache can trim the leakage power of
L2 data cache by 96% on average while still accomplishing a 3%
reduction in execution times.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Cache Memories

General Terms: Algorithms, Design, Measurement

Keywords: Set-associative caches, Leakage power

1. INTRODUCTION
As the minimum feature size gets smaller and more transistors

are packed densely onto processors, static power dissipation due to
leakage takes an increasing fraction of total power in processors. It
is estimated that leakage power will be the dominant form of power
dissipation soon [6, 13]. Furthermore, nowadays on-chip caches
comprise most of the transistor counts of processors. As a result,
leakage power of caches accounts for a significant fraction of the
overall chip energy.

∗This research was supported in part by NSC grant NSC93-2213-
E-019-001 and MOEA project 94-EC-17-A-01-S1-034
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA
Copyright 2005 ACM 1-59593-137-6/05/0008 ...$5.00.

Several techniques have already been proposed to reduce leak-
age power of data caches [1, 7, 8, 10, 12, 23]. They all have devel-
oped polices and implementations to turn off or put to sleep data
cache lines that are not likely to be reused. The rationale of this
strategy is that cache lines usually have a period of “dead time”
before their data are discarded, and the activity in data caches is
only centered on a small subset of cache lines during a fixed period
of time due to the property of locality. However, these methods
all incur performance penalties since reloading data or waking up
cache lines takes time and energy. To alleviate this problem, this
paper presents a cache architecture, the Snug Set-Associative (SSA)
cache, that does not only cut most of static power dissipation but
also improves performance.

The SSA cache reduces leakage power by implementing the min-
imum set-associative (MSA) scheme, which only activates the min-
imal numbers of ways in every cache set. Similar to those proposed
techniques, this theme turns off the cache lines that are idle over a
pre-set number of cycles. However, this scheme does not activate
an additional cache block right away once a cache miss happens,
as done by these techniques. Instead, an additional way is activated
only when the target block of the current miss has been referenced
before within a certain time interval. On the other hand, if the data
of the current miss had not been accessed recently, the data will be
loaded to a cache line in the target cache set and the least recently
used (LRU) cache block in the same cache set will be deactivated.
In other words, the number of active ways remains the same. An ad-
ditional way is allocated only to avoid thrashing in the same cache
set. As a result, only the minimal numbers of ways in each cache
set remain active. This scheme turns off more cache lines than these
existing techniques, and consequently reduces more leakage power.

The performance losses caused by the MSA scheme will be com-
pensated by the base-offset load/store queue (BO-LSQ) design. In
addition to storing the effective address of a load or store instruc-
tion, the default load/store queue (LSQ) is modified to accommo-
date the offset and the content of the base register in the same entry
as well. The design is developed based on locality: as data in the
cache blocks of the current working set are accessed repeatedly,
the same addresses are computed again and again. In other words,
the load/store instruction currently being dispatched might find an
entry in BO-LSQ with matched offset and base value. As a re-
sult, a couple of pipeline stages for address computation of some
load/store instructions can be bypassed and hence execution times
can be reduced.

The main results of this paper are as follows:

• SSA can cut static power consumption of L1 caches by 90%
for SPECint2000 benchmarks, while the execution times are
reduced by 3% on average when the default 8-entry LSQ is

345

modified to the BO-LSQ design. The average active ratio of
cache blocks is less than 5%.

• SSA can trim the leakage power of L2 data cache by 96% on
average, while still accomplishing a 3% reduction in execu-
tion times with an 8-entry BO-LSQ. This result is significant
since nowadays L2 caches usually comprise much of the chip
areas and transistor counts of processors.

2. MINIMUM SET-ASSOCIATIVE CACHE
Caches are very power-inefficient due to locality since on most of

SPEC benchmarks the working set — the fraction of unique cache
lines accessed during an interval of thousands of instructions — is
small [7]. In addition, a cache block is not likely to be referenced
in the future when it leaves the active window [4, 10]. Therefore,
it is reasonable to deactivate cache blocks when they hold data not
likely to reused.

0 way 2 ways1 way 3 ways 4 ways

miss miss

miss

miss miss

time uptime uptime uptime up

(a) Set-Associative

0 way 2 ways1 way 3 ways 4 ways

miss repeated miss

fresh miss fresh miss fresh miss miss

repeated miss repeated miss

time uptime up time up time up

(b) Minimum Set-Associative

Figure 1: Set-Associative vs. Minimum Set-Associative

2.1 Policy
The SSA cache reduces leakage power of caches by deploying

the minimum set-associative (MSA) scheme, which tries to activate
as few cache blocks as possible. The MSA scheme differs from the
existing leakage-reducing techniques in the timing of when to acti-
vate an extra cache block in the target cache set. Both Cache Decay
and Drowsy Cache allocate a new block when a miss happens and
deactivate a block when its time window expires [7, 10]. As a re-
sult, the numbers of active ways in a 4-way set-associative cache
will follow the state diagram shown in Figure 1(a). On the other
hand, an extra way is allocated by MSA only when the new block
and currently active blocks might be accessed in the near future.
The reason is because it has been observed that the cache “effi-
ciency” is low, which is the fraction of data that will be a read hit in
the future before any evictions or writes [4]. In other words, cache
blocks that are not actively accessed are not likely to be used in the
future.

Since set-associative caches can avoid the thrashing problem of
direct-mapped caches, MSA exploits this idea and activates more
ways only when it can be identified the situation has occurred that

a piece of code repeatedly alternates between accessing different
locations that map to the same cache set [20]. In other words, MSA
increases the number of active ways of a cache block only if the
data of current miss has be accessed before within the time window.
In order to determine whether the thrashing problem will occur if
the number of active ways in the target cache set is not increased,
MSA classifies all misses within a time interval into two categories:

• repeated — the miss to a block that was active before within
the current window, and

• fresh — the miss that is not repeated.

When a fresh miss occurs, no extra way will be activated in the tar-
get cache set. Instead, an active block chosen by the LRU policy in
the cache set will be deactivated and a new block will be allocated
to accommodate the new data. On the other hand, when a repeated
miss is identified, an extra way will be activated to avoid the thrash-
ing problem. As as result, the numbers of active ways in a 4-way
MSA cache will follow the state diagram shown in Figure 1(b).

Consider a 4-way set-associative cache with only 2 sets that is
referenced by a sequence of addresses mapped to memory blocks 1
to 8 and then blocks 1 and 2. When block 3 is referenced, the set-
associative scheme will activate another block in Set 1 and hence
two cache lines are active to hold the data of blocks 1 and 3 (the
shaded blocks), as shown in Figure 1(a). On the other hand, the
MSA scheme considers it as a fresh miss, and then disables the
currently active block after allocating a new cache line in Set 1 for
block 3. As a result, there is still only one active way in Set 1 after
time step 3, as depicted in Figure 1(b). After block 8 is accessed,
all the cache block in the cache are active for the set-associative
scheme, while MSA has only two working cache lines. When
blocks 1 and 2 are referenced again, the set-associative scheme will
do nothing since both cache lines are active. On the other hand,
MSA will reactivate cache lines for blocks 1 and 2 as both are re-
peated misses.

2.2 Implementation
In order to differentiate fresh misses from repeated misses, there

must be a way to tell if the cache block of the current miss was ac-
tive within the current time interval. This paper solves this problem
by placing a third state, called the sleep state, between the active
and off states. In the sleep state, the data field of a cache block is
inactive while the tag field remains active. Consequently, when a
miss happens, the miss will be categorized as a repeated miss if the
tag field of the request matches the tag fields of any sleep blocks
in the target cache set. Otherwise, the miss will be classified as a
fresh miss.

active sleep

off

Tsleep /
fresh miss & LRU

Tofffresh miss

repeated miss & Tag match

Figure 2: States of SSA Cache Blocks

Figure 2 depicts the state transitions of an SSA cache block un-
der MSA. When a fresh miss happens, an off block will be activated
and enters the active state. On the other hand, when a repeated
miss takes place, the tag field of the request will match one of sleep
blocks in the cache set, and the matched block will make the tran-
sition from the sleep state to the active state. An active block will

346

be put to sleep when one of two conditions occurs: (1) when a
fresh miss happens and this block is the LRU block in the set, or
(2) when the pre-set time slot Tsleep expires. Finally, a block in
the sleep state will be turned off when it is idle over a pre-set time
window Toff .

These three states can be implemented by combining the tech-
niques in Cache Decay [10] and Drowsy Cache [7], since they can
be modeled as

• active: normal mode

• sleep: data field is put into a low-power drowsy mode so that
it can be reactivated with only 1-cycle delay when necessary

• off : both tag and data fields are turned off as the decayed
(off) mode in Cache Decay

Furthermore, Cache Decay can be implemented using the same cir-
cuit fabric as in Drowsy Cache [14]. Therefore, the dynamic volt-
age scaling (DVS) technique implemented in Drowsy Cache can be
extended to supply three types of voltages: VDD (1V), VDDLow
(0.3V), and VSS (0V), which correspond to active, sleep, and off
states respectively.

DVSDrowsy Bit

Decay Bit

VDDLow (0.3V)
VDD (1V)
VSS (0V)

Cache Block

Row
Decoders

4-bit
CounterWRD

DVS
Drowsy Bit

Decay Bit
Cache Block4-bit

Counter

WRD

VDDLow (0.3V)
VDD (1V)
VSS (0V)

10-bit Global Counter

DVS
Drowsy Bit

Decay Bit
Cache Block4-bit

Counter

VDDLow (0.3V)
VDD (1V)
VSS (0V)

WRD

DrowsyDecay

VDD

VDDLow
VSS

0 0
0

1
1

1

Figure 3: SSA Organization

Figure 3 displays the organization of SSA. The ticks for 4-bit
cache-line counters are fed from a 10-bit global counter, which
would come for free from on-chip hardware performance moni-
tors [5, 22]. When a local counter reaches zero, one of two bits,
Drowsy and Decay, will be set to signal a state transition. Both bits
are cleared when the cache line is active, and the output of DVS
will be VDD. When Tsleep is up, the Drowsy bit will be set and
the DVS output will be dropped to VDDLow to put the cache line
into the drowsy mode. Finally, when Toff is up, the Decay bit will
be set as well and the cache line will be turned off by lowering the
DVS output to VSS .

2.3 Energy
Static power dissipation of an SSA cache consists of leakage

power of active blocks, leakage power dissipated by blocks in the
sleep mode, and the energy consumption incurred by the extra L1
misses that are introduced when off cache lines are accessed. The
leakage power of active blocks Eactive is equal to the product of the
number of all active blocks during the run of the program Bactive

and the static energy consumed by a cache line every clock cycle
Eblock, i.e.,

Eactive = Bactive × Eblock

Bactive =

NewTotalCyclesX

i=1

ActiveBlocksi

where NewTotalCycles is the total number of clock cycles for the
program when MSA is applied and ActiveBlocksi is the number
of active blocks at ith clock cycle.

Static energy of cache lines in sleep mode Esleep is the sum of
energy generated by the active tag fields and the drowsy data fields:

Esleep = Bsleep × (Ftag + Fdata × Rsleep) × Eblock

Bsleep =

NewTotalCyclesX

i=1

DrowsyBlocksi

where Ftag is the fraction of the tag fields in the cache line, Fdata

is the fraction of the data field (Ftag + Fdata = 1), and Rsleep

is the ratio of static energy of a drowsy block relative to an active
block. In addition, turning off cache blocks introduces extra L1
misses and hence incurs some energy overhead EL2access:

EL2access = ExtraMiss× RL2 × Eblock

RL2 relates the overhead due to an additional miss to static leakage
energy of a single clock cycle in the L1 cache.

Performance of SSA caches will be evaluated by normalized
leakage power, which uses the static power consumption of the
original cache organization as the base:

Leakage =
Eactive + Esleep + EL2access

Eorigin

Eorigin = BlockNumber × Eblock × TotalCycles

where BlockNumber is the number of cache blocks in the cache
and TotalCycles is the original number of clock cycles for the
program.

3. BASE-OFFSET LOAD/STORE QUEUE
A dynamically scheduled processor usually embeds a load/store

queue (LSQ) to provide the following functions: (1) buffering store
addresses and values for in-order retirement, (2) forwarding in-
flight store values to load, (3) detection of load/store ordering viola-
tions, and (4) detection of consistency violations [3, 17]. Recently,
couples of techniques have been proposed to reduce power con-
sumption or improve cache load time by buffering data in the LSQ
[16, 18]. This section presents a design, the base-offset load/store
queue (BO-LSQ), that can improve performance by modifying the
base LSQ to accommodate the offsets and the contents of the base
registers of load or store instructions. The design is developed
based on the observation that store-load and load-load memory de-
pendences exists in many programs [18]. The dependences can be
correlated directly if the same base and offset are identified in any
entry of the BO-LSQ, and then a couple of pipeline stages of load
instructions can be bypassed to achieve speedup.

Figure 4: Base-Offset Load/Store Queue

Figure 4 depicts the details of the BO-LSQ organization. The
L/S flag identifies the instruction as being a load or a store. The
address field contains a memory address to access, the data field
contains the data to store for store instructions, and the status bit
contains the execution state of the instruction [16].

BO-LSQ adds two more fields to the base LSQ: the base field
that keeps the content of the base register, and the offset field that
holds the offset value of a load or store instruction. The design is
based on the format of the load and store instructions of Alpha [11]:

load Ra, disp (Rb)
store Ra, disp (Rb)

347

where the effective address is computed by adding the value of disp
and the content of the base register Rb. As a result, a load or store
instruction is executed in two phases: address computation (AGEN)
and memory access (L/S).

Figure 5 shows the pipeline stages of Alpha 21264 simulated by
the SimpleScalar [2]. In the Dispatch stage, multiple instructions
are decoded, dependences among instructions are detected, and the
decoded instructions are renamed to reorder buffer (RUU) entries.
In addition, the instructions will be put to the issue queue, and the
values of register operands will be loaded in the Dispatch stage if
they are available. The Execute stage performs the computation
when operands are ready, and the result will be broadcasted in the
WriteBack stage.

Fetch (L/S)

WriteBack
(L/S)

Execute (L/S)Dispatch (L/S) Commit (L/S)

Commit
(AGEN)

WriteBack
(AGEN)

Execute
(AGEN)

Dispatch
(AGEN)

Bypass

Figure 5: Pipeline Stages and Bypassing

When a load or store instruction enters the pipeline, the AGEN
and L/S phases will be treated as two consecutive and dependent
instructions. After the effective address is computed at the Execute
stage, the result will be sent to the next pipeline stage and mean-
while be forwarded to the Dispatch stage of the L/S phase as well.
Therefore, the WriteBack stage of AGEN and the Dispatch stage of
L/S can then be executed simultaneously in the same clock cycle.
In the Execute stage, the computed address will be compared with
the addresses in the base LSQ and the tags of L1 cache to deter-
mine if the operand can be obtained from a normal store-to-load
forwarding in LSQ or be read from a cache block.

The Bypass path in Figure 5 shows that a load or store instruction
can jump to the Execute stage of its L/S phase from the the Dispatch
stage of the AGEN phase if the effective address can be looked up
from the BO-LSQ. Currently, two possible conditions are checked:

• if the offset and the content of the base register of the instruc-
tion match both the offset and base fields of any entry of the
BO-LSQ, or

• if either the offset or the content of the base register of the
instruction is equal to zero.

If one of these conditions is met, two pipeline stages can be by-
passed and the execution of this instruction can be sped up by two
clock cycles.

4. EXPERIMENTAL RESULTS

4.1 Setup
Experiments are conducted by executing the SPECint2000 bench-

marks [19] on SimpleScalar v3.0d [2]. The simulated processor
is a 21264-like processor [11], and the default parameters of the
processor and memory hierarchy set by SimpleScalar are listed in
Table 1. The SPECint2000 binaries with SPEC peak settings were
downloaded from the University of Michigan through a link at the
SimpleScalar home page [21]. Instead of just collecting a small
trace of each program as done by other researchers, this paper chose
to simulate the entire program of every SPECint2000 benchmark to
avoid the pitfall that a program’s locality behavior is not constant
over the run of the entire program [9].

All the SPECint2000 benchmarks will be executed respectively
on 1-way, 2-way, 4-way, 8-way, 16-way, and 32-way L1 instruc-
tion and data caches. Caches with up to 32-way associativity are
simulated because modern embedded processors use data caches

with high degrees of associativity in order to increase performance.
In addition, both the Cache Decay and Drowsy Cache techniques
have been implemented in the SimpleScalar as well, and their im-
pact on static power consumption and execution times will be used
as the baseline comparison. Table 2 lists the configurations used
in this paper with different Tsleep and Toff settings to evaluate the
performance of these three leakage saving techniques.

Processor Core

Instruction Window 16 RUU, 8 LSQ entries

Issue Width 4 instructions/cycle

Functional Units 4 IntALU, 1 IntMult, 4 FpALU, 1 FpMult, 2 Memory Ports

Pipeline 5 Stages: Fetch/Dispatch/Execute/WriteBack/Commit

Memory Hierarchy

L1 Dcache 32KB, 32B blocks, 1/2/4/8/16/32 ways, 1-cycle latency

L1 Icache 32KB, 32B blocks, 1/2/4/8/16/32 ways, 1-cycle latency

L2 cache 1MB, 64B blocks, 8-way LRU, 6-cycle latency

Memory 18-cycle latency

Table 1: Configuration of Simulated Processor

Name Experiment Setup

Original Set-Associative, 8-entry LSQ, Tsleep = ∞
MSA0116 MSA, 8-entry LSQ, Tsleep = 1K cycles, Toff = 16K Cycles

MSA0104 MSA, 8-entry LSQ, Tsleep = 1K cycles, Toff = 4K Cycles

SSA0116 MSA, 8-entry BO-LSQ, Tsleep = 1K cycles, Toff = 16K Cycles

Decay16 Cache Decay, 8-entry LSQ, Toff = 16K Cycles

Decay4 Cache Decay, 8-entry LSQ, Toff = 4K Cycles

Decay1 Cache Decay, 8-entry LSQ, Toff = 1K Cycles

Drowsy16 Drowsy Cache, 8-entry LSQ, Tsleep = 16K Cycles

Drowsy4 Drowsy Cache, 8-entry LSQ, Tsleep = 4K Cycles

Drowsy1 Drowsy Cache, 8-entry LSQ, Tsleep = 1K Cycles

Table 2: Setups of Experiments

4.2 Active Ratios
Since the MSA scheme of SSA activates an extra cache line only

when a repeated miss has occurred, SSA should have fewer active
blocks than Cache Decay and Drowsy Cache. Figure 6 shows on
average only about 4.7% of cache blocks are active for SSA caches
when the active window is set to 1K cycles, while the average ac-
tive ratios for Cache Decay and Drowsy Cache with the same active
window are 7.7% and 5.0% respectively.

Original MSA0116 MSA0104 SSA0116 Decay16 Decay04 Decay01 Drowsy16 Drowsy04 Drowsy01
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Active Drowsy Off

Figure 6: Average Active Ratios

4.3 Performance Evaluation
Static Energy

Figure 7 plots the normalized cache leakage dissipation for the
SPECint2000 benchmarks. In this graph, the ratio of static en-
ergy of a drowsy block relative to an active block Rsleep is set to
0.08 [7], and the relative overhead due to an additional miss RL2 is
50 [10]. The bars in the graph are normalized to the static energy
dissipated by the original 32B L1 data cache with 1-way, 2-way,
4-way, 8-way, 16-way, or 32-way organization.

348

SSA can significantly reduce the leakage power of L1 data cache,
up to 90% when Tsleep = 1Kc and Toff = 16Kc. When Toff is
reduced to 4K cycles, the reduction can be further pushed to 93%,
which is better than the best case of Cache Decay (Toff = 1Kc).
Cache Decay usually saves more leakage energy than Drowsy Cache,
since even drowsy cache blocks still produce leakage. When the
time window is set to 1K, 4K, and 16K cycles, the normalized
leakage powers of Drowsy Cache configurations are about 19%,
25%, and 39%, respectively. This figure reveals that even though
a drowsy cache line dissipates only 8% of leakage of an active
line, the overall effect is still substantial since most cache lines are
drowsy.

Original MSA0116 MSA0104 SSA0116 Decay16 Decay04 Decay01 Drowsy16 Drowsy04 Drowsy01
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
1-way 2-way 4-way 8-way 16-way 32-way

Figure 7: Average Normalized Leakage Power

Original MSA0116 MSA0104 SSA0116 Decay16 Decay04 Decay01 Drowsy16 Drowsy04 Drowsy01
-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%
1-way 2-way 4-way 8-way 16-way 32-way

Figure 8: Average Run Time Impact

Run Time Impact
Turning off or putting to sleep cache lines to reduce leakage

power will definitely incur performance penalties since reloading
data or waking up cache lines takes time and energy. With 1Kc
time window, Cache Decay causes the average execution times to
increase over 6% and Drowsy Cache about 1.7%. Similarly, the
MSA scheme of SSA alone degrades the performance by about
2.4% (the MSA0116 configuration). However, SSA deploys the
BO-LSQ by modifying the default LSQ design to compensate this
performance loss. Figure 8 shows the SSA cache with 8-entry BO-
LSQ (i.e. SSA0116) can not only recover the 2.4% performance
loss, but also improves the average run time by 3%.

Figure 7 and Figure 8 together demonstrate that SSA can outper-
form the original configuration by 3% while just dissipating 10%
of leakage power. It provides an approach to improve both leak-
age power of data caches and performance. On the contrary, Cache
Decay and Drowsy Cache reduce cache leakage power while com-
promising performance. Cache Decay can cut the cache leakage
power down to 8%, but average execution time will rise over 8%.
On the other hand, Drowsy Cache can contain performance penal-
ties within 1%. However, the normalized leakage energy might
reach 25%∼30%.

Miss Rates
Turning off cache lines definitely increases miss rates. How-

ever, the extra miss rates introduced by SSA are very small. Fig-
ure 9 shows the average miss rates of SPECint2000 benchmarks
observed on the configurations listed in Table 2 with 1-way, 2-way,
4-way, 8-way, 16-way, and 32-way instruction and data caches. The

average miss rates of the original configuration on 1-way, 2-way,
4-way, 8-way, 16-way, and 32-way caches are 6.4%, 5.3%, 5.1%,
5.1%, 5.0%, and 5.0%, respectively. SSA caches with Tsleep =
1K cycles and Toff = 16K cycles introduce an additional miss
rate of about 0.5% to each case, and the average miss rates are
6.9%, 5.9%, 5.7%, 5.6%, 5.6%, and 5.6%. When Toff of SSA is
reduced to 4K cycles, the extra miss rates grow to about 1.6%∼1.9%.

1-way 2-way 4-way 8-way 16-way 32-way
0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

Original MSA0116 MSA0104 SSA0116 Decay16 Decay04 Decay01 Drowsy16 Drowsy04 Drowsy01

Figure 9: Average Miss Rates

Cache Decay with Toff = 16K raises average miss rates about
0.7%, but the average miss rates are almost doubled when Toff is
reduced to 1K cycles. On the other hand, Drowsy Cache does not
increase miss rates since it does not turn off cache lines. Instead,
it puts cache lines into a state-preserving drowsy state. However,
drowsy cache lines still dissipate static power.

4.4 BO-LSQ Bypassing
The performance gain observed in the SSA0116 configuration

comes from the bypassing of pipeline stages by BO-LSQ. The sav-
ing comes from two sources: (1) load or store instructions with zero
offsets or bases, which account for 43%, and (2) load or store in-
structions with offsets or bases matched entries in BO-LSQ, which
account for 5%. Consequently, the address computation phase of
48% of load or store instructions can be bypassed as shown in Fig-
ure 10.

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf Average
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Matched Zero Performed Flushed

Figure 10: Percentage Breakdown of Load/Store Instructions

4.5 L2 Cache
SSA can also be used at L2 caches since the active ratios are

usually very low. Figure 11 reveals that the normalized leakage
power of the 1MB L2 SSA cache with Tsleep = 1Kc and Toff =
1024Kc is cut by 96%, which is significant since a 1M L2 cache
would comprise much of the chip area and transistor counts of a
CPU. Figure 12 demonstrates that L2 SSA caches can improve per-
formance as well. Almost all the SPECint2000 benchmarks expe-
rience runtime reduction when SSA is applied to L2 cache, except
for twolf. The reason is because the window size of 1024Kc is still
too small for twolf and it causes many extra L2 misses. However,
the average drop on execution times of SPECint2000 benchmarks
still reaches 3% when the number of BO-LSQ entries is 8.

5. RELATED WORK
Selective cache ways proposed the first method of turning off

unneeded ways to reduce cache energy [1]. It is a coarse-grain ap-
proach that can turn off entire cache ways of set-associative caches

349

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf Average
0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

Figure 11: L2 SSA Cache Leakage Power

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf Average
-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

Figure 12: Average Run Time Impact (L2 SSA Cache)

for different programs. Recently, several fine-grain techniques have
been developed that turn off or deactivate individual cache lines
to reduce power consumption [7, 8, 10, 12, 23]. They all have
developed polices and implementations to turn off or put to sleep
cache lines that are not likely to be reused. However, these meth-
ods all incur performance penalties since reloading data or waking
up cache lines takes time and energy. The MSA scheme of SSA
caches follows the similar path to reduce leakage power dissipation
and hence suffers minor performance degradation as well. Nev-
ertheless, SSA caches deploy BO-LSQ, which can obtain enough
performance gain that does not only recover the performance losses
caused by MSA but still has an excess to reduce execution times.

Signature Buffer permits load and store instructions bypassing
normal memory hierarchy for fast data communication [18]. How-
ever, it has to copy cache blocks into the signature buffer and must
deal with data alignment and signature synonym problems. On the
other hand, BO-LSQ in this paper skips the address computation
phase by only comparing the base and offset of the dispatched in-
struction with those of instructions in BO-LSQ entries. Cached
LSQ is another way to circumvent normal memory hierarchy that
buffers data in the data field of LSQ entries [16]. This technique
can be easily integrated in BO-LSQ to reduce accesses to cache
blocks.

Recently Meng et. al. have developed a model to estimate the
optimal leakage savings by combining Cache Decay and Drowsy
Cache when the perfect knowledge of future trace is available [15].
The work is closely related to this paper, but the model does not
assess the performance penalties when the optimal leakage savings
are achieved. On the contrary, the SSA of this paper can improve
performance while significantly cutting leakage dissipation of data
caches.

6. CONCLUSIONS
This paper has presented a cache architecture, the SSA cache,

that can reduce leakage power without incurring performance penal-
ties. The SSA cache has implemented the MSA scheme, which
only activates the minimal numbers of ways in every cache set, and
it has cut static power consumption of SPECint2000 benchmarks
by 90% on average. In addition, the performance losses caused by
the MSA scheme has been compensated by an 8-entry BO-LSQ,

and the average execution times of SPECint2000 benchmarks has
been reduced by 3%. Furthermore, SSA can also trim the leakage
power of L2 data cache by 96% on average, while still accomplish-
ing a 3% reduction in execution times with an 8-entry BO-LSQ.

7. REFERENCES
[1] David H. Albonesi. Selective cache ways: On-demand cache resource

allocation. In Proceedings of the 33rd annual ACM/IEEE International
Symposium on Microarchitecture, pages 248–259, 1999.

[2] T. Austin, E. Larson, and D. Emst. Simplescalar: An infrastructure for
computer system modeling. IEEE Computer, 35(2):59–67, 2002.

[3] Lee Baugh and Craig Zille. Decomposing the load-store queue by function for
power reduction and scalability. In The First Watson Conference on Interaction
between Architecture, Circuits, and Compilers (p = ac2 Conference), 2004.

[4] Douglas C. Burger, James R. Goodman, and Alain Kägi. The declining
effectiveness of dynamic caching for general-purpose microprocessors.
Technical report 1261, University of Wisconsin-Madison Computer Science
Department, 1995.

[5] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger, William E. Weihl, and
George Chrysos. Profileme: hardware support for instruction-level profiling on
out-of-order processors. In Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture, pages 292–302. IEEE
Computer Society, 1997.

[6] B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy, J. Kavalieros,
A. Murthy, and R. Chau. Transistor elements for 30nm physical gate lengths
and beyond. Intel Technology Journal, 6(2):42–54, 2002.

[7] Krisztian Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and Trevor
Mudge. Drowsy caches: simple techniques for reducing leakage power. In
Proceedings of the 29th Annual International Symposium on Computer
Architecture, pages 148–157, 2002.

[8] H. Hanson, M.S. Hrishikesh, V. Agarwal, S.W. Keckler, and D. Burger. Static
energy reduction techniques for microprocessor caches. In Proceedings of
2001 International Conference on Computer Design, pages 276–283, 2001.

[9] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantative Approach. Morgan Kaufmann, 3rd edition, 2003.

[10] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache decay:
exploiting generational behavior to reduce cache leakage. In Proceedings of
the 28th annual International Symposium on Computer Architecture, pages
240–251, 2001.

[11] R.E. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24–36,
1999.

[12] Nam Sung Kim, Krisztian Flautner, David Blaauw, and Trevor Mudge.
Drowsy instruction caches: Leakage power reduction using dynamic voltage
scaling and cache sub-bank prediction. In Proceedings of the 35th annual
ACM/IEEE International Symposium on Microarchitecture, pages 219–230,
November 2002.

[13] Nam Sung Kim, Krisztian Flautner, David Blaauw, and Trevor Mudge. Circuit
and microarchitectural techniques for reducing cache leakage power. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 12(2):167–184,
February 2004.

[14] Lin Li, Vijay Degalahal, N. Vijaykrishnan, Mahmut Kandemir, and Mary Jane
Irwin. Soft error and energy consumption interactions: a data cache
perspective. In Proceedings of the 2004 international symposium on Low
power electronics and design, pages 132–137. ACM Press, 2004.

[15] Yan Meng, Timothy Sherwood, and Ryan Kastner. On the limits of leakage
power reduction in caches. In Proceedings of the 11th International
Symposium on High-Performance Computer Architecture, February 2005.

[16] D. Nicolaescu, A. Veidenbaum, and A. Nicolau. Reducing data cache energy
consumption via cached load/store queue. In Proceedings of the 2003
International Symposium on Low Power Electronics and Design, pages
252–257, 2003.

[17] I. Park, C.L. Ooi, and T.N. Vijaykumar. Reducing design complexity of the
load/store queue. In Proceedings of the 36th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 411–422, 2003.

[18] Lu Peng, Jih-Kwon Peir, and Konrad Lai. Signature buffer: Bridging
performance gap between registers and caches. In Proceedings of the 10th
International Symposium on High Performance Computer Architecture, pages
164–175, 2004.

[19] Standard Performance Evaluation Corporation. SPEC CPU2000 v1.1, 2000.
[20] Andrew S. Tanenbaum. Structured Computer Organization. Prentice-Hall, 4th

edition, 1999.
[21] Chris Weaver. SPEC 2000 binaries.

http://www.eecs.umich.edu/∼chriswea/benchmarks/spec2000.html.
[22] Marco Zagha, Brond Larson, Steve Turner, and Marty Itzkowitz. Performance

analysis using the mips r10000 performance counters. In Proceedings of the
1996 ACM/IEEE conference on Supercomputing. ACM Press, 1996.

[23] Huiyang Zhou, Mark C. Toburen, Eric Rotenberg, and Thomas M. Conte.
Adaptive mode control: A static-power-efficient cache design. ACM
Transactions on Embedded Computing Systems (TECS), 2(3):347–372, 2003.

350

	Main Page
	ISLPED'05
	Front Matter
	Table of Contents
	Author Index

